

Tutorial on Large Language Models for Recommendation

Wenyue Hua

Rutgers University

wenyue.hua@rutgers.edu

Lei Li

Hong Kong Baptist University

Rutgers University shuyuan.xu@rutgers.edu

Shuyuan Xu

Hong Kong Baptist University

Yongfeng Zhang

csleili@comp.hkbu.edu.hk

Li Chen

Rutgers University lichen@comp.hkbu.edu.hk yongfeng.zhang@rutgers.edu

ITGERS Outline

- Background and Introduction
- Large Language Models for Recommendation
- Trustworthy LLMs for Recommendation
- Hands-on Demo of LLM-RecSys Development based on OpenP5
- Summary

Recommender Systems are Everywhere

• Influence our daily life by providing personalized services

GERS

Technical Advancement of Recommender Systems

• From Shallow Model, to Deep Model, and to Large Model

[1] Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization techniques for recommender systems." Computer 42, no. 8 (2009): 30-37.

[2] Cheng, Heng-Tze, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson et al. "Wide & deep learning for recommender systems." DLRS 2016.
 [3] Geng, Shijie, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. "Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)." RecSys 2022.

UTGERS Objective AI vs. Subjective AI

- Recommendation is unique in the AI family
 - Recommendation is most close to human among all AI tasks
 - Recommendation is a very representative Subjective AI
 - Thus, leads to many unique challenges in recommendation research

Computer Vision: (mostly) Objective AI Tasks

RUTGERS NLP: partly Objective, partly Subjective

RUTGERS Recommendation: mostly Subjective AI Tasks

Recommendation is not only about Item Ranking

- A diverse set of recommendation tasks
 - Rating Prediction
 - Item Ranking
 - Sequential Recommendation
 - User Profile Construction
 - Review Summarization
 - Explanation Generation
 - Fairness Consideration
 - etc.

Example: Subjective AI needs Explainability

• Objective vs. Subjective AI on Explainability

Objective AI Human can directly identify if the AI-produced result is right or wrong

dog

Cat

Grass

cat

Subjective AI Human can hardly identify if the AI-produced result is right or wrong. Users are very vulnerable, could be manipulated, utilized or even cheated by the system

Can you find me a mobile phone on Amazon? Sure, what operating system do you prefer? I want an Android one. OK, and any preference on screen size? Better larger than 5 inches. Do you have requirements on storage capacity? I want it to be at least 64 Gigabytes. And any preference on phone color? Not particularly. Sure, then what about the following choices? I don't like them very much... OK, do you have any preference on the brand? Better be Samsung or Huawei. Any requirement on price? Should be within 700 dollars. OK, then what about these ones?

Great, I want the first one, can you order it for me? Sure, I have placed the order for you, enjoy!

Nothing is definitely right or wrong.

Highly subjective, and usually personalized.

Example: Subjective AI needs Explainability

- In many cases, it doesn't matter what you recommend, but how you explain your recommendation
- How do humans make recommendation?

Can we Handle all RecSys tasks Together?

- A diverse set of recommendation tasks
 - Rating Prediction
 - Item Ranking
 - Sequential Recommendation
 - User Profile Construction
 - Review Summarization
 - Explanation Generation
 - Fairness Consideration
 - etc.
- Do we really need to design thousands of recommendation models?
 - Difficult to integrate so many models in industry production environment

- A Bird's View of Traditional RecSys
- The Multi-Stage Filtering RecSys Pipeline

GERS

[1] Jiang, Biye, Pengye Zhang, Rihan Chen, Xinchen Luo, Yin Yang, Guan Wang, Guorui Zhou, Xiaoqiang Zhu, and Kun Gai. "DCAF: A Dynamic Computation Allocation Framework for Online Serving System." DLP-KDD 2020. [2] Covington, Paul, Jay Adams, and Emre Sargin. "Deep neural networks for youtube recommendations." In *Proceedings of the 10th ACM conference on recommender systems*, pp. 191-198. 2016.

Discriminative Ranking

GERS

User-item matching based on embeddings

- Discriminative ranking loss function
 - e.g., Bayesian Personalized Ranking (BPR) loss

$$maximize \sum_{(u,i,j)\in D_S} \ln \sigma(\hat{x}_{uij}) - \lambda_{\Theta} ||\Theta||^2 \qquad where: \hat{x}_{uij} = p_u q_i^T - p_u q_j^T$$

[1] Chen, Hanxiong, Shaoyun Shi, Yunqi Li, and Yongfeng Zhang. "Neural collaborative reasoning." In Proceedings of the Web Conference 2021, pp. 1516-1527. 2021.

