
Natural Language is All a Graph Needs

Ruosong Ye
Rutgers University

ruosong.ye@rutgers.edu

Caiqi Zhang
University of Cambridge
cz391@cam.ac.uk

Runhui Wang
Rutgers University

runhui.wang@rutgers.edu

Shuyuan Xu
Rutgers University

shuyuan.xu@rutgers.edu

Yongfeng Zhang
Rutgers University

yongfeng.zhang@rutgers.edu

Abstract
The emergence of large-scale pre-trained language models, such as ChatGPT,
has revolutionized various research fields in artificial intelligence. Transformers-
based large language models (LLMs) have gradually replaced CNNs and RNNs
to unify fields of computer vision and natural language processing. Compared
with the data that exists relatively independently such as images, videos or texts,
graph is a type of data that contains rich structural and relational information.
Meanwhile, natural language, as one of the most expressive mediums, excels in
describing complex structures. However, existing work on incorporating graph
learning problems into the generative language modeling framework remains very
limited. As the importance of LLMs continues to grow, it becomes essential to
explore whether LLMs can also replace GNNs as the foundation model for graphs.
In this paper, we propose InstructGLM (Instruction-finetuned Graph Language
Model), systematically design highly scalable prompts based on natural language
instructions, and use natural language to describe the geometric structure and
node features of the graph for instruction tuning an LLM to perform learning and
inference on graphs in a generative manner. Our method exceeds all competitive
GNN baselines on ogbn-arxiv, Cora and PubMed datasets, which demonstrates
the effectiveness of our method and sheds light on generative large language
models as the foundation model for graph machine learning. The code and data
are available at https://github.com/agiresearch/InstructGLM.

1 Introduction
Before the advent of Transformers [1], various artificial intelligence domains with different inductive
biases had diverse foundational model architectures. For instance, CNNs [2, 3] were designed with
considerations for spatial invariance in images, leading to superior performance in computer vision
tasks [4, 5]. Memory-enhanced models like RNNs [6] and LSTM [7, 8] were widely used for handling
sequential data such as natural language [9] and audio [10]. Graph Neural Networks (GNNs) excel
in capturing topological information by employing message passing and aggregation mechanisms,
making them a preferred choice in the field of graph learning for a long time [11–13].

In recent years, the AI community has witnessed the emergence of numerous powerful pre-trained
Large Language Models (LLMs) [14–18], which are driving huge advancements and lead to the
pursuit of possible Artificial General Intelligence (AGI) [19]. Under this background, there is a
trend towards unification in model architectures across different domains. Specifically, pre-trained
Transformers have demonstrated remarkable performance on various modalities, such as images
[20] and videos [21] in computer vision, text in natural language processing [22], structured data in
graph machine learning [23], personalized data in recommender systems [24], decision sequences
in reinforcement learning [25], and visual-text pairs in multimodal tasks [26]. There has even been
Transformers capable of handling twelve modalities [27].

Besides model architecture, the unification of processing method in handling multimodal data is also
a significant trend worth attention. T5 [15] established a text-to-text framework, unifying all NLP

Preprint. Preliminary work.

https://github.com/agiresearch/InstructGLM

Natural Language is All a Graph Needs

Figure 1: Illustration of the InstructGLM Framework. We fine-tune InstructGLM under a Multi-task
Multi-prompt instruction tuning framework, enabling it to solve various graph machine learning tasks
with the structure information purely described by natural language.

tasks as a sequence generation problem. Moreover, models like CLIP [26] utilize image-text pairs to
accomplish multimodal tasks with the images captioned by natural language. As for reinforcement
learning, Di Palo et al. [25] employs natural language to describe environmental states for the agent
which successfully solves many reinforcement learning (RL) problems. P5 [24] further contributes to
this trend by reformulating all personalized recommendation tasks as language modeling tasks via
prompts. The aforementioned works collectively demonstrate that employing natural language for
multimodal information representation has emerged as a prominent and promising trend.

However, in graph machine learning, the exploration for using natural language to handle graph-
related tasks still remains limited. Existing methods that utilize large language models for graph tasks
can be roughly categorized into two types: 1) Combining LLMs and GNNs, where the LLM acts as
a feature extractor or data augmentation module to enhance the downstream GNNs’ performance
[28–30]. Such kind of methods often require training multiple models and thus incurring significant
computational overhead. Furthermore, since the GNNs are still responsible for learning the graph’s
structural information, they tend to inherit the drawbacks of GNNs such as over-smoothing easily
[31]. 2) Only relying on Transformers but necessitating novel designs of token embedding for nodes
and edges [32] or creating complex graph attention module to learn structural information [33, 34].
This type of method demands local attention calculation on every node during each optimization
step, leading to considerable computation costs and thus limiting each node’s scope to only 1-hop
neighbors. Meanwhile, the complex pipeline conveys structural information through special attention
mechanisms or token representations, which prevents the model from directly observing and learning
structural information like GNNs, thus restricting further improvement on performance.

To address the issues present in LLM-based graph learners and bridge the gap of natural language
based graph learning, we propose InstructGLM (Instruction-finetuned Graph Language Model).
Given that LLMs have been dominant in many AI domains, we aim to answer the question: Can
LLMs also replace GNNs as the foundation model in graph machine learning? Intuitively, as
one of the most expressive medium, natural language is adept at describing complex structures such
that InstructGLM owns following advantages over GNNs:

1) Flexibility. A natural language sentence is capable of effectively describing the connectivity at
any desired hop levels and intermediate paths without message passing and aggregation. Even
the multimodal features of the nodes and edges can be directly integrated into natural language
prompts, making natural language a very flexible medium to convey both structural and content
information on the graph.

2

Natural Language is All a Graph Needs

2) Scalability. Injecting graph structure into multiple natural language sentences enables mini-
batch training and independent gradient propagation, which further allows easy scalability to
distributed training and inference on massive graphs with low machine communication overhead.

3) Compatibility. Aided by structure descriptions, InstructGLM can consistently reformulate
various graph learning pipelines as language modeling tasks, thus fits well into the LLM-based
multimodal processing framework, paving the way to integrate graph learning with other AI
tasks such as vision, language and recommendation to construct unified AI systems.

In this paper, we focus on tackling the graph node classification task, while augmenting it with
self-supervised link prediction to enhance the performance. Inspired by various message passing
pipelines in GNNs [35, 36], we design a series of scalable graph prompts for instruction tuning on
generative LLMs [37, 38]. Specifically, after determining the central node and conducting neighbor
sampling, we systematically employ natural language to describe the graph’s topology according to
the prompts. By doing so, the graph structure is clearly and intuitively provided to LLMs without
complex pipelines tailored to graphs. Therefore, we can handle graph tasks efficiently and succinctly
by the vanilla Transformer architecture [1] and language modeling objective [39] in a generative
manner. Moreover, our approach ensures high compatibility between graph learning, NLP, as well as
multimodal processing, thus exhibits high scalability for multitask learning across various domains.
Overall, our contributions can be summarized by the following four points:

• To the best of our knowledge, we are the first to propose purely using natural language for graph
structure representation and perform instruction tuning on a generative LLM to solve graph-related
problems. We eliminate the requirement of designing specific complex attention mechanisms or
tokenizers tailored for graphs. Instead, we offer a concise and efficient natural language processing
interface for graph machine learning, which exhibits high scalability to a unified multimodal and
multitask framework, aligning with the current trend in other AI domains.

• Inspired by various message passing mechanisms in GNNs, we have designed a series of rule-based,
highly scalable instruction prompts for general graph structure representation and graph machine
learning. Although in this paper, our focus lies in exploring instruction tuning on large language
models, these prompts can also be used for zero-shot experiments on LLMs.

