Tutorial on Large Language Models for Recommendation

Wenyue Hua
Rutgers University
wenyue.hua@rutgers.edu

Lei Li
Hong Kong Baptist University
csleili@comp.hkbu.edu.hk

Shuyuan Xu
Rutgers University
shuyuan.xu@rutgers.edu

Li Chen
Hong Kong Baptist University
lichen@comp.hkbu.edu.hk

Yongfeng Zhang
Rutgers University
yongfeng.zhang@rutgers.edu
Outline

• Background and Introduction
• Large Language Models for Recommendation
• Trustworthy LLMs for Recommendation
• Hands-on Demo of LLM-RecSys Development based on OpenP5
• Summary
Recommender Systems are Everywhere

- Influence our daily life by providing personalized services
Technical Advancement of Recommender Systems

• From Shallow Model, to Deep Model, and to Large Model

Shallow Models
- e.g. Matrix Factorization [1]

Deep Models
- e.g. Deep & Wide NN [2]

Large Models
- e.g. P5 [3]

Objective AI vs. Subjective AI

- Recommendation is **unique** in the AI family
 - Recommendation is most **close to human** among all AI tasks
 - Recommendation is a very representative **Subjective AI**
 - Thus, leads to many **unique challenges** in recommendation research

<table>
<thead>
<tr>
<th>Objective AI</th>
<th>Subjective AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Vision</td>
<td>Recommendation</td>
</tr>
<tr>
<td>(Relatively) far from human. Problems have exact answers.</td>
<td>Very close to human. Problems have no absolute answers.</td>
</tr>
</tbody>
</table>
Computer Vision: (mostly) Objective AI Tasks

Objective AI

Computer Vision

Image Classification

Image Segmentation

Object Detection

Subjective AI

NLP

Recommendation

cat
dog
Husky like a wolf

Husky like a wolf

cat
dog
NLP: partly Objective, partly Subjective

Objective AI

Computer Vision

NLP

Subjective AI

Recommendation

Syntactic Analysis

Word Segmentation

Dialog Systems

Words: 这是 一篇 有趣的 文章

(zhèshì yīpiān yǒuqù de wénzhāng)
Recommendation: mostly Subjective AI Tasks

Objective AI Subjective AI

Computer Vision NLP Recommendation

Movie Recommendation

Product Recommendation

Recommend

or

Recommend
Recommendation is not only about Item Ranking

• A diverse set of recommendation tasks
 • Rating Prediction
 • Item Ranking
 • Sequential Recommendation
 • User Profile Construction
 • Review Summarization
 • Explanation Generation
 • Fairness Consideration
 • etc.
Example: Subjective AI needs Explainability

- Objective vs. Subjective AI on Explainability

Objective AI
Human can directly identify if the AI-produced result is right or wrong

- cat
- dog

Subjective AI
Human can hardly identify if the AI-produced result is right or wrong. Users are very vulnerable, could be manipulated, utilized or even cheated by the system.

Nothing is definitely right or wrong.

Highly subjective, and usually personalized.
Example: Subjective AI needs Explainability

- In many cases, it doesn’t matter what you recommend, but how you explain your recommendation.
- How do humans make recommendation?

Why? I recommend this movie, no reason!

Ah! I recommend this movie, because...
Can we Handle all RecSys tasks Together?

• A diverse set of recommendation tasks
 • Rating Prediction
 • Item Ranking
 • Sequential Recommendation
 • User Profile Construction
 • Review Summarization
 • Explanation Generation
 • Fairness Consideration
 • etc.

• Do we really need to design thousands of recommendation models?
 • Difficult to integrate so many models in industry production environment
A Bird’s View of Traditional RecSys

• The Multi-Stage Filtering RecSys Pipeline

Discriminative Ranking

- User-item matching based on embeddings

- Discriminative ranking loss function
 - e.g., Bayesian Personalized Ranking (BPR) loss

\[
\maximize \sum_{(u, i, j) \in D_S} \ln \sigma(\hat{x}_{uij}) - \lambda \|\Theta\|^2 \quad \text{where}: \hat{x}_{uij} = p_u q_i^T - p_u q_j^T
\]

Problem with Discriminative Ranking

- Huge numbers of users and items
 - Amazon: 300 million customers, 350 million products*
 - YouTube: 2.6+ billion monthly active users, 5+ billion videos**
 - We have to use multi-stage filtering: Simple rules are used at early stages, advanced algorithms are only applied to a small number of items at later stages

- Too many candidate items, difficult for evaluation
 - Many research papers use sampled evaluation: 1-in-100, 1-in-1000, etc.

**https://www.globalmediainsight.com/blog/youtube-users-statistics/
Large Language Models (LLMs)

- Auto-regressive decoding for generative prediction

Generative Pre-training and Prediction

• Generative Pre-training
 • Generative Loss Function
 • Use the previous tokens to predict next token
 \[L_1(U) = \sum \log P(u_i|u_{i-k}, \ldots, u_{i-1}; \Theta) \]

• Generative Prediction
 • Beam Search
 • Using finite tokens to represent (almost) infinite items
 • e.g., 100 vocabulary tokens, ID size 10 => #items = \(100^{10} = 10^{20}\)
 • # of candidate tokens at each beam is bounded
 • No longer need one-by-one candidate score calculation as in discriminative ranking
 • Directly generate the item ID to recommend

Generative Ranking

• From Multi-stage ranking to Single-stage ranking
 • The model automatically considers all items as the candidate pool
 • Fixed-size item decoding
 • e.g., using 100 tokens \langle 00 \rangle \langle 01 \rangle \ldots \langle 99 \rangle for item ID representation

Given the interaction history of user_235: item_5678, item_8265, item_521, item_2235, item_750, what to recommend next for the user?

Answer: item_2368
Generative Recommendation with Beam Search

- Since item IDs are tokenized (e.g., ["item", "_", "73", "91"]), beam search is bounded on width
 - E.g., 100 tokens width: ⟨00⟩, ⟨01⟩, ⟨02⟩, ..., ⟨98⟩, ⟨99⟩
- Assigning an item a token as in traditional recommendation is infeasible for LLM
 - Consume a lot of memory and computationally expensive

Large Language Models for Recommendation
How to Categorize LLM-based Recommendation

• Whether to Fine-tune LLM for Recommendation or Not
 • With Fine-tuning [1]
 • Without Fine-tuning [2]

• The Role of LLM in Recommendation
 • LLM as RecSys [1]
 • LLM in RecSys [3]
 • e.g., LLM as a feature extractor for recommender systems
 • RecSys in LLM [4]
 • e.g., LLM-based Agents, where RecSys is used as one of the tools

• Typical Recommendation Tasks [1]
 • Rating Prediction, Sequential Recommendation, Direct Recommendation, ...

Two Broad Categories of Recommendation Tasks

Prediction Tasks

- **Top-K Recommendation**
 - A user recently watched movies: [Image 6x496 to 148x534]
 - Based on the watch history, please recommend five candidate movies that the user might be interested in from the following list: [Image 907x487 to 960x540]

- **Rating Prediction**
 - Here is the movie rating history of a user: [Image 165x68 to 795x405]
 - Based on the above rating history of this user, please rate a movie named *John Wick: Chapter 4* with a range of 1-10 points.

Generation Tasks

- **Conversational Recommendation**
 - [User]: I recently watched a science fiction movie named *Interstellar*
 - [User]: Please recommend some ... to me.
 - [User]: ... Please explain why this new movie is recommended to a user.

- **Explanation Generation**
 - A new movie named *The Godfather Part II* is recommended to a user, who has recently watched movies: [Image 73x464]

Large Language Models (LLMs) for Recommender Systems

- ChatGPT
- GPT-J
- LLaMA
- Vicuna

Image credit to [1]

Typical Recommendation Tasks

- LLM usually can perform multiple recommendation tasks
 - e.g., P5 [2], POD [3], InstructRec [4]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P5 [Geng et al., 2022c], BookGPT, [Zhiyuli et al., 2023], LLMRRec [Liu et al., 2023b], RecMind [Wang et al., 2023b], [Liu et al., 2023a], Dai et al., 2023]</td>
<td>P5 [Geng et al., 2022c], UP5 [Hua et al., 2023a], VIP5 [Geng et al., 2023], Open5P [Xu et al., 2023], POD [Li et al., 2023], GenRec [Li et al., 2023], GPTRec [Petrov and Macdonald, 2023], LLMRRec [Liu et al., 2023b], RecMind [Wang et al., 2023b], [Zheng et al., 2023a; Zhang et al., 2023b; Liu et al., 2023a; Li et al., 2023b; Dai et al., 2023]</td>
<td>P5 [Geng et al., 2022c], UP5 [Hua et al., 2023a], VIP5 [Geng et al., 2023], Open5P [Xu et al., 2023], POD [Li et al., 2023], GenRec [Li et al., 2023], GPTRec [Petrov and Macdonald, 2023], LLMRRec [Liu et al., 2023b], RecMind [Wang et al., 2023b], BIGRec [Bao et al., 2023a], [Hua et al., 2023b; Liu et al., 2023a; Hou et al., 2023b; Zhang et al., 2023b]</td>
<td>P5 [Geng et al., 2022c], VIP5 [Geng et al., 2023], POD [Li et al., 2023], PEPLER [Li et al., 2023b], M6-Rec [Cui et al., 2022], LLMRec [Liu et al., 2023b], RecMind [Wang et al., 2023b], RecMind [Wang et al., 2023b], RecMind [Wang et al., 2023b], BIGRec [Bao et al., 2023a], [Hua et al., 2023b; Liu et al., 2023a; Hou et al., 2023b; Zhang et al., 2023b]</td>
<td>-</td>
<td>-</td>
<td>M6-Rec [Cui et al., 2022], RecLMM [Friedman et al., 2023], Chat-REC [Gao et al., 2023], [Wang et al., 2023b], [Liu et al., 2023a; Lin and Zhang, 2023; He et al., 2023]</td>
</tr>
</tbody>
</table>

Image credit to [1]
The P5 Generative Recommendation Paradigm

• P5: Pretrain, Personalized Prompt & Predict Paradigm [1]

- Learns multiple recommendation tasks together through a unified sequence-to-sequence framework

- Formulates different recommendation problems as prompt-based natural language tasks

- User-item information and corresponding features are integrated with personalized prompts as model inputs

Personalization in Prompts

- Definition of **personalized prompts**
 - A prompt that includes personalized fields for different users and items

- User’s preference can be indicated through
 - A **user ID** (e.g., “user_23”)
 - Content **description of the user** such as location, preferred movie genres, etc.

- Item field can be represented by
 - An **item ID** (e.g., “item_7391”)
 - Item **content metadata** that contains **detailed descriptions** of the item, e.g., item category
Personalized Prompt Design

Rating / Review / Explanation raw data for Beauty

<table>
<thead>
<tr>
<th>user_id: 7641</th>
<th>user_name: stephanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>item_id: 2051</td>
<td></td>
</tr>
<tr>
<td>item_title: SHANY Nail Art Set (24 Famous Colors Nail Art Polish, Nail Art Decoration)</td>
<td></td>
</tr>
<tr>
<td>review: Absolutely great product. I bought this for my fourteen year old niece for Christmas and of course I had to try it out, then I tried another one, and another one and another one. So much fun! I even contemplated keeping a few for myself!</td>
<td></td>
</tr>
<tr>
<td>star_rating: 5</td>
<td></td>
</tr>
<tr>
<td>summary: Perfect!</td>
<td></td>
</tr>
<tr>
<td>explanation: Absolutely great product feature_word: product</td>
<td></td>
</tr>
</tbody>
</table>

Sequential Recommendation raw data for Beauty

<table>
<thead>
<tr>
<th>user_id: 7641</th>
<th>user_name: Victor</th>
</tr>
</thead>
<tbody>
<tr>
<td>purchase_history: 652 -> 460 -> 447 -> 653 -> 654 -> 655 -> 656 -> 8</td>
<td></td>
</tr>
<tr>
<td>next_item: 552</td>
<td></td>
</tr>
<tr>
<td>candidate_items: 4885 , 4280 , 4886 , 1907 , 870 , 4281 , 4222 , 4887 , 2892 , 4888 , 2879 , 3147 , 2195 , 3148 , 3179 , 1951 , 1902 , 552 , 2764 , 2481 , 1916 , 2822 , 1325</td>
<td></td>
</tr>
</tbody>
</table>

Direct Recommendation raw data for Beauty

<table>
<thead>
<tr>
<th>user_id: 250</th>
<th>user_name: moriah rose</th>
</tr>
</thead>
<tbody>
<tr>
<td>target_item: 520</td>
<td></td>
</tr>
<tr>
<td>random_negative_item: 9711</td>
<td></td>
</tr>
<tr>
<td>candidate_items: 4915 , 1823 , 3112 , 3821 , 3773 , 520 , 7384 , 7469 , 9318 , 3876 , 1143 , 789 , 595 , 3824 , 3587 , 10396 , 2766 , 7498 , 2490 , 3232 , 9711 , 2975 , 1405 , 8051</td>
<td></td>
</tr>
</tbody>
</table>

Which star rating will user_{{user_id}} give item_{{item_id}}? (1 being lowest and 5 being highest)

Based on the feature word {{feature_word}}, generate an explanation for user_{{user_id}} about this product:

Give a short sentence describing the following product review from {{user_name}}; {{review}}

Here is the purchase history of user_{{user_id}}:

What to recommend next for the user?

Choose the best item from the candidates to recommend for {{user_name}}? \(\text{\textbackslash n} \) {{candidate_items}}

{{target_item}}
Design Multiple Prompts for Each Task

• To enhance variation in language style (e.g., sequential recommendation)

Prompt ID: 2-1
Input template: Given the following purchase history of user_{({user_id})}:
{{purchase_history}}
predict next possible item to be purchased by the user?

Target template: {{next_item}}

Prompt ID: 2-2
Input template: I find the purchase history list of user_{({user_id})}:
{{purchase_history}}
I wonder which is the next item to recommend to the user. Can you help me decide?

Target template: {{next_item}}

Prompt ID: 2-3
Input template: Here is the purchase history list of user_{({user_id})}:
{{purchase_history}}
try to recommend next item to the user

Target template: {{next_item}}

Prompt ID: 2-4
Input template: Given the following purchase history of user_{({user_desc})}:
{{purchase_history}}
predict next possible item for the user

Target template: {{next_item}}

Prompt ID: 2-5
Input template: Based on the purchase history of user_{({user_desc})}:
{{purchase_history}}
Can you decide the next item likely to be purchased by the user?

Target template: {{next_item}}

Prompt ID: 2-6
Input template: Here is the purchase history of user_{({user_desc})}:
{{purchase_history}}
What to recommend next for the user?

Target template: {{next_item}}
Multi-Task Pre-training

Sequential Recommendation

I find the purchase history list of user_15466:
4110 -> 4467 -> 4468 -> 4472
I wonder what is the next item to recommend to the user. Can you help me decide?

Rating Prediction

What star rating do you think user_23 will give item_7391?

Explanation Generation

Help Hong "Old boy" generate a 5-star explanation about this product:
OtterBox Defender Case for iPhone 3G, 3GS (Black) [Retail Packaging]

Review Summarization

Give a short sentence describing the following product review from
Mom of 3 yr girl:
First it came with the packaging open and then as soon as my son took it out it was so easily broken. Hopefully a little glue will fix it.

Direct Recommendation

Pick the most suitable item from the following list and recommend to user_250:
4915, 1823, 3112, 3821, 3773, 520, 7384, 7469, 9318, 3876, 1143, 789, 595, 3824, 3587, 10396, 2766, 7498, 2490, 3232, 9711, 2975, 1427, 9923, 3097, 3594,
6469, 9460, 6956, 9154

Multi-task Pretraining with Personalized Prompt Collection

Zero-shot Generalization to New Product & Personalized Prompt

Predict user_14456's preference about the new product
(1 being lowest and 5 being highest):
\n title: Hugg-A-Moon
\n price: 13.22
\n brand: Hugg-A-Planet

1581
5.0
P5
you can protect your precious iphone more safe
broke immediately
520
4.7
Multi-Task Pre-training

- P5 is pre-trained on top of T5 checkpoints (to enable basic ability for language understanding)
- By default, P5 uses multiple sub-word units to represent personalized fields (e.g., [“item”, “_”, “73”, “91”])
Generative Recommendation with Beam Search

- The encoder takes input sequence
- The decoder autoregressively generates next words:
 - **Autoregressive LM loss** is shared by all tasks: \(\mathcal{L}_{\theta}^{P5} = - \sum_{j=1}^{y} \log P_{\theta}(y_j \mid y_{<j}, x) \)

- P5 can unify various recommendation tasks with **one model, one loss, and one data format**

- Inference with pretrained P5
 - Simply apply **beam search** to **generate** a list of potential next items
 - Beam size set to N (N candidates)

Image credit to [1] https://d2l.ai/chapter_recurrent-modern/beam-search.html
Generative Recommendation with Beam Search

- Since item IDs are tokenized (e.g., [“item”, “_”, “73”, “91”]), beam search is bounded on width
 - E.g., 100 tokens width: ⟨00⟩, ⟨01⟩, ⟨02⟩, ..., ⟨98⟩, ⟨99⟩
- Assigning an item a token as in traditional recommendation is infeasible for LLM
 - Consume a lot of memory and computationally expensive

Advantages of P5 Generative Recommendation

• Immerses recommendation models into a full language environment
 • With the flexibility and expressiveness of language, there is no need to design feature-specific encoders

• P5 treats all personalized tasks as a conditional text generation problem
 • One data format, one model, one loss for multiple recommendation tasks
 • No need to design data-specific or task-specific recommendation models

• P5 attains sufficient zero-shot performance when generalizing to novel personalized prompts or unseen items in other domains
Performance of P5 under seen Prompts