• In addition to node classification, we also conduct self-supervised link prediction as an auxiliary
task and further investigate its influence on the primary task under a multitask instruction tuning
framework. This exploration holds valuable insights for future LLM-based multitask graph learning,
demonstrating the significance of self-supervised link prediction for large language models’ better
structure understanding on graphs.

• We implement extensive experiments on three widely used datasets: ogbn-arxiv, Cora, and PubMed.
The results demonstrate our InstructGLM outperforms previous competitive GNN baselines and
Transformer-based methods across all three datasets, achieving the top-ranked performance. These
findings validate the effectiveness of our proposed method and underscore the trend of leveraging
generative large language models as the foundation model for graph machine learning.

2 Related Work
2.1 GNN-based Methods

Graph Neural Networks (GNNs) [40, 41] have been dominant in the field of graph machine learning
for a long period. Leveraging message passing and aggregation mechanisms, GNNs excel in simulta-
neously learning node features, edge features, and topological structure information. Overall, GNNs
can be categorized as spatial-based ones [12, 13, 42, 43] and spectral-based ones [11, 44, 45], with
various message passing mechanisms. To address some inherent problems such as over-smoothing
[31], researchers have proposed methods such as merging intermediate layer features into the final
representation [36], conducting convolutions on multiple subgraphs extracted from varying hop
levels [35], and dropping edges to prevent overfitting [46]. One major drawback of GNNs is their
inability to directly process raw data from various modalities, requiring extensive feature engineering
as a preprocessing step. GNNs cannot directly handle non-numeric information such as text or
images. To handle this issue, existing works use techniques such as BoW, TF-IDF, or Skip-gram
to construct shallow embeddings as input to GNNs [47]. Its lack of compatibility with existing
large-scale generative models presents a significant challenge for integration with other AI domains
such as vision and language into a unified intelligent system.

3

Natural Language is All a Graph Needs

2.2 Transformer-based Methods

Attention-based Transformer models can also be utilized for graph processing by representing each
node and edge in the graph as distinct tokens [48]. However, this simple approach presents two
challenges: Firstly, it becomes computationally intensive for handling large-scale graphs. Secondly,
the global weighted average calculation with basic attention mechanisms can not effectively capture
and learn the graph’s topological structure [32]. To overcome these issues, various approaches have
been proposed to improve Transformer structures or graph representation methods. Some methods
incorporate graph structure information into attention matrices [23] or coefficients [49], while others
restrict attention to local subgraphs [34] or ingeniously design orthogonal vectors for node and
edge tokens to encode structural details [32]. These enhancements often involve complex attention
mechanisms or data transformations, making direct representation of graph structure challenging and
significantly increasing the difficulty of model training. The only work similar to ours is Zhang et al.
[50], which utilizes an encoder-only model and natural language templates specially formulated to
solve biological concept linking problems [51, 52]. However, unlike our approach, it is not designed
for general graph learning and difficult to be extended beyond the classification task due to the use of
encoder-only model [53]. Additionally, its natural language templates are tailored for the domain of
biological concept linking and thus not as expressive and flexible as our approach.

2.3 Fuse GNN and Transformers

GNNs excel at learning structural information, while Transformers are proficient in capturing multi-
modality features. Many works have combined GNNs and Transformers to effectively address
graph-related tasks. For example, Chien et al. [54] utilizes the multi-label neighbor prediction task
to incorporate structural information into language models, generating enhanced features named
GIANT to improve downstream GNN’s performance. Mavromatis et al. [29] employs GNNs to
perform knowledge distillation on language models, Zhao et al. [30] trains GNNs and language
models iteratively in a variational inference framework, and Rong et al. [55] attempts to replace
the attention heads in Transformers with GNNs to better capture global information. The main
drawback of the aforementioned approaches is the lack of decoupling between Transformer models
and GNNs, which requires training multiple models and easily incurs significant computational
overhead [34]. Moreover, the model performance is still susceptible to inherent issues of GNNs,
such as over-smoothing [56]. Additionally, the pipeline of training multiple models is usually very
complex compared to the simplicity of a single generative LLM framework.

2.4 Large Language Model (LLM) based Methods

Inspired by the remarkable zero-shot capabilities of LLM across various AI domains, leveraging
LLM in graph problem-solving has attracted considerable attention from researchers. Existing works
have already included utilizing LLM to automatically select the most suitable graph processor based
on the query [57], employing LLM’s zero-shot predictions and corresponding explanations for data
augmentation to obtain state-of-the-art TAPE graph feature embeddings [28], generating prompts to
address graph construction problems [58], structural reasoning tasks [59], and molecular property
prediction tasks [60]. Moreover, new graph problem datasets and benchmarks based on LLM have
been collected and released [61]. There are three works that share similarities with our method. Guo
et al. [61] attempts to complete graph tasks by describing graphs. However, it does not use natural
language like our proposal. Instead, it uses complex formal languages like Brandes et al. [62] and
Himsolt [63]. Wang et al. [64] and Chen et al. [65] both explore using natural language with LLM to
tackle graph problems, with [64] focusing more on mathematical problems on small graphs while
[65] concentrating on node classification in Text-Attributed Graphs (TAGs) [66]. Compared to Wang
et al. [64] and Chen et al. [65], our designed natural language instruction prompts exhibit better
regularity and scalability, applicable to both small and large graphs and not limited to specific types of
graph data. In contrast, certain natural language templates in the aforementioned works are generated
by LLM for specific task instructions, also enhanced with advanced prompting techniques such as
Chain-of-Thoughts (CoT) [67]. Overall, the three related works only explored the basic capability
of utilizing LLM for graph tasks in a zero-shot setting. Since they do not employ instruction tuning
[37], their performance does not surpass GNN baselines for most of the time, only demonstrating the
potential of LLM as an option for graph tasks. By contrast, our work successfully bridges this gap
by conducting instruction tuning on generative LLMs with simple prompts, achieving experimental
results that surpass competitive GNN baselines.

4

Natural Language is All a Graph Needs

3 InstructGLM
In this section, we introduce the details of our proposed Instruction-finetuned Graph Language
Model, i.e. InstructGLM, a framework utilizing natural language to describe both graph structure
and node features to a generative large language model and further addresses graph-related problems
by instruction-tuning. We start with the notation setup, followed by an introduction to the instruction
prompts and their design principles, and then we explain the proposed pipeline with greater details.

3.1 Preliminary

Formally, a graph can be represented as G = (V,A, E, {Nv}v∈V , {Ee}e∈E), where V is the set of
nodes, E is the set of edges, A ∈ {0, 1}|V|×|V| is the adjacent matrix, Nv is the node feature of v ∈ V
and Ee is the edge feature of e ∈ E. It is worth noting that the node feature and edge feature can be
various modalities in diverse forms. For example, node feature can be textual information in citation
networks or social networks, visual images in photography graphs, user profile in customer systems,
and even video or audio signals in movie networks, while edge feature can be product reviews in
user-item interaction graph of recommender systems.

3.2 Instruction Prompt Design

In order to comprehensively convey the structural information of a graph and ensure the adaptability
of the created instruction prompts to various types of graphs, we have systematically designed a set
of graph description prompts centered around an central node. These prompts can be differentiated
based on the following three questions: i) What is the largest hop level of neighbor information about
the central node in the prompt? ii) Does the prompt include node features or edge features? iii) For
prompts with large (≥ 2) hop level neighbors about the central node, does the prompt encompass
information about the intermediate nodes or paths along the corresponding connecting route?