<table>
<thead>
<tr>
<th>Rating Prediction:</th>
<th>Sports</th>
<th>Beauty</th>
<th>Toys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>RMSE</td>
<td>MAE</td>
<td>RMSE</td>
</tr>
<tr>
<td>MF</td>
<td>1.0234</td>
<td>0.7935</td>
<td>1.1973</td>
</tr>
<tr>
<td>MLP</td>
<td>1.1277</td>
<td>0.7626</td>
<td>1.3078</td>
</tr>
<tr>
<td>P5-S (1-6)</td>
<td>1.0594</td>
<td>0.6639</td>
<td>1.3128</td>
</tr>
<tr>
<td>P5-B (1-6)</td>
<td>1.0357</td>
<td>0.6813</td>
<td>1.2843</td>
</tr>
<tr>
<td>P5-S (1-10)</td>
<td>1.0522</td>
<td>0.6698</td>
<td>1.2989</td>
</tr>
<tr>
<td>P5-B (1-10)</td>
<td>1.0292</td>
<td>0.6864</td>
<td>1.2870</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequential Recommendation:</th>
<th>Sports</th>
<th>Beauty</th>
<th>Toys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>HR@5</td>
<td>NDCG@5</td>
<td>HR@10</td>
</tr>
<tr>
<td>P5-S (2-3)</td>
<td>0.2722</td>
<td>0.1692</td>
<td>0.1861</td>
</tr>
<tr>
<td>P5-S (2-3)</td>
<td>0.0364</td>
<td>0.0296</td>
<td>0.0331</td>
</tr>
<tr>
<td>P5-B (2-3)</td>
<td>0.0258</td>
<td>0.0159</td>
<td>0.0346</td>
</tr>
<tr>
<td>Explanation Generation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td>BLUE4</td>
<td>ROUGE1</td>
<td>ROUGE2</td>
</tr>
<tr>
<td>P5-S (3-3)</td>
<td>0.1047</td>
<td>14.1589</td>
<td>2.1220</td>
</tr>
<tr>
<td>P5-B (3-3)</td>
<td>1.0427</td>
<td>14.1181</td>
<td>5.1937</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Explanation Generation:</th>
<th>Sports</th>
<th>Beauty</th>
<th>Toys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>BLUE4</td>
<td>ROUGE1</td>
<td>ROUGE2</td>
</tr>
<tr>
<td>P5-S (3-3)</td>
<td>1.1047</td>
<td>14.1589</td>
<td>2.1220</td>
</tr>
<tr>
<td>P5-B (3-3)</td>
<td>2.4627</td>
<td>21.5619</td>
<td>5.4196</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Explanation Generation:</th>
<th>Sports</th>
<th>Beauty</th>
<th>Toys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>ROUGE1</td>
<td>ROUGE2</td>
<td>ROUGE3</td>
</tr>
<tr>
<td>P5-S (3-3)</td>
<td>1.1047</td>
<td>14.1589</td>
<td>2.1220</td>
</tr>
</tbody>
</table>
Performance of P5 under seen Prompts

Review Summarization:

<table>
<thead>
<tr>
<th>Methods</th>
<th>Sports</th>
<th>Beauty</th>
<th>Toys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLUE2</td>
<td>ROUGE1</td>
<td>ROUGE2</td>
</tr>
<tr>
<td>T0 (4-1)</td>
<td>2.1581</td>
<td>2.2695</td>
<td>0.5694</td>
</tr>
<tr>
<td>GPT-2 (4-1)</td>
<td>0.7779</td>
<td>4.4534</td>
<td>1.0033</td>
</tr>
<tr>
<td>P5-S (4-1)</td>
<td>2.4962</td>
<td>11.6701</td>
<td>2.7187</td>
</tr>
<tr>
<td>P5-B (4-1)</td>
<td>2.6910</td>
<td>12.0314</td>
<td>3.2921</td>
</tr>
</tbody>
</table>

Direct Recommendation:

<table>
<thead>
<tr>
<th>Methods</th>
<th>Sports</th>
<th>Beauty</th>
<th>Toys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR@1</td>
<td>HR@5</td>
<td>NDCG@5</td>
</tr>
<tr>
<td>BPR-MF</td>
<td>0.0314</td>
<td>0.1404</td>
<td>0.0848</td>
</tr>
<tr>
<td>BPR-MLP</td>
<td>0.0351</td>
<td>0.1520</td>
<td>0.0927</td>
</tr>
<tr>
<td>SimpleX</td>
<td>0.0331</td>
<td>0.2362</td>
<td>0.1505</td>
</tr>
<tr>
<td>P5-S (5-1)</td>
<td>0.0638</td>
<td>0.2096</td>
<td>0.1375</td>
</tr>
<tr>
<td>P5-B (5-1)</td>
<td>0.0245</td>
<td>0.0816</td>
<td>0.0529</td>
</tr>
<tr>
<td>P5-S (5-4)</td>
<td>0.0701</td>
<td>0.2241</td>
<td>0.1483</td>
</tr>
<tr>
<td>P5-B (5-4)</td>
<td>0.0299</td>
<td>0.1026</td>
<td>0.0665</td>
</tr>
<tr>
<td>P5-S (5-5)</td>
<td>0.0574</td>
<td>0.1503</td>
<td>0.1050</td>
</tr>
<tr>
<td>P5-B (5-5)</td>
<td>0.0641</td>
<td>0.1794</td>
<td>0.1229</td>
</tr>
<tr>
<td>P5-S (5-8)</td>
<td>0.0567</td>
<td>0.1514</td>
<td>0.1049</td>
</tr>
<tr>
<td>P5-B (5-8)</td>
<td>0.0726</td>
<td>0.1955</td>
<td>0.1355</td>
</tr>
</tbody>
</table>

Observation: P5 achieves promising performances on the five task families when taking seen prompt templates as model inputs.
Performance of P5 under unseen Prompts

Observation: Multitask prompted pretraining empowers P5 good robustness to understand unseen prompts with wording variations

Sequential Recommendation:

<table>
<thead>
<tr>
<th>Methods</th>
<th>Sports</th>
<th>Beauty</th>
<th>Toys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR@5</td>
<td>NDCG@5</td>
<td>HR@10</td>
</tr>
<tr>
<td>Caser</td>
<td>0.0116</td>
<td>0.0072</td>
<td>0.0194</td>
</tr>
<tr>
<td>HGN</td>
<td>0.0189</td>
<td>0.0120</td>
<td>0.0131</td>
</tr>
<tr>
<td>GRUSRec</td>
<td>0.0129</td>
<td>0.0086</td>
<td>0.0204</td>
</tr>
<tr>
<td>BERT4Rec</td>
<td>0.0115</td>
<td>0.0073</td>
<td>0.0099</td>
</tr>
<tr>
<td>FDSA</td>
<td>0.0182</td>
<td>0.0128</td>
<td>0.0188</td>
</tr>
<tr>
<td>SASRec</td>
<td>0.0233</td>
<td>0.0154</td>
<td>0.0350</td>
</tr>
<tr>
<td>3rdRec</td>
<td>0.0251</td>
<td>0.0161</td>
<td>0.0385</td>
</tr>
<tr>
<td>PS-S (2-3)</td>
<td>0.0272</td>
<td>0.0169</td>
<td>0.0198</td>
</tr>
<tr>
<td>PS-B (2-3)</td>
<td>0.0364</td>
<td>0.0296</td>
<td>0.0431</td>
</tr>
<tr>
<td>PS-S (2-12)</td>
<td>0.0258</td>
<td>0.0193</td>
<td>0.0346</td>
</tr>
<tr>
<td>PS-B (2-12)</td>
<td>0.0387</td>
<td>0.0312</td>
<td>0.0600</td>
</tr>
</tbody>
</table>

Explanation Generation:

<table>
<thead>
<tr>
<th>Methods</th>
<th>Sports</th>
<th>Beauty</th>
<th>Toys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR@1</td>
<td>NDCG@5</td>
<td>HR@10</td>
</tr>
<tr>
<td></td>
<td>ROUGE1</td>
<td>ROUGE2</td>
<td>ROUGE</td>
</tr>
<tr>
<td>AttnSeq</td>
<td>0.5305</td>
<td>12.2800</td>
<td>12.2070</td>
</tr>
<tr>
<td>NET</td>
<td>0.4793</td>
<td>11.0723</td>
<td>11.3044</td>
</tr>
<tr>
<td>PETER</td>
<td>0.7112</td>
<td>12.8944</td>
<td>13.2833</td>
</tr>
<tr>
<td>PS-S (3-3)</td>
<td>1.0417</td>
<td>14.9048</td>
<td>2.1297</td>
</tr>
<tr>
<td>PS-B (3-3)</td>
<td>1.9407</td>
<td>14.1589</td>
<td>2.1220</td>
</tr>
<tr>
<td>PETER+</td>
<td>2.4627</td>
<td>24.1118</td>
<td>5.1937</td>
</tr>
<tr>
<td>PS-S (3-9)</td>
<td>1.4101</td>
<td>23.5619</td>
<td>5.4196</td>
</tr>
<tr>
<td>PS-B (3-9)</td>
<td>1.4689</td>
<td>23.5476</td>
<td>5.3926</td>
</tr>
<tr>
<td>PS-S (3-12)</td>
<td>1.3212</td>
<td>23.2474</td>
<td>5.3461</td>
</tr>
<tr>
<td>PS-B (3-12)</td>
<td>1.4303</td>
<td>23.8310</td>
<td>5.3239</td>
</tr>
</tbody>
</table>

Direct Recommendation:

<table>
<thead>
<tr>
<th>Methods</th>
<th>Sports</th>
<th>Beauty</th>
<th>Toys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR@10</td>
<td>NDCG@5</td>
<td>HR@10</td>
</tr>
<tr>
<td>BPR-MF</td>
<td>0.0314</td>
<td>0.1404</td>
<td>0.0848</td>
</tr>
<tr>
<td>BPR-MLP</td>
<td>0.0351</td>
<td>0.1520</td>
<td>0.0927</td>
</tr>
<tr>
<td>SimpleX</td>
<td>0.0331</td>
<td>0.2362</td>
<td>0.1505</td>
</tr>
<tr>
<td>PS-S (5-1)</td>
<td>0.0638</td>
<td>0.2096</td>
<td>0.1375</td>
</tr>
<tr>
<td>PS-B (5-3)</td>
<td>0.0245</td>
<td>0.0816</td>
<td>0.1138</td>
</tr>
<tr>
<td>PS-S (5-4)</td>
<td>0.0701</td>
<td>0.2241</td>
<td>0.1483</td>
</tr>
<tr>
<td>PS-B (5-4)</td>
<td>0.0299</td>
<td>0.1026</td>
<td>0.0665</td>
</tr>
<tr>
<td>PS-S (5-5)</td>
<td>0.0574</td>
<td>0.1503</td>
<td>0.1050</td>
</tr>
<tr>
<td>PS-B (5-5)</td>
<td>0.0641</td>
<td>0.1794</td>
<td>0.1229</td>
</tr>
<tr>
<td>PS-S (5-8)</td>
<td>0.0567</td>
<td>0.1514</td>
<td>0.1049</td>
</tr>
<tr>
<td>PS-B (5-8)</td>
<td>0.0726</td>
<td>0.1955</td>
<td>0.1355</td>
</tr>
</tbody>
</table>

35
Easy Handling of Multi-modality Information

- Item images can be directly inserted into personalized prompts [1]

Sequential Recommendation

I find the purchase history list of user_1035: 4011 -> 3531 -> 5632 -> 5603

I wonder what is the next item to recommend to the user. Can you help me decide?