Regarding the first question, prompts can be classified into two types: those exclusively contain 1-hop
connection information, and those with a maximum of 2-hop or 3-hop connection details. Prior works
have shown that utilizing up to 3-hop connectivity is sufficient for excellent performance [11–13],
while information beyond 3-hop typically owns a minor impact on improvement and might even lead
to negative effects [31, 68]. Therefore, the maximum level of neighbor information included in the
prompts is up to three. However, benefiting from the flexibility of natural language, our designed
prompts can actually accommodate structural information of any hop level. As for the latter two
questions, there are two possible scenarios for each question, i.e., if or not to include the node or edge
features in the prompt, and if or not to include the connecting route information in the prompt.

We then denote an instruction prompt as T (·) such that I = T (v,A, {Nv}v∈V , {Ee}e∈E) is the input
sentence to LLM and v is the central node of this prompt with its corresponding graph structure
described in natural language. For instance, the simplest form of a graph description containing at
most 2-hops neighbor details is:

T (v,A) = {v} is connected with {[v2]v2∈Av
2
} within two hops. (1)

while its most detailed form which includes node features, edge features and corresponding interme-
diate paths should be:

T (v,A, {Nv}v∈V , {Ee}e∈E) = {(v,Nv)} is connected with {[(v2,Nv2)]v2∈Av
2
}

within two hops through {[(v1,Nv1)]v1∈Av
1
} and featured

paths {[(E(v,v1), E(v1,v2))]v1∈Av
1 , v2∈Av1

1
}, respectively.

(2)

where Av
k represents the list of node v’s k-hop neighbor nodes. Essentially, the above prompt contains

all 2-hop paths with the node and edge features such as (v,Nv)
E(v,v1)−→ (v1,Nv1)

E(v1,v2)−→ (v2,Nv2)
centering at node v. All instruction prompts we designed are summarized in Appendix A.

3.3 Generative Instruction Tuning for Node Classification

In prompt engineering [69–71] or in-context learning [72], pre-trained models are usually frozen,
hindering them achieving top performance in downstream tasks. Instruction Tuning [37, 38], however,

5

Natural Language is All a Graph Needs

Figure 2: Illustration of InstructGLM. We use graph prompts to describe each node’s multi-hop
connectivity and meta features in a scalable mini-batch manner, conveying graph structure concisely
and intuitively by pure natural language for learning. Subsequently, we instruct LLM to generate
responses for various graph learning tasks in a unified language modeling pipeline. We also expand
LLM’s vocabulary by creating a new and unique token for every node. More specifically, we set
the graph’s inherent node feature vectors (e.g. BoW, OGB) as the embedding for these new tokens
(depicted as red vectors in the figure) and employ LLM’s pre-trained embedding (depicted as blue
vectors in the figure) for natural language tokens.

directly conveys the requirements of downstream tasks to pre-trained models by fusing the original
input data with task-specific instructional prompts under the framework of multi-prompt training.
This facilitates remarkably effective fine-tuning, especially when coupled with human feedback [18].
Instruction Tuning has already become an indispensable technique for fine-tuning the most powerful
large language models.

In this paper, we introduce InstructGLM as a multi-prompt instruction-tuning framework for graph
learning. Specifically, we employ a generative large language model with an encoder-decoder or
decoder-only architecture as the backbone, then fuse all of our designed instruction prompts, which
are spanning at different hop levels with diverse structural information, together as input to LLM,
enabling mutual enhancement among the instructions. By exclusively using natural language to
depict graph structures, we succinctly present the graph’s geometry to the LLM and provide a pure
NLP interface for all graph-related tasks, make them solvable through a unified pipeline in generative
manner. Worth noting that we concentrate on solving node classification task in this study. We train
InstructGLM to strictly generate the category label in natural language, and the prevalent Negative
Log-Likelihood (i.e. NLL) Loss in language modeling are selected as our objective function.

Formally, given graph G = (V,A, E, {Nv}v∈V , {Ee}e∈E) and a specific instruction prompt T ∈
{T (·)}, we denote x and y as LLM’s input and target sentence, respectively. Then our pipeline can
be formed as:

Pθ (yj | x,y<j) = LLMθ (x,y<j) , x = Concatenate(P; I;Q) (3)

Lθ = −
|y|∑
j=1

logPθ (yj | x,y<j) (4)

where L denotes the NLL loss, I = T (v,A, {Nv}v∈V , {Ee}e∈E) is the graph structure description
centering at node v ∈ V , P and Q are the task-specific instruction prefix and query. Specifically,
for node classification, we design P and Q for node classification as follows: P = ‘Classify the
central node into one of the following categories: [<All category>]. Pay attention to the multi-hop
link relationships between the nodes.’ and Q = ‘Which category should {v} be classified as?’. More
details of the pipeline are depicted in Figure 2.

6

Natural Language is All a Graph Needs

Our InstructGLM actually shares essential similarities in mechanism with various GNNs, and thus
covering their advantages. First, we mix prompts with diverse hop-level information together during
training, which is akin to MixHop [35] in performing graph convolutions on subgraphs extracted at
different hop levels. Second, Jumping Knowledge [36] combines outcomes from different convolution
layers via jump connections, which is aligned with our prompts featuring intermediate information
and high-hop-level neighbors. Additionally, due to LLM’s input length limit, similar to GraphSAGE
[13], we conduct neighbor sampling for the central node when filling the prompts to form a mini-
batch training. This operation also resembles graph regularization techniques like DropEdge [46] for
preventing over-smoothing [73].

Furthermore, compared to GNNs, our InstructGLM exhibits stronger expressive capabilities. In
our method, even a single graph description that contains intermediate paths and k-hop neighbor
information is equivalent to a k-layer GNN in expressiveness. Therefore, InstructGLM can readily
accommodate the inductive bias of graph tasks without any alterations on LLM’s architecture and
pipeline. For instance, since our inputs are centralized graph descriptions that directly exhibit the
corresponding multi-hop neighbors, self-attention [1] applied on such inputs can be seen as an
advanced weighted average aggregation mechanism of GATs [12, 74], facilitating InstructGLM to
effectively grasp different neighbors’ varying importance to the central node.

3.4 Auxiliary Self-Supervised Link Prediction

Both SuperGAT [75] and DiffPool [76] introduce auxiliary link prediction task, thus successfully
obtain better node representations and performance for node or graph classification, demonstrating
that model’s comprehension of graph structure can be significantly enhanced by such an auxiliary task.
Inspired by them, also to remove the restriction that our instruction prompts can only treat labeled
training nodes as central nodes in single-task semi-supervised learning, we introduce self-supervised
link prediction as a foundational auxiliary task for InstructGLM. Given arbitrary hop level, for every
node in the graph, we can randomly select a neighbor or non-neighbor at this hop level as its candidate.
Then we instruct our model to either discriminate whether there is a connection at this hop level
between the central node and the candidate node (discriminative prompt) or directly generate the
correct neighbor in a generative manner (generative prompt).

More formally, given graph G = (V,A, E, {Nv}v∈V , {Ee}e∈E), the pipeline of link prediction aligns
exactly with the aforementioned equations 3 and 4. The only distinction lies in the newly designed
task-specific prefix and two different query templates for it. Specifically, we design P and Q for
link prediction as follows: P = ‘Perform link prediction for the central node. Pay attention to the
multi-hop link relationships between the nodes.’, Qgenerative = ‘Which other node will be connected
to {v} within {h} hop?’ and Qdiscriminative = ‘Will {ṽ} be connected to {v} within {h} hop?’,
where v is the central node, ṽ is the candidate node and h is the specified hop level.

Consequently, we extend InstructGLM into a multi-task, multi-prompt instruction-tuning framework.
Irrespective of the graph type and graph-related task that InstructGLM ultimately aims at, the inclusion
of auxiliary self-supervised link prediction enables every node in the graph to act as the central node
in multiple instruction prompts during training. Thus, it not only serves as data augmentation but also
encourages the LLM to understand the graph’s global connectivity pattern, providing InstructGLM
with promising potential for further performance improvement on the primary task.

4 Experiments
4.1 Experimental Setup

In this paper, we primarily utilize InstructGLM for node classification, also conduct self-supervised
link prediction as an auxiliary task. Specifically, we select the following three popular graphs:
ogbn-arxiv [66], Cora, and PubMed [77], in which every node represents an academic paper on a
specific topic, with its title and abstract included in raw text format, and there will be an edge between
the corresponding two nodes if there exists a citation between two papers. The graph of ogbn-arxiv is
relatively larger while the graphs of Cora and PubMed are smaller. All of our experiments employ the
default numerical node feature embedding provided by the dataset to extend the LLM’s vocabulary
by adding node-wise newly constructed tokens. It is worth noting that these datasets used different
techniques to generate the default node feature embeddings and we used their default embeddings
without modification. Detailed dataset-specific information is summarized in Table 1.

7

Natural Language is All a Graph Needs

Table 1: Dataset Statistics

Dataset #Node #Edge #Class Default Feature #Features

ogbn-arxiv 169,343 1,166,243 40 Skip-gram / GIANT 128 / 768
Cora 2,708 5,429 7 Bag of Words 1433

PubMed 19,717 44,338 3 TF-IDF 500

We employ a multi-prompt instruction-tuning framework for all of our experiments and report test
accuracy as our metrics. For ogbn-arxiv dataset, we adopt exactly the same dataset splits as in the
OGB open benchmark [66], which is 54%/18%/28%. For Cora and PubMed datasets, we use the
version that contains raw text information proposed in He et al. [28] and employ a 60%/20%/20%
train/val/test splits for our experiments. To investigate InstructGLM’s performance under low-label-
ratio training setting, following Yang et al. [77], we conduct further experiments on the PubMed
dataset with the fixed 20 labeled training nodes per class at a 0.3% label ratio.

4.2 Main Results

Our results achieve state-of-the-art performance, surpassing all single-model graph learners across
all three datasets, including both representative GNN models and graph Transformer models, which
demonstrates the promising trend for large language models to serve as the foundation model for
graph learning. More detailed results and analyses are presented in the following.

4.2.1 ogbn-arxiv

For the ogbn-arxiv dataset, we select a series of top-ranked GNNs from the OGB Leaderboard1,
including DRGAT, RevGAT, AGDN, etc., as the baselines. And several most powerful Transformer-
based single-model graph learners like Graphormer and E2EG on the OGB benchmark are also
considered as compared methods against our proposed InstructGLM.

Table 2: Results on ogbn-arxiv

Method OGB GIANT

MLP 55.50 ± 0.23 73.06 ± 0.11
GAMLP (Zhang et al. [78]) 56.53 ± 0.16 73.35 ± 0.08
GraphSAGE (Hamilton et al. [13]) 71.19 ± 0.21 74.35 ± 0.14
GCN (Kipf and Welling [11]) 71.74 ± 0.29 73.29 ± 0.01
DeeperGCN (Li et al. [79]) 71.92 ± 0.16 –
ALT-OPT (Han et al. [80]) 72.76 ± 0.00 –
GTAN (Wu and Wang [81]) 72.97 ± 0.17 –
UniMP (Shi et al. [82]) 73.11 ± 0.20 –
LEGNN (Yu et al. [83]) 73.37 ± 0.07 –
GAT (Veličković et al. [12]) 73.66 ± 0.11 74.15 ± 0.05
AGDN (Sun et al. [84]) 73.75 ± 0.21 76.02 ± 0.16
RvGAT (Li et al. [74]) 74.02 ± 0.18 75.90 ± 0.19
DRGAT (Zhang et al. [85]) 74.16 ± 0.07 76.11 ± 0.09

NodeFormer (Wu et al. [86]) 59.90 ± 0.42 –
CoarFormer (Kuang et al. [87]) 71.66 ± 0.24 –
SGFormer (Wu et al. [88]) 72.63 ± 0.13 –
Graphormer (Ying et al. [23]) 72.81 ± 0.23 –
E2EG (Dinh et al. [89]) 73.62 ± 0.14 –

InstructGLM-Flan-T5-base (ours) 73.51 ± 0.16 74.45 ± 0.11
InstructGLM-Flan-T5-large (ours) 74.67 ± 0.08 74.80 ± 0.18
InstructGLM-Llama-v1-7b (ours) 75.70 ± 0.12 76.42 ± 0.09

We instruction-finetune Flan-T5 [38] and Llama-v1-7b [17] (LoRA) [90] as the backbone for our
InstructGLM. The experimental results in Table 2 demonstrate that InstructGLM outperforms all the

1https://ogb.stanford.edu/docs/leader_nodeprop/

8

https://ogb.stanford.edu/docs/leader_nodeprop/

Natural Language is All a Graph Needs

GNNs and Transformer-based methods. Particularly, when using Llama-v1-7b as the backbone on
the OGB feature, our InstructGLM attains a 1.54% improvement over the best GNN method and a
2.08% improvement over the best Transformer-based method. Meanwhile, we also obtain new SoTA
performance on the GIANT [54] feature.

4.2.2 Cora & PubMed

In terms of the compared methods for Cora and PubMed datasets, we select those top-ranked GNNs
from the two corresponding benchmarks2 3, including Snowball, MixHop, RevGAT, FAGCN,etc.,
as the baselines. Besides, the three most powerful Transformer-based single-model graph learners
on these 2 benchmarks, i.e., CoarFormer, Graphormer, and GT, are also considered as compared
methods against our proposed InstructGLM.

Table 3: Results on Cora and PubMed

Cora Acc PubMed Acc

MixHop (Abu-El-Haija et al. [35]) 75.65 ± 1.31 GAT (Veličković et al. [12]) 83.28 ± 0.12
GAT (Veličković et al. [12]) 76.70 ± 0.42 SGC-v2 (Wu et al. [91]) 85.36 ± 0.52
Geom-GCN (Pei et al. [92]) 85.27 ± 1.48 GraphSAGE (Hamilton et al. [13]) 86.85 ± 0.11
SGC-v2 (Wu et al. [91]) 85.48 ± 1.48 BernNet (He et al. [93]) 88.48 ± 0.41
GraphSAGE (Hamilton et al. [13]) 86.58 ± 0.26 RevGAT (Li et al. [74]) 88.50 ± 0.05
GCN (Kipf and Welling [11]) 87.78 ± 0.96 GCN (Kipf and Welling [11]) 88.90 ± 0.32
BernNet (He et al. [93]) 88.52 ± 0.95 GCNII (Chen et al. [94]) 89.80 ± 0.30
FAGCN (Bo et al. [95]) 88.85 ± 1.36 FAGCN (Bo et al. [95]) 89.98 ± 0.54
GCNII (Chen et al. [94]) 88.93 ± 1.37 MixHop (Abu-El-Haija et al. [35]) 90.04 ± 1.41
RevGAT (Li et al. [74]) 89.11 ± 0.00 Geom-GCN (Pei et al. [92]) 90.05 ± 0.14
ACM-Snowball-3 (Luan et al. [96]) 89.59 ± 1.58 ACM-GCN+ (Luan et al. [96]) 90.96 ± 0.62
ACM-GCN+ (Luan et al. [96]) 89.75 ± 1.16 ACM-Snowball-3 (Luan et al. [96]) 91.44 ± 0.59

Graphormer (Ying et al. [23]) 80.41 ± 0.30 GT (Dwivedi and Bresson [33]) 88.75 ± 0.16
GT (Dwivedi and Bresson [33]) 86.42 ± 0.82 Graphormer (Ying et al. [23]) 88.24 ± 1.50
CoarFormer (Kuang et al. [87]) 88.69 ± 0.82 CoarFormer (Kuang et al. [87]) 89.75 ± 0.31