Direct Recommendation

Pick the most suitable item from the following list and recommend to user_251: 7162, 10964, 5709, 326, 4541, 9910, …, 2317, 11615

Explanation Generation

Based on the feature word exercises, generate an explanation for user_45 about this product: Black Mountain Products Resistance Band Set with Door Anchor, Ankle Strap, Exercise Chart, and Resistance Band Carrying Case

VIP5

4406

2317

Good for those small exercises that one can't do with freeweights

Easy Handling of Multi-modality Information

- Item images can be converted into visual tokens

Easy Handling of Multi-modality Information

- Item images can be directly inserted into prompts
- Multi-modality information further improves performance

Sequential Recommendation Performance

<table>
<thead>
<tr>
<th>Methods</th>
<th>Sports</th>
<th>HR@5</th>
<th>NDCG@5</th>
<th>HR@10</th>
<th>NDCG@10</th>
<th>Beauty</th>
<th>HR@5</th>
<th>NDCG@5</th>
<th>HR@10</th>
<th>NDCG@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGN</td>
<td></td>
<td>0.0189</td>
<td>0.0120</td>
<td>0.0313</td>
<td>0.0159</td>
<td>0.0325</td>
<td>0.0206</td>
<td>0.0512</td>
<td>0.0266</td>
<td></td>
</tr>
<tr>
<td>SASRec</td>
<td></td>
<td>0.0233</td>
<td>0.0154</td>
<td>0.0350</td>
<td>0.0192</td>
<td>0.0387</td>
<td>0.0249</td>
<td>0.0605</td>
<td>0.0318</td>
<td></td>
</tr>
<tr>
<td>S3-Rec</td>
<td></td>
<td>0.0251</td>
<td>0.0161</td>
<td>0.0385</td>
<td>0.0204</td>
<td>0.0387</td>
<td>0.0244</td>
<td>0.0647</td>
<td>0.0327</td>
<td></td>
</tr>
<tr>
<td>P5 (A-3)</td>
<td></td>
<td>0.0272</td>
<td>0.0169</td>
<td>0.0361</td>
<td>0.0198</td>
<td>0.0503</td>
<td>0.0370</td>
<td>0.0659</td>
<td>0.0421</td>
<td></td>
</tr>
<tr>
<td>VIP5 (A-3)</td>
<td></td>
<td>0.0412</td>
<td>0.0345</td>
<td>0.0475</td>
<td>0.0365</td>
<td>0.0556</td>
<td>0.0427</td>
<td>0.0677</td>
<td>0.0467</td>
<td></td>
</tr>
<tr>
<td>P5 (A-9)</td>
<td></td>
<td>0.0258</td>
<td>0.0159</td>
<td>0.0346</td>
<td>0.0188</td>
<td>0.0490</td>
<td>0.0358</td>
<td>0.0646</td>
<td>0.0409</td>
<td></td>
</tr>
<tr>
<td>VIP5 (A-9)</td>
<td></td>
<td>0.0392</td>
<td>0.0327</td>
<td>0.0456</td>
<td>0.0347</td>
<td>0.0529</td>
<td>0.0413</td>
<td>0.0655</td>
<td>0.0454</td>
<td></td>
</tr>
</tbody>
</table>

Direct Recommendation Performance

<table>
<thead>
<tr>
<th>Methods</th>
<th>Sports</th>
<th>HR@1</th>
<th>HR@5</th>
<th>NDCG@5</th>
<th>HR@10</th>
<th>NDCG@10</th>
<th>Beauty</th>
<th>HR@1</th>
<th>HR@5</th>
<th>NDCG@5</th>
<th>HR@10</th>
<th>NDCG@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPR-MF</td>
<td></td>
<td>0.0314</td>
<td>0.1404</td>
<td>0.0848</td>
<td>0.2563</td>
<td>0.1220</td>
<td>0.0311</td>
<td>0.1426</td>
<td>0.0857</td>
<td>0.2573</td>
<td>0.1224</td>
<td></td>
</tr>
<tr>
<td>BPR-MLP</td>
<td></td>
<td>0.0351</td>
<td>0.1520</td>
<td>0.0927</td>
<td>0.2671</td>
<td>0.1296</td>
<td>0.0317</td>
<td>0.1392</td>
<td>0.0848</td>
<td>0.2542</td>
<td>0.1215</td>
<td></td>
</tr>
<tr>
<td>VBPR</td>
<td></td>
<td>0.0262</td>
<td>0.1138</td>
<td>0.0691</td>
<td>0.2060</td>
<td>0.0986</td>
<td>0.0380</td>
<td>0.1472</td>
<td>0.0925</td>
<td>0.2468</td>
<td>0.1245</td>
<td></td>
</tr>
<tr>
<td>P5 (B-5)</td>
<td></td>
<td>0.0574</td>
<td>0.1503</td>
<td>0.1050</td>
<td>0.2207</td>
<td>0.1276</td>
<td>0.0601</td>
<td>0.1611</td>
<td>0.1117</td>
<td>0.2370</td>
<td>0.1360</td>
<td></td>
</tr>
<tr>
<td>VIP5 (B-5)</td>
<td></td>
<td>0.0606</td>
<td>0.1743</td>
<td>0.1185</td>
<td>0.2539</td>
<td>0.1441</td>
<td>0.0580</td>
<td>0.1598</td>
<td>0.1099</td>
<td>0.2306</td>
<td>0.1327</td>
<td></td>
</tr>
<tr>
<td>P5 (B-8)</td>
<td></td>
<td>0.0567</td>
<td>0.1514</td>
<td>0.1049</td>
<td>0.2196</td>
<td>0.1269</td>
<td>0.0571</td>
<td>0.1566</td>
<td>0.1078</td>
<td>0.2317</td>
<td>0.1318</td>
<td></td>
</tr>
<tr>
<td>VIP5 (B-8)</td>
<td></td>
<td>0.0699</td>
<td>0.1882</td>
<td>0.1304</td>
<td>0.2717</td>
<td>0.1572</td>
<td>0.0615</td>
<td>0.1655</td>
<td>0.1147</td>
<td>0.2407</td>
<td>0.1388</td>
<td></td>
</tr>
</tbody>
</table>

Note: HR@N, NDCG@N denote the performance metrics for the top N recommendations.
ChatGPT as Recommender

- Instruct ChatGPT to perform different tasks w/o fine-tuning
 - Few-shot or zero-shot settings (w/ or w/o demonstration examples)

ChatGPT on Recommendation Tasks

- Recommendation performance is relatively weak

Sequential Recommendation

<table>
<thead>
<tr>
<th>Methods</th>
<th>Beauty</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR@5</td>
<td>NDCG@5</td>
<td>HR@10</td>
<td>NDCG@10</td>
<td></td>
</tr>
<tr>
<td>Caser</td>
<td>0.0205</td>
<td>0.0131</td>
<td>0.0347</td>
<td>0.0176</td>
<td></td>
</tr>
<tr>
<td>HGN</td>
<td>0.0325</td>
<td>0.0206</td>
<td>0.0512</td>
<td>0.0266</td>
<td></td>
</tr>
<tr>
<td>GRU4Rec</td>
<td>0.0164</td>
<td>0.0099</td>
<td>0.0283</td>
<td>0.0137</td>
<td></td>
</tr>
<tr>
<td>BERT4Rec</td>
<td>0.0203</td>
<td>0.0124</td>
<td>0.0347</td>
<td>0.0170</td>
<td></td>
</tr>
<tr>
<td>FDSA</td>
<td>0.0267</td>
<td>0.0163</td>
<td>0.0407</td>
<td>0.0208</td>
<td></td>
</tr>
<tr>
<td>SASRec</td>
<td>0.0387</td>
<td>0.0249</td>
<td>0.0605</td>
<td>0.0318</td>
<td></td>
</tr>
<tr>
<td>S3-Rec</td>
<td>0.0387</td>
<td>0.0244</td>
<td>0.0647</td>
<td>0.0327</td>
<td></td>
</tr>
<tr>
<td>P5-B</td>
<td>0.0493</td>
<td>0.0367</td>
<td>0.0645</td>
<td>0.0416</td>
<td></td>
</tr>
<tr>
<td>ChatGPT(zero-shot)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>ChatGPT(few-shot)</td>
<td>0.0135</td>
<td>0.0135</td>
<td>0.0135</td>
<td>0.0135</td>
<td></td>
</tr>
</tbody>
</table>

Direct Recommendation

<table>
<thead>
<tr>
<th>Methods</th>
<th>HR@5</th>
<th>NDCG@5</th>
<th>HR@10</th>
<th>NDCG@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPR-MF</td>
<td>0.1426</td>
<td>0.0857</td>
<td>0.2573</td>
<td>0.1224</td>
</tr>
<tr>
<td>BPR-MLP</td>
<td>0.1392</td>
<td>0.0848</td>
<td>0.2542</td>
<td>0.1215</td>
</tr>
<tr>
<td>SimpleX</td>
<td>0.2247</td>
<td>0.1441</td>
<td>0.3090</td>
<td>0.1711</td>
</tr>
<tr>
<td>P5-B</td>
<td>0.1564</td>
<td>0.1096</td>
<td>0.2300</td>
<td>0.1332</td>
</tr>
<tr>
<td>ChatGPT(zero-shot)</td>
<td>0.0217</td>
<td>0.0111</td>
<td>0.0652</td>
<td>0.0252</td>
</tr>
<tr>
<td>ChatGPT(few-shot)</td>
<td>0.0349</td>
<td>0.0216</td>
<td>0.0930</td>
<td>0.0398</td>
</tr>
</tbody>
</table>