InstructGLM-Llama-v1-7b (ours) 87.08 ± 0.32 InstructGLM-Llama-v1-7b (ours) 93.84 ± 0.25
InstructGLM-Flan-T5-base (ours) 90.77 ± 0.52 InstructGLM-Flan-T5-base (ours) 94.45 ± 0.12
InstructGLM-Flan-T5-large (ours) 88.93 ± 1.06 InstructGLM-Flan-T5-large (ours) 94.62 ± 0.13

We instruction-finetune Flan-T5 and Llama-v1 (LoRA) as the backbone for our InstructGLM. The
experimental results in Table 3 show that our InstructGLM outperforms all the GNNs and Transformer-
based methods. Specifically, InstructGLM achieves a 1.02% improvement over the best GNN method
and a 2.08% improvement over the best Transformer-based method on the Cora dataset, while also
achieves a 3.18% improvement over the best GNN method and a 4.87% improvement over the best
Transformer-based method on the PubMed dataset.

4.3 Ablation Study

In our experiments, two crucial operations that contributes to the remarkable performance of Instruct-
GLM in node classification are multi-prompt instruction-tuning, which provides multi-hop graph
structure information to the LLM, and the utilization of self-supervised link prediction as an auxiliary
task. To validate the impact of the two key components on model performance, we conduct ablation
experiments on all three datasets, the results are shown in Table 4.

Table 4: Ablation Study Results

Hop Info Link Prediction ogbn-arxiv Cora PubMed

Llama-v1-7b Flan-T5-base Flan-T5-base

Multi-hop w/ 75.70% 90.77% 94.45%
Multi-hop w/o 75.37% 87.27% 94.35%

1-hop w/o 75.25% 86.90% 94.30%
Structure-Free-Tuning w/o 74.97% 75.65% 94.22%

2https://paperswithcode.com/sota/node-classification-on-cora-60-20-20-random
3https://paperswithcode.com/sota/node-classification-on-pubmed-60-20-20-random

9

https://paperswithcode.com/sota/node-classification-on-cora-60-20-20-random
https://paperswithcode.com/sota/node-classification-on-pubmed-60-20-20-random

Natural Language is All a Graph Needs

Regarding the Hop Info column, Structure-Free-Tuning indicates that we do not consider the graph’s
structure, which means directly fine-tuning the model on titles and abstracts of the nodes. While
1-hop and Multi-hop mean that we utilize prompts that merely include information from 1-hop
neighbors and prompts that include information from neighbors with higher hop levels, respectively.
The experimental results show that incorporating multi-hop information and including link prediction
task can both enhance the model’s performance in node classification tasks.

4.4 Instruction Tuning at Low Label Ratio

In previous experiments, our data splits all ensured a relatively high ratio of labeled training nodes.
To further investigate the scalability and robustness of our InstructGLM, we conduct experiments on
the PubMed dataset using its another widely-used splits with extremely low label ratio. Specifically,
we have only 60 training nodes available in this setting thus the label ratio is 0.3%.

Table 5: Results on PubMed with 60 training nodes

Method Acc

GraphSAGE (Hamilton et al. [13]) 76.8 ± 0.9
GAT (Veličković et al. [12]) 79.0 ± 1.4
Snowball (Luan et al. [97]) 79.2 ± 0.3
GCN (Kipf and Welling [11]) 80.4 ± 0.4
SuperGAT (Kim and Oh [75]) 81.7 ± 0.5
ALT-OPT (Han et al. [80]) 82.5 ± 1.7
GRAND (Feng et al. [98]) 82.7 ± 0.6
SAIL (Yu et al. [99]) 83.8 ± 0.1

ANS-GT (Zhang et al. [100]) 79.6 ± 1.0
NodeFormer (Wu et al. [86]) 79.9 ± 1.0
SGFormer (Wu et al. [88]) 80.3 ± 0.6

InstructGLM-Llama-v1-7b (ours) 85.1 ± 0.6
InstructGLM-Flan-T5-base (ours) 88.2 ± 0.3
InstructGLM-Flan-T5-large (ours) 89.6 ± 0.4

We consider top-ranked GNNs from
the corresponding leaderboard4, in-
cluding SAIL, ALT-OPT, GRAND,
etc., as the baselines to be com-
pared with our InstructGLM. We
also take the three most outstanding
Transformer-based graph learners un-
der this dataset setting into account.
We then instruction-finetune Flan-T5
and Llama as the backbone for our In-
structGLM. The experimental results
in Table 5 demonstrate that Instruct-
GLM outperforms all the GNNs meth-
ods with an improvement of 5.8%
against the best GNN baseline, while
also surpassing the best Transformer-
based model by 9.3%, successfully
achieve new state-of-the-art perfor-
mance on the leaderboard.

5 Future Work
In this paper, we conduct extensive experiments on Text-Attributed Graphs (TAG) to showcase the
powerful capabilities of our proposed InstructGLM in solving graph machine learning problems.
Our instruction prompts designed to describe graph structures in natural language demonstrate high
generality and scalability, making them applicable to almost all types of graphs. Potential valuable
future work can be explored along three dimensions:

• For TAGs, our experiments only used the default OGB-feature embeddings. Future work can
consider using more advanced TAG-related embedding features such as LLM-based features like
TAPE [28]. Additionally, leveraging LLM for Chain-of-Thought, structure information summary,
and other data augmentation techniques to generate more powerful instruction prompts will be a
promising research direction for graph language models.

• InstructGLM can be integrated into frameworks like GAN, GLEM for multi-model iterative
training, or utilize off-the-shelf GNNs for knowledge distillation. Also, classic graph machine
learning techniques like label reuse, Self-KD, Correct & Smooth can further enhance the model’s
performance.

• Benefiting from the powerful expressive ability of natural language and the highly scalable design of
our instruction prompts, InstructGLM can be easily extended within a unified generative language
modeling framework to various kinds of graphs, addressing a wide range of graph learning problems.
For instance, our designed instruction prompts can be directly further used for link prediction and
inductive node classification tasks. And only with slight modifications to our prompts, tasks such as
graph classification, intermediate node/path prediction and even relation-based question answering
tasks in knowledge graphs with rich edge features can be effectively deployed.

4https://paperswithcode.com/sota/node-classification-on-pubmed-with-public

10

https://paperswithcode.com/sota/node-classification-on-pubmed-with-public

Natural Language is All a Graph Needs

6 Conclusion
To the best of our knowledge, this paper is the first one that purely represents graph structure via
natural language description then further perform instruction-tuning on generative large language
models to effectively solve graph learning problems, demonstrating the huge potential of LLMs to
replace GNNs as the new foundational model for graph machine learning. Leveraging the powerful
expressive ability of natural language, our proposed InstructGLM outperforms all competitive GNNs
and Transformer-based graph learners on the ogbn-arxiv, Cora, and PubMed datasets under the default
feature embeddings setting, showcasing its strong capability in solving graph problems. Moreover,
benefiting from our highly scalable instruction prompts and the unified generative pipeline that is
applicable to multi-modality data, InstructGLM can be readily extended to promising future work
as discussed above. Overall, our InstructGLM provides a powerful natural language processing
interface for graph machine learning problems, with Transformer-based generative large large model
and natural language as the driving force, it further contributes to the trend of unifying foundational
model architecture and pipeline across multi-modality for the AGI pursuit in the future.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017. 1, 3, 7

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016. 1

[3] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826, 2016. 1

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 1

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer, 2014. 1

[6] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990. 1
[7] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9

(8):1735–1780, 1997. 1
[8] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014. 1

[9] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Super-
glue: Learning feature matching with graph neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 4938–4947, 2020. 1

[10] I-Fan Chen, Brian King, and Jasha Droppo. Investigation of training label error impact on
rnn-t. arXiv preprint arXiv:2112.00350, 2021. 1

[11] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. 1, 3, 5, 8, 9, 10

[12] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017. 3, 7, 8, 9,
10

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017. 1, 3, 5, 7, 8, 9, 10

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018. 1

11

Natural Language is All a Graph Needs

[15] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.
1

[16] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877–
1901, 2020.