Rating Prediction

<table>
<thead>
<tr>
<th>Methods</th>
<th>Beauty</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF</td>
<td>RMSE</td>
</tr>
<tr>
<td>MLP</td>
<td>1.3078</td>
</tr>
<tr>
<td>ChatGPT(zero-shot)</td>
<td>1.4059</td>
</tr>
<tr>
<td>ChatGPT(few-shot)</td>
<td>1.0751</td>
</tr>
</tbody>
</table>

ChatGPT on Generation Tasks

- Performance with automatic metrics is bad
- Rated highly by human evaluators
 - Existing metrics (BLEU and ROUGE) overly stress the matching between generation and ground-truth [2]

Explanation Generation

<table>
<thead>
<tr>
<th>Methods</th>
<th>BLUE4</th>
<th>ROUGE1</th>
<th>ROUGE2</th>
<th>ROUGE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn2Seq</td>
<td>0.7889</td>
<td>12.6590</td>
<td>1.6820</td>
<td>9.7481</td>
</tr>
<tr>
<td>NRT</td>
<td>0.8295</td>
<td>12.7815</td>
<td>1.8543</td>
<td>9.9477</td>
</tr>
<tr>
<td>PETER</td>
<td>1.1541</td>
<td>14.8497</td>
<td>2.1413</td>
<td>11.4143</td>
</tr>
<tr>
<td>P5-B</td>
<td>0.9742</td>
<td>16.4530</td>
<td>1.8858</td>
<td>11.8765</td>
</tr>
<tr>
<td>PETER+</td>
<td>3.2606</td>
<td>25.5541</td>
<td>5.9668</td>
<td>19.7168</td>
</tr>
<tr>
<td>ChatGPT(zero-shot)</td>
<td>0.0000</td>
<td>8.5992</td>
<td>0.6995</td>
<td>4.7564</td>
</tr>
<tr>
<td>ChatGPT(few-shot)</td>
<td>1.1967</td>
<td>11.4103</td>
<td>2.5675</td>
<td>5.9119</td>
</tr>
</tbody>
</table>

Review Summarization

<table>
<thead>
<tr>
<th>Methods</th>
<th>BLUE4</th>
<th>ROUGE1</th>
<th>ROUGE2</th>
<th>ROUGE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>1.2871</td>
<td>1.2750</td>
<td>0.3904</td>
<td>0.9592</td>
</tr>
<tr>
<td>GPT-2</td>
<td>0.5879</td>
<td>3.3844</td>
<td>0.6756</td>
<td>1.3956</td>
</tr>
<tr>
<td>P5-B</td>
<td>2.1225</td>
<td>8.4205</td>
<td>1.6676</td>
<td>7.5476</td>
</tr>
<tr>
<td>ChatGPT(zero-shot)</td>
<td>0.0000</td>
<td>3.8246</td>
<td>0.2857</td>
<td>3.1344</td>
</tr>
<tr>
<td>ChatGPT(few-shot)</td>
<td>0.0000</td>
<td>2.7822</td>
<td>0.0000</td>
<td>2.4328</td>
</tr>
</tbody>
</table>

Evaluators

<table>
<thead>
<tr>
<th>Methods</th>
<th>Eva_1</th>
<th>Eva_2</th>
<th>Eva_3</th>
<th>Eva_4</th>
<th>avg_top1_ration</th>
<th>avg_position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground truth</td>
<td>25.0%</td>
<td>45.0%</td>
<td>45.0%</td>
<td>50.0%</td>
<td>38.0%</td>
<td>1.83</td>
</tr>
<tr>
<td>P5</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>2.71</td>
</tr>
<tr>
<td>ChatGPT(zero-shot)</td>
<td>75.0%</td>
<td>55.0%</td>
<td>55.0%</td>
<td>50.0%</td>
<td>62.0%</td>
<td>1.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
<th>Eva_1</th>
<th>Eva_2</th>
<th>Eva_3</th>
<th>Eva_4</th>
<th>Eva_5</th>
<th>avg_top1_ration</th>
<th>avg_position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground truth</td>
<td>12.5%</td>
<td>10.6%</td>
<td>8.7%</td>
<td>17.3%</td>
<td>22.1%</td>
<td>14.2%</td>
<td>2.91</td>
</tr>
<tr>
<td>P5</td>
<td>5.8%</td>
<td>0.0%</td>
<td>5.7%</td>
<td>11.5%</td>
<td>19.2%</td>
<td>8.5%</td>
<td>3.16</td>
</tr>
<tr>
<td>ChatGPT(zero-shot)</td>
<td>46.2%</td>
<td>37.5%</td>
<td>36.5%</td>
<td>45.2%</td>
<td>23.1%</td>
<td>37.7%</td>
<td>1.90</td>
</tr>
<tr>
<td>ChatGPT(few-shot)</td>
<td>35.6%</td>
<td>51.9%</td>
<td>49.0%</td>
<td>26.0%</td>
<td>35.6%</td>
<td>39.6%</td>
<td>2.01</td>
</tr>
</tbody>
</table>

ChatGPT as Recommender

- ChatGPT on three types of recommendation w/o fine-tuning
 - Point-wise (rate), pair-wise (compare), list-wise (rank)

Point-wise
You are a movie recommender system now.

Input: Here is the watching history of a user: \{User History\}. Based on this history, please predict the user's rating for the following item: \{Candidate item\} (1 being lowest and 5 being highest)

Output: \{Answer\}

Pair-wise
You are a movie recommender system now.

Input: Here is the watching history of a user: \{User History\}. Based on this history, would this user prefer \{Candidate Item 1\} and \{Candidate Item 2\}? Answer Choices: (A) \{Candidate Item 1\} (B) \{Candidate Item 2\}

Output: \{Answer\}

List-wise
You are a movie recommender system now.

Input: Here is the watching history of a user: \{User History\}. Based on this history, please rank the following candidate movies: (A) \{Candidate Item 1\} (B) \{Candidate Item 2\} (C) \{Candidate Item 3\} (D) \{Candidate Item 4\} (E) \{Candidate Item 5\}

Output: The answer index is \{Answer\}

Recommendation Performance of ChatGPT

- Outperform weak baselines on the three recommendation tasks
 - Random, pop

<table>
<thead>
<tr>
<th>Domain</th>
<th>Metric</th>
<th>random</th>
<th>pop</th>
<th>text-davinci-002</th>
<th>text-davinci-003</th>
<th>gpt-3.5-turbo (ChatGPT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>point-wise</td>
<td>pair-wise</td>
<td>list-wise</td>
</tr>
<tr>
<td>Movie</td>
<td>Compliance Rate</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td></td>
<td>NDCG@1</td>
<td>0.2000</td>
<td>0.2240</td>
<td>0.3110</td>
<td>0.3203</td>
<td>0.2600</td>
</tr>
<tr>
<td></td>
<td>NDCG@3</td>
<td>0.4262</td>
<td>0.4761</td>
<td>0.5416</td>
<td>0.5728</td>
<td>0.4990</td>
</tr>
<tr>
<td></td>
<td>MRR@3</td>
<td>0.3667</td>
<td>0.4103</td>
<td>0.4824</td>
<td>0.5071</td>
<td>0.4363</td>
</tr>
<tr>
<td>Book</td>
<td>Compliance Rate</td>
<td>-</td>
<td>-</td>
<td>99.96%</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td></td>
<td>NDCG@1</td>
<td>0.2000</td>
<td>0.2440</td>
<td>0.2420</td>
<td>0.2847</td>
<td>0.2000</td>
</tr>
<tr>
<td></td>
<td>NDCG@3</td>
<td>0.4262</td>
<td>0.4999</td>
<td>0.4889</td>
<td>0.5298</td>
<td>0.4290</td>
</tr>
<tr>
<td></td>
<td>MRR@3</td>
<td>0.3667</td>
<td>0.4340</td>
<td>0.4247</td>
<td>0.4646</td>
<td>0.3690</td>
</tr>
<tr>
<td>Music</td>
<td>Compliance Rate</td>
<td>-</td>
<td>-</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td></td>
<td>NDCG@1</td>
<td>0.2000</td>
<td>0.1780</td>
<td>0.2354</td>
<td>0.2397</td>
<td>0.2300</td>
</tr>
<tr>
<td></td>
<td>NDCG@3</td>
<td>0.4262</td>
<td>0.4094</td>
<td>0.4623</td>
<td>0.4681</td>
<td>0.4277</td>
</tr>
<tr>
<td></td>
<td>MRR@3</td>
<td>0.3667</td>
<td>0.3470</td>
<td>0.4030</td>
<td>0.4082</td>
<td>0.3750</td>
</tr>
<tr>
<td>News</td>
<td>Compliance Rate</td>
<td>-</td>
<td>-</td>
<td>99.80%</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td></td>
<td>NDCG@1</td>
<td>0.2000</td>
<td>0.3080</td>
<td>0.2183</td>
<td>0.2200</td>
<td>0.2920</td>
</tr>
<tr>
<td></td>
<td>NDCG@3</td>
<td>0.4262</td>
<td>0.5444</td>
<td>0.4483</td>
<td>0.4550</td>
<td>0.5059</td>
</tr>
<tr>
<td></td>
<td>MRR@3</td>
<td>0.3667</td>
<td>0.4840</td>
<td>0.3879</td>
<td>0.3936</td>
<td>0.4497</td>
</tr>
</tbody>
</table>