[17] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 8

[18] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models
to follow instructions with human feedback. Advances in Neural Information Processing
Systems, 35:27730–27744, 2022. 1, 6

[19] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023. 1

[20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020. 1

[21] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia
Schmid. Vivit: A video vision transformer. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6836–6846, 2021. 1

[22] Shikhar Singh, Nuan Wen, Yu Hou, Pegah Alipoormolabashi, Te-Lin Wu, Xuezhe Ma, and
Nanyun Peng. Com2sense: A commonsense reasoning benchmark with complementary
sentences. arXiv preprint arXiv:2106.00969, 2021. 1

[23] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
Neural Information Processing Systems, 34:28877–28888, 2021. 1, 4, 8, 9

[24] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation
as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5).
In Proceedings of the 16th ACM Conference on Recommender Systems, pages 299–315, 2022.
1, 2

[25] Norman Di Palo, Arunkumar Byravan, Leonard Hasenclever, Markus Wulfmeier, Nicolas
Heess, and Martin Riedmiller. Towards a unified agent with foundation models. In Workshop
on Reincarnating Reinforcement Learning at ICLR 2023, 2023. 1, 2

[26] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021. 1, 2

[27] Yiyuan Zhang, Kaixiong Gong, Kaipeng Zhang, Hongsheng Li, Yu Qiao, Wanli Ouyang, and
Xiangyu Yue. Meta-transformer: A unified framework for multimodal learning. arXiv preprint
arXiv:2307.10802, 2023. 1

[28] Xiaoxin He, Xavier Bresson, Thomas Laurent, and Bryan Hooi. Explanations as features:
Llm-based features for text-attributed graphs. arXiv preprint arXiv:2305.19523, 2023. 2, 4, 8,
10

[29] Costas Mavromatis, Vassilis N Ioannidis, Shen Wang, Da Zheng, Soji Adeshina, Jun Ma, Han
Zhao, Christos Faloutsos, and George Karypis. Train your own gnn teacher: Graph-aware
distillation on textual graphs. arXiv preprint arXiv:2304.10668, 2023. 4

[30] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang.
Learning on large-scale text-attributed graphs via variational inference. ICLR, 2023. 2, 4

12

Natural Language is All a Graph Needs

[31] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020. 2, 3, 5

[32] Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and
Seunghoon Hong. Pure transformers are powerful graph learners. Advances in Neural
Information Processing Systems, 35:14582–14595, 2022. 2, 4

[33] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. arXiv preprint arXiv:2012.09699, 2020. 2, 9

[34] Dai Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung. Universal graph transformer self-
attention networks. In Companion Proceedings of the Web Conference 2022, pages 193–196,
2022. 2, 4

[35] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman,
Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph
convolutional architectures via sparsified neighborhood mixing. In international conference
on machine learning, pages 21–29. PMLR, 2019. 3, 7, 9

[36] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
International conference on machine learning, pages 5453–5462. PMLR, 2018. 3, 7

[37] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv
preprint arXiv:2109.01652, 2021. 3, 4, 5

[38] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned
language models. arXiv preprint arXiv:2210.11416, 2022. 3, 5, 8

[39] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural
networks with noisy labels. Advances in neural information processing systems, 31, 2018. 3

[40] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI open, 1:57–81, 2020. 3

[41] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020. 3

[42] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018. 3

[43] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model
cnns. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 5115–5124, 2017. 3

[44] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing
systems, 29, 2016. 3

[45] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and
Partha Talukdar. Hypergcn: A new method for training graph convolutional networks on
hypergraphs. Advances in neural information processing systems, 32, 2019. 3

[46] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019. 3, 7

[47] Yangkun Wang, Jiarui Jin, Weinan Zhang, Yong Yu, Zheng Zhang, and David Wipf. Bag of
tricks for node classification with graph neural networks. arXiv preprint arXiv:2103.13355,
2021. 3

[48] Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers. arXiv preprint arXiv:2302.04181, 2023. 4

[49] Wonpyo Park, Woonggi Chang, Donggeon Lee, Juntae Kim, and Seung-won Hwang. Grpe:
Relative positional encoding for graph transformer. arXiv preprint arXiv:2201.12787, 2022. 4

13

Natural Language is All a Graph Needs

[50] Jiayou Zhang, Zhirui Wang, Shizhuo Zhang, Megh Manoj Bhalerao, Yucong Liu, Dawei Zhu,
and Sheng Wang. Graphprompt: Biomedical entity normalization using graph-based prompt
templates. arXiv preprint arXiv:2112.03002, 2021. 4

[51] Robert R Sokal and Theodore J Crovello. The biological species concept: a critical evaluation.
The American Naturalist, 104(936):127–153, 1970. 4

[52] Qinyong Wang, Zhenxiang Gao, and Rong Xu. Exploring the in-context learning ability of
large language model for biomedical concept linking. arXiv preprint arXiv:2307.01137, 2023.
4

[53] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019. 4

[54] Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic,
and Inderjit S Dhillon. Node feature extraction by self-supervised multi-scale neighborhood
prediction. arXiv preprint arXiv:2111.00064, 2021. 4, 9

[55] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou
Huang. Self-supervised graph transformer on large-scale molecular data. Advances in Neural
Information Processing Systems, 33:12559–12571, 2020. 4

[56] Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting
over-smoothing in deep gcns. arXiv preprint arXiv:2003.13663, 2020. 4

[57] Jiawei Zhang. Graph-toolformer: To empower llms with graph reasoning ability via prompt
augmented by chatgpt. arXiv preprint arXiv:2304.11116, 2023. 4

[58] Jiuzhou Han, Nigel Collier, Wray Buntine, and Ehsan Shareghi. Pive: Prompting with
iterative verification improving graph-based generative capability of llms. arXiv preprint
arXiv:2305.12392, 2023. 4

[59] Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong Wen.
Structgpt: A general framework for large language model to reason over structured data. arXiv
preprint arXiv:2305.09645, 2023. 4

[60] Chen Qian, Huayi Tang, Zhirui Yang, Hong Liang, and Yong Liu. Can large language models
empower molecular property prediction? arXiv preprint arXiv:2307.07443, 2023. 4

[61] Jiayan Guo, Lun Du, and Hengyu Liu. Gpt4graph: Can large language models under-
stand graph structured data? an empirical evaluation and benchmarking. arXiv preprint
arXiv:2305.15066, 2023. 4

[62] Ulrik Brandes, Markus Eiglsperger, Jürgen Lerner, and Christian Pich. Graph markup language
(graphml), 2013. 4

[63] Michael Himsolt. Gml: A portable graph file format. Technical report, Technical report,
Universitat Passau, 1997. 4

[64] Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia
Tsvetkov. Can language models solve graph problems in natural language? arXiv preprint
arXiv:2305.10037, 2023. 4

[65] Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang,
Dawei Yin, Wenqi Fan, Hui Liu, et al. Exploring the potential of large language models (llms)
in learning on graphs. arXiv preprint arXiv:2307.03393, 2023. 4