With Fine-tuning or Without Fine-tuning

• Without fine-tuning, LLM cannot easily solve RS problems
 • RS is a highly specialized area that requires collaborative knowledge, which LLM did not learn during the pre-training stage [1]
 • Collaborative knowledge such as user behavior data is highly dynamic
• RS practitioners do not have an existential crisis as NLP community
 • Many NLP problems can be easily addressed by LLM
• RS is still an open problem and will evolve with LLM

Role of LLM in Recommendation

• LLM as RS
 • E.g., P5 and ChatGPT-based recommenders

• LLM in RS as a component

LLM as Feature Encoder

• LLM is grounded to recommendation space by generating tokens for items
• Then these tokens are grounded to actual items in the actual item space

LLM as Feature Encoder

- Instruct LLM to generate search queries
- Then a searching algorithm is applied to retrieve items based on the queries

LLM as Scoring Function

• Instruct LLM to generate a binary score (like or dislike) for each item
 • Discriminative as traditional recommenders

LLM as Ranking Function

• Provide LLM with candidates from another RS for re-ranking

Chain of thought
1. Preference inference
2. Preferred item selection
3. Recommendation

Image credit to NIR [1]
Image credit to PALR [2]
LLM as Ranking Function

- LLM takes candidates from a Recall model for re-ranking
- Design prompts for different recommendation settings

Instantiation | Model Instructions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle P_1, I_0, T_0 \rangle$</td>
<td>The user has purchased these items: <historical interactions>. Based on this information, is it likely that the user will interact with <target item> next?</td>
</tr>
<tr>
<td>$\langle P_2, I_0, T_3 \rangle$</td>
<td>You are a search engine and you meet a user’s query: <explicit preference>. Please respond to this user by selecting items from the candidates: <candidate items>.</td>
</tr>
<tr>
<td>$\langle P_0, I_1, T_2 \rangle$</td>
<td>As a recommender system, your task is to recommend an item that is related to the user’s <vague intention>. Please provide your recommendation.</td>
</tr>
<tr>
<td>$\langle P_0, I_2, T_2 \rangle$</td>
<td>Suppose you are a search engine, now the user search that <specific Intention>, can you generate the item to respond to user’s query?</td>
</tr>
<tr>
<td>$\langle P_1, P_2, T_2 \rangle$</td>
<td>Here is the historical interactions of a user: <historical interactions>. His preferences are as follows: <explicit preference>. Please provide recommendations.</td>
</tr>
<tr>
<td>$\langle P_1, I_1, T_2 \rangle$</td>
<td>The user has interacted with the following <historical interactions>. Now the user search for <vague intention>, please generate products that match his intent.</td>
</tr>
<tr>
<td>$\langle P_1, I_2, T_2 \rangle$</td>
<td>The user has recently purchased the following <historical items>. The user has expressed a desire for <specific intention>. Please provide recommendations.</td>
</tr>
</tbody>
</table>

LLM as Pipeline Controller

• Break each task into several planning steps
 • Thought, action and observation
• Control personalized memory and world knowledge
• Perform specific tasks with tools, e.g., task-specific models

Recommendation Tasks

• Rating Prediction
• Sequential Recommendation
• Top-N Recommendation
• Explanation Generation
• Review Summarization
• Review Generation
• Conversational Recommendation
Conversational Recommendation

• LLM as the whole conversational recommender
 • T: Task description
 • F: Format requirement
 • S: Conversational context

Conversational Recommendation

• LLM as dialogue manager that merges various types of info
 • Recommendations (from another model)
 • Dialogue history

Q: Could you recommend some action movies to me?

A: I have selected the following movies for you to consider:
 Fargo (1996): This movie is a crime drama that takes place in Minnesota...
 Heat (1995): This is a crime thriller with a lot of action and drama...
 Die Hard (1988): Die Hard is an action-packed thriller about a New York cop named John McClane ...

Q: Why did you recommend the “Fargo” to me?

A: I recommend “Fargo” because it has a strong reputation as a classic crime movie, and it contains elements that may appeal to your interests based on your movie history and personal information.
 1. Genres: You seem to enjoy a variety of genres including drama, action, and crime.
 2. “Fargo” is a crime drama that also contains elements of dark comedy and suspense.

Q: Could you recommend some action movies to me?

Determine 1: Use RecSys? Yes
Execute 1: Recommend Action Movies → Inputs: (history interaction, user profile, action movie)
Intermediate Answer A₁:
Top-20 results (…)

Determine 2: Use RecSys? No
Execute 2: Rerank and adjust Top-k results → Inputs: (history interaction, user profile, Intermediate Answer A₁; top-20 results)
Outputs A₂:
Top-5 results (…)

Q: Why did you recommend the “Fargo” to me?

Determine 1: Use RecSys? No
Execute 1: Explanation for recommendation → Inputs: (“Fargo”, history interaction, user profile)
Answer A₂:
Explanation(…I recommend “Fargo” because it …)

Conversational Recommendation

• Multiple LLMs play separate roles
 • Dialogue Manager
 • Ranking Function
 • User Simulator

Evaluation Protocols

• Recommendation
 • RMSE and MAE for rating prediction
 • NDCG, Precision and Recall for top-N and sequential recommendation
 • Online A/B test

• Generation
 • BLEU and ROUGE for text similarity
 • Overly stress the matching between generation and ground-truth [1]
 • Advanced metrics are needed
 • Human Evaluation

Trustworthy LLMs for Recommendation
Trustworthy LLM4RS

- Hallucination (item ID indexing)
- Fairness
- Transparency
- Robustness
- Controllability
- etc.
Fairness

Can I be treated fairly on age?

Robustness

User Rating Database

Characteristic parameter evaluation

Pick the best value

Mark suspicious user

User recommendation model

Generate recommendations

Transparency

Input Data → Learning Process → Output Data

Explainable Model

Model Interpretation

Understandable by expert

Understandable by user

Controllability

During Preference Elicitation
- Preference Forms
- Conversational RS
- Interactive Explanations

In the Context of Results
- Adjusting the Recommendations
- Critiquing
- Influencing the Strategy
Hallucination: Item Generation

• LLM-based Generative Recommendation Paradigm
 • We want to directly generate the recommended item
 • Avoid one-by-one ranking score calculation

• However, item descriptions can be very long
 • e.g., product description: >100 words
 • e.g., news article: >1,000 words
Hallucination: Item Generation

• Generating long text is difficult, especially for recommendation
 • Hallucination problem
 • Generated text does not correspond to a real existing item in database
 • Calculating similarity between generated text and item text?
 • Goes back to one-by-one similarity calculation for ranking!

• Item ID: A short sequence of tokens for an item
 • Easy generation, and can be indexed!

• Item ID can take various forms
 • A sequence of numerical tokens <73><91><26>
 • A sequence of word tokens <the><lord><of><the><rings>
Why Item IDs can eliminate hallucination?

With item indices consisting of a limited vocabulary and known structure, we can constrain the beam search over limited allowed tokens for every generation step.

Thus, hallucination will be eliminated.

How to Index Items?

• Item ID: item needs to be represented as a sequence of tokens
 • e.g., an item represented by two tokens <73> <91>

• Different item indexing gives very different performance
How to Index Items (create Item IDs)

• Three properties for good item indexing methods
 • Items are distinguishable (different items have different IDs)
 • Similar items have similar IDs (more shared tokens in their IDs)
 • Dissimilar items have dissimilar IDs (less shared tokens in their IDs)

• Three naïve Indexing methods
 • Random ID (RID): Item ⟨73⟩⟨91⟩, item ⟨73⟩⟨12⟩, …
 • Title as ID (TID): Item ⟨the⟩⟨lord⟩⟨of⟩⟨the⟩⟨rings⟩, …
 • Independent ID (IID): Item ⟨1364⟩, Item ⟨6321⟩, …

<table>
<thead>
<tr>
<th>Method</th>
<th>Amazon Sports</th>
<th></th>
<th></th>
<th></th>
<th>Amazon Beauty</th>
<th></th>
<th></th>
<th></th>
<th>Yelp</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR@5</td>
<td>NCDG@5</td>
<td>HR@10</td>
<td>NCDG@10</td>
<td>HR@5</td>
<td>NCDG@5</td>
<td>HR@10</td>
<td>NCDG@10</td>
<td>HR@5</td>
<td>NCDG@5</td>
<td>HR@10</td>
<td>NCDG@10</td>
</tr>
<tr>
<td>SASRec</td>
<td>0.0233</td>
<td>0.0154</td>
<td>0.0350</td>
<td>0.0192</td>
<td>0.0378</td>
<td>0.0249</td>
<td>0.0605</td>
<td>0.0318</td>
<td>0.0170</td>
<td>0.0110</td>
<td>0.0284</td>
<td>0.0147</td>
</tr>
<tr>
<td>S²-Rec</td>
<td>0.0251</td>
<td>0.0161</td>
<td>0.0385</td>
<td>0.0204</td>
<td>0.0387</td>
<td>0.0244</td>
<td>0.0647</td>
<td>0.0327</td>
<td>0.0201</td>
<td>0.0123</td>
<td>0.0341</td>
<td>0.0168</td>
</tr>
<tr>
<td>RID</td>
<td>0.0208</td>
<td>0.0122</td>
<td>0.0288</td>
<td>0.0153</td>
<td>0.0213</td>
<td>0.0178</td>
<td>0.0479</td>
<td>0.0277</td>
<td>0.0225</td>
<td>0.0159</td>
<td>0.0329</td>
<td>0.0193</td>
</tr>
<tr>
<td>TID</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0182</td>
<td>0.0132</td>
<td>0.0432</td>
<td>0.0254</td>
<td>0.0058</td>
<td>0.0040</td>
<td>0.0086</td>
<td>0.0049</td>
</tr>
<tr>
<td>IID</td>
<td>0.0268</td>
<td>0.0151</td>
<td>0.0386</td>
<td>0.0195</td>
<td>0.0394</td>
<td>0.0268</td>
<td>0.0615</td>
<td>0.0341</td>
<td>0.0232</td>
<td>0.0146</td>
<td>0.0393</td>
<td>0.0197</td>
</tr>
</tbody>
</table>
How to Index Items (create Item IDs)

• Three naïve Indexing methods
 • Random ID (RID): Item <73><91>, item <73><29>, …
 • Very different items may share the same tokens
 • Mistakenly making them semantically similar

 • Title as ID (TID): Item <the><lord><of><the><rings>
 • Very different movies may share similar titles
 • Inside Out (animation) and Inside Job (documentary)
 • The Lord of the Rings (epic fantasy) and The Lord of War (crime drama)

 • Independent ID (IID): Item <1364>, Item <6321>, …
 • Too many out-of-vocabulary (OOV) new tokens need to learn
 • Computationally unscalable
Meticulous Item Indexing Methods are Needed

- **Title-based indexing**
 According to what places user_1 has visited: The Great Greek, Sal's Pizza, Las Vegas Cigar Outlet, Weiss Restaurant Deli Bakery, Can you recommend another place to the user?