[66] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020. 4, 7, 8

[67] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:24824–24837, 2022. 4

[68] Wentao Zhang, Zeang Sheng, Yuezihan Jiang, Yikuan Xia, Jun Gao, Zhi Yang, and Bin Cui.
Evaluating deep graph neural networks. arXiv preprint arXiv:2108.00955, 2021. 5

[69] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021. 5

14

Natural Language is All a Graph Needs

[70] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[71] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Auto-
prompt: Eliciting knowledge from language models with automatically generated prompts.
arXiv preprint arXiv:2010.15980, 2020. 5

[72] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing
Xu, and Zhifang Sui. A survey for in-context learning. arXiv preprint arXiv:2301.00234, 2022.
5

[73] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In Proceedings
of the AAAI conference on artificial intelligence, volume 34, pages 3438–3445, 2020. 7

[74] Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural
networks with 1000 layers. In International conference on machine learning, pages 6437–6449.
PMLR, 2021. 7, 8, 9

[75] Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention
design with self-supervision. arXiv preprint arXiv:2204.04879, 2022. 7, 10

[76] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. Advances in neural
information processing systems, 31, 2018. 7

[77] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40–48. PMLR,
2016. 7, 8

[78] Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi
Yang, and Bin Cui. Graph attention multi-layer perceptron. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 4560–4570, 2022. 8

[79] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to
train deeper gcns. arXiv preprint arXiv:2006.07739, 2020. 8

[80] Haoyu Han, Xiaorui Liu, Haitao Mao, MohamadAli Torkamani, Feng Shi, Victor Lee, and
Jiliang Tang. Alternately optimized graph neural networks. In International Conference on
Machine Learning, pages 12411–12429. PMLR, 2023. 8, 10

[81] Nan Wu and Chaofan Wang. Gtnet: A tree-based deep graph learning architecture. arXiv
preprint arXiv:2204.12802, 2022. 8

[82] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked
label prediction: Unified message passing model for semi-supervised classification. arXiv
preprint arXiv:2009.03509, 2020. 8

[83] Le Yu, Leilei Sun, Bowen Du, Tongyu Zhu, and Weifeng Lv. Label-enhanced graph neural
network for semi-supervised node classification. IEEE Transactions on Knowledge and Data
Engineering, 2022. 8

[84] Chuxiong Sun, Jie Hu, Hongming Gu, Jinpeng Chen, and Mingchuan Yang. Adaptive graph
diffusion networks. arXiv preprint arXiv:2012.15024, 2020. 8

[85] Lei Zhang, Xiaodong Yan, Jianshan He, Ruopeng Li, and Wei Chu. Drgcn: Dynamic evolving
initial residual for deep graph convolutional networks. arXiv preprint arXiv:2302.05083, 2023.
8

[86] Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable
graph structure learning transformer for node classification. Advances in Neural Information
Processing Systems, 35:27387–27401, 2022. 8, 10

[87] Weirui Kuang, WANG Zhen, Yaliang Li, Zhewei Wei, and Bolin Ding. Coarformer: Trans-
former for large graph via graph coarsening. 2021. 8, 9

[88] Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian,
and Junchi Yan. Simplifying and empowering transformers for large-graph representations.
arXiv preprint arXiv:2306.10759, 2023. 8, 10

15

Natural Language is All a Graph Needs

[89] Tu Anh Dinh, Jeroen den Boef, Joran Cornelisse, and Paul Groth. E2eg: End-to-end node classi-
fication using graph topology and text-based node attributes. arXiv preprint arXiv:2208.04609,
2022. 8

[90] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 8

[91] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International conference on machine learning,
pages 6861–6871. PMLR, 2019. 9

[92] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020. 9

[93] Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral
filters via bernstein approximation. Advances in Neural Information Processing Systems, 34:
14239–14251, 2021. 9

[94] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pages 1725–1735.
PMLR, 2020. 9

[95] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in
graph convolutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 3950–3957, 2021. 9

[96] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in
neural information processing systems, 35:1362–1375, 2022. 9

[97] Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: Stronger
multi-scale deep graph convolutional networks. Advances in neural information processing
systems, 32, 2019. 10

[98] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning
on graphs. Advances in neural information processing systems, 33:22092–22103, 2020. 10

[99] Lu Yu, Shichao Pei, Lizhong Ding, Jun Zhou, Longfei Li, Chuxu Zhang, and Xiangliang Zhang.
Sail: Self-augmented graph contrastive learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 8927–8935, 2022. 10

[100] Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer
with adaptive node sampling. Advances in Neural Information Processing Systems, 35:21171–
21183, 2022. 10

A Appendix
A.1 Instruction Prompts

In this appendix, we present all our designed instruction prompts. It is worth noting that we follow
the following conventions when numbering the prompts:

• The length of each prompt number is 4.
• The first digit represents the task index, where 1 represents the node classification task and 2

represents the link prediction task.
• The second digit represents whether node features or edge features (such as text information) other

than numerical feature embedding are used in the prompt. 1 means not used and 2 means used.
• The third digit represents the maximum hop order corresponding to the structural information

considered in this prompt. 1 represents only the 1-hop neighbors are included, while 2 and 3
represent the structural information including 2-hop and 3-hop neighbors, respectively.

• The fourth digit represents whether the intermediate node information (i.e. the path) in the high-
order connection is considered in this prompt. If the digit is even, it means that the intermediate
node is considered, while an odd digit indicates otherwise.

• Specially, in node classification task, we designed a graph-structure-free prompt and numbered it
as 1-0-0-0.

16

Natural Language is All a Graph Needs

A.4.1 Node Classification

Task-specific prefix:

Classify the paper according to its topic into one of the following
categories:{{ All Categories}} .\n Node represents academic paper with a specific
topic, link represents a citation between the two papers. Pay attention to the
multi-hop link relationship between the nodes.

Prompt ID: 1-1-1-1

Input template:

{{ central node}} is connected with {{ 1-hop neighbor list}} within one hop. Which
category should {{ central node}} be classified as?

Target template: {{ category}}

Prompt ID: 1-1-2-1

Input template:

{{ central node}} is connected with {{ 2-hop neighbor list}} within two hops. Which
category should {{ central node}} be classified as?

Target template: {{ category}}

Prompt ID: 1-1-2-2

Input template:

{{ central node}} is connected with {{ 2-hop neighbor list}} within two hops through
{{ the corresponding 1-hop intermediate node list}} , respectively. Which category
should {{ central node}} be classified as?

Target template: {{ category}}

Prompt ID: 1-1-3-1

Input template:

{{ central node}} is connected with {{ 3-hop neighbor list}} within three hops.
Which category should {{ central node}} be classified as?

Target template: {{ category}}

Prompt ID: 1-1-3-2

Input template:

{{ central node}} is connected with {{ 3-hop neighbor list}} within three hops
through {{ the corresponding 2-hop intermediate path list}} , respectively. Which
category should {{ central node}} be classified as?

Target template: {{ category}}

Prompt ID: 1-2-1-1

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 1-hop neighbor list
attached with text feature}} within one hop. Which category should ({{ central
node}} ,{{ text feature}}) be classified as?

Target template: {{ category}}

Prompt ID: 1-2-2-1

17

Natural Language is All a Graph Needs

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 2-hop neighbor list
attached with text feature}} within two hops. Which category should ({{ central
node}} ,{{ text feature}}) be classified as?

Target template: {{ category}}

Prompt ID: 1-2-2-2

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 2-hop neighbor list
attached with text feature}} within two hops through {{ the corresponding 1-hop
intermediate node list attached with text feature}} , respectively. Which category
should ({{ central node}} ,{{ text feature}}) be classified as?

Target template: {{ category}}

Prompt ID: 1-2-3-1

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 3-hop neighbor list
attached with text feature}} within three hops. Which category should ({{ central
node}} ,{{ text feature}}) be classified as?

Target template: {{ category}}

Prompt ID: 1-2-3-2

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 3-hop neighbor list
attached with text feature}} within three hops through {{ the corresponding 2-hop
intermediate path list attached with text feature}} , respectively. Which category
should ({{ central node}} ,{{ text feature}}) be classified as?

Target template: {{ category}}

Prompt ID: 1-0-0-0

Input template:

{{ central node}} is featured with its {{ text feature}} . Which category should
{{ central node}} be classified as?

Target template: {{ category}}

A.4.2 Link Prediction

Task-specific prefix:

Perform Link Prediction for the central node:\n Node represents academic paper with
a specific topic, link represents a citation between the two papers. Pay attention
to the multi-hop link relationship between the nodes.

Prompt ID: 2-1-1-1

Input template:

{{ central node}} is connected with {{ 1-hop neighbor list}} within one hop. Will
{{ candidate node}} be connected with {{ central node}} within one hop?

Target template: {{ yes/no}}

Prompt ID: 2-1-1-2

18

Natural Language is All a Graph Needs

Input template:

{{ central node}} is connected with {{ 1-hop neighbor list}} within one hop. Which
other node will be connected to {{ central node}} within one hop?

Target template: {{ node_id}}

Prompt ID: 2-1-2-1

Input template:

{{ central node}} is connected with {{ 2-hop neighbor list}} within two hops. Will
{{ candidate node}} be connected to {{ central node}} within two hops?

Target template: {{ yes/no}}

Prompt ID: 2-1-2-2

Input template:

{{ central node}} is connected with {{ 2-hop neighbor list}} within two hops through
{{ the corresponding 1-hop intermediate node list}} , respectively. Will {{ candidate
node}} be connected to {{ central node}} within two hops through {{ the specified
1-hop intermediate node}} ?

Target template: {{ yes/no}}

Prompt ID: 2-1-2-3

Input template:

{{ central node}} is connected with {{ 2-hop neighbor list}} within two hops. Which
other node will be connected to {{ central node}} within two hops?

Target template: {{ node_id}}

Prompt ID: 2-1-2-4

Input template:

{{ central node}} is connected with {{ 2-hop neighbor list}} within two hops through
{{ the corresponding 1-hop intermediate node list}} , respectively. Which other node
will be connected to {{ central node}} within two hops through {{ the specified 1-hop
intermediate node}} ?

Target template: {{ node_id}}

Prompt ID: 2-1-3-1

Input template:

{{ central node}} is connected with {{ 3-hop neighbor list}} within three hops. Will
{{ candidate node}} be connected with {{ central node}} within three hops?

Target template: {{ yes/no}}

Prompt ID: 2-1-3-2

Input template:

{{ central node}} is connected with {{ 3-hop neighbor list}} within three hops
through {{ the corresponding 2-hop intermediate path list}} , respectively. Will
{{ candidate node}} be connected to {{ central node}} within three hops through
{{ the specified 2-hop intermediate path}} ?

Target template: {{ yes/no}}

Prompt ID: 2-1-3-3

19

Natural Language is All a Graph Needs

Input template:

{{ central node}} is connected with {{ 3-hop neighbor list}} within three hops.
Which other node will be connected to {{ central node}} within three hops?

Target template: {{ node_id}}

Prompt ID: 2-1-3-4

Input template:

{{ central node}} is connected with {{ 3-hop neighbor list}} within three hops
through {{ the corresponding 2-hop intermediate path list}} , respectively. Which
other node will be connected to {{ central node}} within three hops through {{ the
specified 2-hop intermediate path}} ?

Target template: {{ node_id}}

Prompt ID: 2-2-1-1

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 1-hop neighbor list
attached with text feature}} within one hop. Will ({{ candidate node}} ,{{ candidate
text feature}}) be connected to ({{ central node}} ,{{ text feature}}) within one
hop?

Target template: {{ yes/no}}

Prompt ID: 2-2-1-2

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 1-hop neighbor list
attached with text feature}} within one hop. Which other node will be connected to
({{ central node}} ,{{ text feature}}) within one hop?

Target template: {{ node_id}}

Prompt ID: 2-2-2-1

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 2-hop neighbor list
attached with text feature}} within two hops. Will ({{ candidate node}} ,{{ candidate
text feature}}) be connected to ({{ central node}} ,{{ text feature}}) within two
hops?

Target template: {{ yes/no}}

Prompt ID: 2-2-2-2

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 2-hop neighbor list
attached with text feature}} within two hops through {{ the corresponding 1-hop
intermediate node list attached with text feature}} , respectively. Will
({{ candidate node}} ,{{ candidate text feature}}) be connected to ({{ central
node}} ,{{ text feature}}) within two hops through ({{ the specified 1-hop
intermediate node attached with text feature}})?

Target template: {{ yes/no}}

Prompt ID: 2-2-2-3

Input template:

20

Natural Language is All a Graph Needs

({{ central node}} ,{{ text feature}}) is connected with {{ 2-hop neighbor list
attached with text feature}} within two hops. Which other node will be connected to
({{ central node}} ,{{ text feature}}) within two hops?

Target template: {{ node_id}}

Prompt ID: 2-2-2-4

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 2-hop neighbor list
attached with text feature}} within two hops through {{ the corresponding 1-hop
intermediate node list attached with text feature}} , respectively. Which other node
will be connected to ({{ central node}} ,{{ text feature}}) within two hops through
({{ the specified 1-hop intermediate node attached with text feature}})?

Target template: {{ node_id}}

Prompt ID: 2-2-3-1

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 3-hop neighbor list
attached with text feature}} within three hops. Will ({{ candidate
node}} ,{{ candidate text feature}}) be connected with ({{ central node}} ,{{ text
feature}}) within three hops?

Target template: {{ yes/no}}

Prompt ID: 2-2-3-2

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 3-hop neighbor list
attached with text feature}} within three hops through {{ the corresponding 2-hop
intermediate path list attached with text feature}} , respectively. Will
({{ candidate node}} ,{{ candidate text feature}}) be connected to ({{ central
node}} ,{{ text feature}}) within three hops through {{ the specified 2-hop
intermediate path attached with text feature}} ?

Target template: {{ yes/no}}

Prompt ID: 2-2-3-3

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 3-hop neighbor list
attached with text feature}} within three hops. Which other node will be connected
to ({{ central node}} ,{{ text feature}}) within three hops?

Target template: {{ node_id}}

Prompt ID: 2-2-3-4

Input template:

({{ central node}} ,{{ text feature}}) is connected with {{ 3-hop neighbor list
attached with text feature}} within three hops through {{ the corresponding 2-hop
intermediate path list attached with text feature}} , respectively. Which other node
will be connected to ({{ central node}} ,{{ text feature}}) within three hops through
{{ the specified 2-hop intermediate path attached with text feature}} ?

Target template: {{ node_id}}

21

	1 Introduction
	2 Related Work
	2.1 GNN-based Methods
	2.2 Transformer-based Methods
	2.3 Fuse GNN and Transformers
	2.4 Large Language Model (LLM) based Methods

	3 InstructGLM
	3.1 Preliminary
	3.2 Instruction Prompt Design
	3.3 Generative Instruction Tuning for Node Classification
	3.4 Auxiliary Self-Supervised Link Prediction

	4 Experiments
	4.1 Experimental Setup
	4.2 Main Results
	4.2.1 ogbn-arxiv
	4.2.2 Cora & PubMed

	4.3 Ablation Study
	4.4 Instruction Tuning at Low Label Ratio

	5 Future Work
	6 Conclusion
	A Appendix
	A.1 Instruction Prompts