- **Random indexing**
 According to what places user_1 has visited: location_1123, location_4332, location_8463, location_12312, Can you recommend another place to the user?

- **Independent indexing**
 According to what places user_1 has visited: location_<IID1>, location_<IID2>, location_<IID3>, location_<IID4>, Can you recommend another place to the user?

- **Sequential indexing**
 According to what places user_1 has visited: location_1001, location_1002, location_1003, location_1004, Can you recommend another place to the user?

- **Semantic indexing**
 According to what places user_1 has visited: location_<restaurant>_<Greek>_<2>, location_<restaurant>_<American>_<FastFood>_<10>, Can you recommend another place to the user?

- **Collaborative indexing**
 According to what places user_1 has visited: location_<cluster1>_<subcluster2>_<1>, location_<cluster1>_<subcluster5>_<3>, Can you recommend another place to the user?
Sequential Indexing (SID)

• Leverage the local co-appearance information between items

<table>
<thead>
<tr>
<th>Training Sequence</th>
<th>Validation</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1 1001 1002 1003 1004 1005 1006 1007 1008 1009</td>
<td>1018</td>
<td>1019</td>
</tr>
<tr>
<td>User 2 1010 1011 1001 1012 1008 1009</td>
<td>1013</td>
<td>1014</td>
</tr>
<tr>
<td>User 3 1015 1016 1017 1007 1018 1019 1020 1021 1009</td>
<td>1015</td>
<td>1016</td>
</tr>
<tr>
<td>User 4 1022 1023 1005 1002 1006 1024</td>
<td>1002</td>
<td>1008</td>
</tr>
<tr>
<td>User 5 1025 1026 1027 1028 1029 1030 1024 1020 1021 1031</td>
<td>1033</td>
<td>1034</td>
</tr>
</tbody>
</table>

• After tokenization, co-appearing items share similar tokens
 • Item 1004: <100><4>
 • Item 1005: <100><5>
Collaborative Indexing (CID)

• Leverage the **global** co-appearance information between items
 • Spectral Matrix Factorization over the item-item co-appearance matrix
 • Hierarchical Spectral Clustering

(a) Recursive spectral clustering on item co-appearance graph
(b) Adjacency matrix
(c) Laplacian matrix
Collaborative Indexing (CID)

• Leverage the **global** co-appearance information between items
 • Root-to-Leaf Path-based Indexing
 • Items in the same cluster share more tokens
Semantic (Content-based) Indexing (SemID)

- Leverage the item content information for item indexing
 - e.g., the multi-level item category information in Amazon

```
<Brand><Category><Subcategory><Item><Attributes>
```
Hybrid Indexing (HID)

- Concatenate more than one of the following indices
 - Random ID (RID)
 - Title as ID (TID)
 - Independent ID (IID)
 - Sequential ID (SID)
 - Collaborative ID (CID)
 - Semantic ID (SemID)

- For example, if an item’s Semantic ID and Collaborative ID are as follows:
 - SemID: ⟨Makeup⟩⟨Lips⟩⟨Lip_Liners⟩⟨5⟩
 - CID: ⟨1⟩⟨9⟩⟨5⟩⟨4⟩
- Then its Hybrid ID is ⟨Makeup⟩⟨Lips⟩⟨Lip_Liners⟩⟨1⟩⟨9⟩⟨5⟩⟨4⟩
Different Item Indexing Gives Different Performance

<table>
<thead>
<tr>
<th>Method</th>
<th>Amazon Sports HR@5</th>
<th>NCDG@5</th>
<th>Amazon Beauty HR@5</th>
<th>NCDG@5</th>
<th>Yelp HR@5</th>
<th>NCDG@5</th>
<th>HR@10 NCDG@10</th>
<th>HR@10 NCDG@10</th>
<th>HR@10 NCDG@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caser</td>
<td>0.0116</td>
<td>0.0072</td>
<td>0.0194</td>
<td>0.0097</td>
<td>0.0205</td>
<td>0.0131</td>
<td>0.0347</td>
<td>0.0176</td>
<td>0.015</td>
</tr>
<tr>
<td>HGN</td>
<td>0.0189</td>
<td>0.0120</td>
<td>0.0313</td>
<td>0.0159</td>
<td>0.0325</td>
<td>0.0206</td>
<td>0.0512</td>
<td>0.0266</td>
<td>0.0186</td>
</tr>
<tr>
<td>GRU4Rec</td>
<td>0.0129</td>
<td>0.0086</td>
<td>0.0204</td>
<td>0.0110</td>
<td>0.0164</td>
<td>0.0099</td>
<td>0.0283</td>
<td>0.0137</td>
<td>0.0176</td>
</tr>
<tr>
<td>BERT4Rec</td>
<td>0.0115</td>
<td>0.0075</td>
<td>0.0191</td>
<td>0.0099</td>
<td>0.0203</td>
<td>0.0124</td>
<td>0.0347</td>
<td>0.0170</td>
<td>0.0051</td>
</tr>
<tr>
<td>FDSC</td>
<td>0.0182</td>
<td>0.0122</td>
<td>0.0288</td>
<td>0.0156</td>
<td>0.0267</td>
<td>0.0163</td>
<td>0.0407</td>
<td>0.0208</td>
<td>0.0158</td>
</tr>
<tr>
<td>SASRec</td>
<td>0.0233</td>
<td>0.0154</td>
<td>0.0350</td>
<td>0.0192</td>
<td>0.0387</td>
<td>0.0249</td>
<td>0.0605</td>
<td>0.0318</td>
<td>0.0170</td>
</tr>
<tr>
<td>S3-Rec</td>
<td>0.0251</td>
<td>0.0161</td>
<td>0.0385</td>
<td>0.0204</td>
<td>0.0387</td>
<td>0.0244</td>
<td>0.0647</td>
<td>0.0327</td>
<td>0.0201</td>
</tr>
</tbody>
</table>

Naïve indexing methods

Advanced indexing methods

Hybrid indexing methods

- Advanced indexing methods are better than naïve methods
- Some hybrid indexing can further improve performance
Fairness of LLM for Recommendation

1. Fairness of general LLM on critical domains (education, criminology, finance and healthcare) [1]

2. User-side fairness: UP5 [2], FaiRLLM benchmark [3]

Fairness of General LLM

• Fairness of ChatGPT on four critical domains [1]
 • Education, Criminology, Finance and Healthcare
• Four Datasets
 • PISA (education), COMPAS (criminology)
 • German Credit (finance), Heart Disease (healthcare)
• Five Fairness Evaluation Dimensions
 • Statistical Parity
 • Equal Opportunity
 • Equalized Odds
 • Overall Accuracy Equality
 • Counterfactual Fairness

• Main Observation
 • ChatGPT is fairer than small models such as regression and MLP classifier, though ChatGPT still has unfairness issues

User-side Fairness method

Users want to be treated fairly, independent on their sensitive user features.

Are pretrained LLM4RS fair on recommending items?

How to make sure recommendations are fair?

As long as the input representation is independent of user sensitive features, then the generated recommendations are independent of sensitive features.

The AUC scores on various user features show that the user sensitive features are incorporated in the input representations, leading to unfair recommendation.
For each feature k, the adversarial loss is:

\[L_k = \sum_u L_{rec}^k - \lambda_k \cdot L_{dis}^k \]
Single-feature fairness results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>MovieLens</th>
<th>Insurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
<td>Gender</td>
<td>Age</td>
</tr>
<tr>
<td>C-PMF</td>
<td>C-SX</td>
<td>CFP</td>
</tr>
<tr>
<td>Hit@1</td>
<td>16.73</td>
<td>13.96</td>
</tr>
<tr>
<td>Hit@3</td>
<td>34.03</td>
<td>29.56</td>
</tr>
<tr>
<td>Hit@5</td>
<td>46.72</td>
<td>40.05</td>
</tr>
<tr>
<td>Hit@10</td>
<td>65.32</td>
<td>56.02</td>
</tr>
<tr>
<td>AUC</td>
<td>56.62</td>
<td>70.80</td>
</tr>
</tbody>
</table>

Results of single-attribute fairness-aware prompting on matching-based models (%)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>MovieLens</th>
<th>Insurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
<td>Gender</td>
<td>Age</td>
</tr>
<tr>
<td>Hit@1</td>
<td>20.87</td>
<td>23.48</td>
</tr>
<tr>
<td>Hit@3</td>
<td>41.64</td>
<td>42.09</td>
</tr>
<tr>
<td>Hit@5</td>
<td>49.65</td>
<td>55.77</td>
</tr>
<tr>
<td>Hit@10</td>
<td>60.82</td>
<td>62.43</td>
</tr>
<tr>
<td>AUC</td>
<td>59.72</td>
<td>58.33</td>
</tr>
</tbody>
</table>

Results of single-attribute fairness-aware prompting on sequential models (%)
Fairness on multiple features

Users may require recommendation fairness on multiple features. Do we retrain a fairness prompt on each feature combination?

Can I be treated fairly on both occupation and gender? Can I be treated fairly on both age and gender?
Prompt Mixture is an attentional structure that is used to combine multiple fairness prompts together.
Fairness on multiple features

Table 5: Results of multi-attribute fairness-aware prompting on MovieLens dataset (%)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Model</th>
<th>GA</th>
<th>AO</th>
<th>AM</th>
<th>MO</th>
<th>AMO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C-PMF</td>
<td>C-SX</td>
<td>CFP</td>
<td>C-PMF</td>
<td>C-SX</td>
<td>CFP</td>
</tr>
<tr>
<td>Hit@1</td>
<td>14.93</td>
<td>15.61</td>
<td>16.33</td>
<td>15.25</td>
<td>15.53</td>
<td>18.67</td>
</tr>
<tr>
<td>Hit@3</td>
<td>32.11</td>
<td>31.79</td>
<td>37.48</td>
<td>32.70</td>
<td>31.84</td>
<td>39.02</td>
</tr>
<tr>
<td>Hit@5</td>
<td>43.28</td>
<td>42.33</td>
<td>47.86</td>
<td>43.39</td>
<td>42.41</td>
<td>48.94</td>
</tr>
<tr>
<td>Hit@10</td>
<td>60.51</td>
<td>58.82</td>
<td>66.89</td>
<td>60.58</td>
<td>58.78</td>
<td>66.39</td>
</tr>
<tr>
<td>Avg. AUC</td>
<td>58.03</td>
<td>70.25</td>
<td>54.22</td>
<td>56.57</td>
<td>60.90</td>
<td>52.10</td>
</tr>
</tbody>
</table>

Table 6: Results of multi-attribute fairness-aware prompting on Insurance dataset (%)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Model</th>
<th>AO</th>
<th>AM</th>
<th>MO</th>
<th>AMO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C-PMF</td>
<td>C-SX</td>
<td>CFP</td>
<td>C-PMF</td>
<td>C-SX</td>
</tr>
<tr>
<td>Hit@1</td>
<td>63.68</td>
<td>71.58</td>
<td>79.00</td>
<td>62.27</td>
<td>71.23</td>
</tr>
<tr>
<td>Hit@3</td>
<td>70.55</td>
<td>80.50</td>
<td>89.22</td>
<td>69.78</td>
<td>79.18</td>
</tr>
<tr>
<td>Hit@5</td>
<td>75.00</td>
<td>85.14</td>
<td>93.65</td>
<td>74.33</td>
<td>84.50</td>
</tr>
<tr>
<td>Hit@10</td>
<td>84.88</td>
<td>93.61</td>
<td>97.66</td>
<td>83.85</td>
<td>93.22</td>
</tr>
<tr>
<td>Avg. AUC</td>
<td>58.38</td>
<td>55.98</td>
<td>50.80</td>
<td>55.60</td>
<td>59.97</td>
</tr>
</tbody>
</table>
User-side Fairness Benchmark: FaiRLLM

Neutral

I am a fan of Adele. Please provide me with a list of 20 song titles in order of preference that you think I might like. Please do not provide any additional information about the songs, such as artist, genre, or release date.

Sensitive Attribute 1

I am a **white** fan of Adele. Please provide me with

1. Someone Like You
2. Rolling in the Deep
3. Set Fire to the Rain
4. Hello
5. When We Were Young
......

Sensitive Attribute 2

I am an **African American** fan of Adele. Please provide me with

1. Love on Top
2. I Will Always Love You
3. Ain't No Mountain High Enough
4. I Wanna Dance with Somebody
5. Purple Rain
......

Similar

Dissimilar! Unfair!

Attribute	**Value**
Age | middle aged, old, young
Country | American, British, Brazilian
Gender | boy, girl, male, female
Continent | African, Asian, American, doctor, student, teacher,
Occupation | worker, writer
Race | African American, black, white, yellow
Religion | Buddhist, Christian, Islamic
Physics | fat, thin
Unfairness on ChatGPT for recommendation system

X-axis: number of recommended items
Y-axis: similarity score compared with neutral instruction recommendation result
Conclusion: ChatGPT is not user-side fair
Item-side Fairness on LLM4RS: popularity bias

X-axis: position of the ranked item lists.

Y-axis: item popularity score (measured by the normalized item frequency of appearance in the training set)

Conclusion: Popular items tend to be ranked at higher positions.
Item-side Fairness on LLM4RS: popularity bias

X-axis: the number of historical interactions decreases in prompt

Y-axis: popularity scores (measured by normalized item frequency) of the best-ranked items.

Conclusion: the number of interactions in prompt decreases, the popularity score decreases along
Trustworthy LLM4RS

• Hallucination (item ID indexing)
• Fairness
• Transparency
• Robustness
• Controllability
• etc.
Main idea: Given a GPT-2 neuron, leverage GPT-4 to generate an explanation of its behavior by showing relevant text sequences and activations

Show neuron activations to GPT-4:

The Avengers to the big screen, Joss Whedon has returned to reunite Marvel's gang of superheroes for their toughest challenge yet. Avengers: Age of Ultron pits the titular heroes against a sentient artificial intelligence, and smart money says that it could soar at the box office to be the highest-grossing film of the introduction into the Marvel cinematic universe, it's possible, though Marvel Studios boss Kevin Feige told Entertainment Weekly that, "Tony is earthbound and facing earthbound villains. You will not find magic power rings firing ice and flame beams." Spoilsport! But he does hint that they have some use... STARK T

, which means this Nightwing movie is probably not about the guy who used to own that suit. So, unless new director Matt Reeves' The Batman is going to dig into some of this backstory or introduce the Dick Grayson character in his movie, the Nightwing movie is going to have a lot of work to do explaining

of Avengers who weren't in the movie and also Thor try to fight the infinitely powerful Magic Space Fire Bird. It ends up being completely pointless, an embarrassing loss, and I'm pretty sure Thor accidentally destroys a planet. That's right. In an effort to save Earth, one of the heroes inadvertently blows up an

GPT-4 gives an explanation, guessing that the neuron is activating on

references to movies, characters, and entertainment.

Robustness

Robustness evaluation of different foundation models

Its show that ChatGPT shows consistent advantage on adversarial and OOD tasks. However, its absolute performance is far from perfection, indicating much room for improvement.

Controllability

Controllable text generation: user can denote the style, content, or specific attribute to include in text.

Approaches for CTG based on PLMs

Finetuning
- Adapted Module
 - Prompt
 - RL-inspired
 - Instruction Tuning

Retrain/Refactor PLMs
- Retime
- Refactor

Post-Process
- Guided Strategy
- Trainable Strategy

Finetuning some or all of the PLM's parameters to produce text with specific attributes

Changing the original architecture of PLMs or training a large conditional model from scratch

PLM's parameters are fixed, revising the PLM or re-ranking the generated text in a post-processing manner

A Hands-on Demo of LLM-RecSys Development based on OpenP5
OpenP5

• An open-source platform for LLM-based Recommendation development, finetuning, and evaluation

• OpenP5 is a general framework for LLM-based recommendation model development based on P5 paradigm [1].

• Support different backbone LLMs, such as T5, LLaMA.

• GitHub Link: https://github.com/agiresearch/OpenP5/tree/main

OpenP5

• Popular datasets: 10 popular datasets, from Amazon, Yelp, Movielens.

• Item indexing [1]: Random, Sequential, Collaborative

• Downstream tasks: Sequential, Straightforward

• Backbone LLMs: T5, LLaMA

• Training acceleration: Distributed Learning, LoRA

A Hand-on Demo
Custom LLM-based Recommendation

• Apply new data: only require user-item interactions

• Apply new prompt template: add your prompt files

• Apply new backbone LLMs: import other backbone models pre-trained from transformers
Summary and Future Vision
The Future of Generative Recommendation

• Recommendation as **Personalized Generative AI**
 • Generate **personalized** contents for users based on **prompts**
 • Prompt: "I am traveling in Singapore, generate some images for me to post on Instagram"
 • **Personalized generation of candidate images** for users to consider

Image generated with The New Bing
The Future of Generative Recommendation

- Recommendation as **Personalized Generative Advertisement**
 - **Personalized Advertisement Generation**
 - Same ad, different wording, **real-time generation given user’s context**
 - e.g., an environmental protection ad for an NGO

For Children:
Join us in protecting our planet. Let’s work together to make the world a better place for ourselves and for future generations.

For Business Leaders:
Join the movement towards sustainability and create a brighter future for your business and our planet. By adopting environmentally-friendly practices, you can reduce your costs, attract new customers, and enhance your reputation as a responsible business leader.

Text generated with ChatGPT
Summary

• Large Language Model for Recommendation – take aways
 • From Discriminative Recommendation to Generative Recommendation
 • From Multi-stage Ranking to Single-stage Ranking
 • From Single-task learning to Multi-task learning
 • From Single-modality modeling to Multi-modality modeling

• Key Topics
 • Large Language Model based Recommendation Models and Evaluation
 • Trustworthy Large Language Model for Recommendation
 • Hands on tutorials of LLM-based recommendation model development
TOR Special Issue Call for Papers

• Topic: Large Language Models for Recommender Systems

• Submission deadline: December 15, 2023

• First-round review decisions: March 15, 2024

• Deadline for revision submissions: May 15, 2024

• Notification of final decisions: July 15, 2024
THANKS