Problem with Discriminative Ranking

- Huge numbers of users and items
 - Amazon: 300 million customers, 350 million products*
 - YouTube: 2.6+ billion monthly active users, 5+ billion videos**
 - We have to use multi-stage filtering: Simple rules are used at early stages, advanced algorithms are only applied to a small number of items at later stages

- Too many candidate items, difficult for evaluation
 - Many research papers use sampled evaluation: 1-in-100, 1-in-1000, etc.

*https://sell.amazon.com/blog/amazon-stats, and https://www.bigcommerce.com/blog/amazon-statistics/ **https://www.globalmediainsight.com/blog/youtube-users-statistics/

- lage Models (LLIMS)
- Auto-regressive decoding for generative prediction

Sanh, Victor, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin et al. "Multitask prompted training enables zero-shot task generalization." ICLR 2022.
 Yang, Jingfeng, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, and Xia Hu. "Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond." arXiv preprint arXiv:2304.13712 (2023).

Generative Pre-training and Prediction

- Generative Pre-training
 - Generative Loss Function
 - Use the previous tokens to predict next token

$$L_1(\mathcal{U}) = \sum \log P(u_i | u_{i-k}, \dots, u_{i-1}; \Theta)$$

- Generative Prediction
 - Beam Search
 - Using finite tokens to represent (almost) infinite items
 - e.g., 100 vocabulary tokens, ID size 10 => #items = 100^10=10^20
 - # of candidate tokens at each beam is bounded
 - No longer need one-by-one candidate score calculation as in discriminative ranking
 - Directly generate the item ID to recommend

[1] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural information processing systems 30 (2017). [2] https://d2l.ai/chapter_recurrent-modern/beam-search.html

RUTGERS Generative Ranking

From Multi-stage ranking to Single-stage ranking

- The model automatically considers all items as the candidate pool
- Fixed-size item decoding
 - e.g., using 100 tokens (00)(01)...(99) for item ID representation

Generative Recommendation with Beam Search

- Since item IDs are tokenized (e.g., ["item", "_", "73", "91"]), beam search is bounded on width
 - E.g., 100 tokens width: (00), (01), (02), ..., (98), (99)
- Assigning an item a token as in traditional recommendation is infeasible for LLM
 - Consume a lot of memory and computationally expensive

[1] Li, Lei, Yongfeng Zhang, Dugang Liu, and Li Chen. "Large Language Models for Generative Recommendation: A Survey and Visionary Discussions." arXiv preprint arXiv:2309.01157 (2023).

Large Language Models for Recommendation

How to Categorize LLM-based Recommendation

- Whether to Fine-tune LLM for Recommendation or Not
 - With Fine-tuning [1]
 - Without Fine-tuning [2]
- The Role of LLM in Recommendation
 - LLM as RecSys [1]
 - LLM in RecSys [3]
 - e.g., LLM as a feature extractor for recommender systems
 - RecSys in LLM [4]
 - e.g., LLM-based Agents, where RecSys is used as on of the tools
- Typical Recommendation Tasks [1]
 - Rating Prediction, Sequential Recommendation, Direct Recommendation, ...

[3] Lin, Jianghao, et al. "How Can Recommender Systems Benefit from Large Language Models: A Survey." arXiv preprint arXiv:2306.05817 (2023).

[4] Wang, Yancheng, Ziyan Jiang, Zheng Chen, Fan Yang, Yingxue Zhou, Eunah Cho, Xing Fan, Xiaojiang Huang, Yanbin Lu, and Yingzhen Yang. "Recmind: Large language model powered agent for recommendation." arXiv preprint arXiv:2308.14296 (2023).

Geng, Shijie, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. "Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)" RecSys 2022.
 Liu, Junling, Chao Liu, Renjie Lv, Kang Zhou, and Yan Zhang. "Is chatgpt a good recommender? a preliminary study." *arXiv preprint arXiv:2304.10149* (2023).

Two Broad Categories of Recommendation Tasks

Generation Tasks

Prediction Tasks

GERS

Image credit to [1]

• LLM usually can perform multiple recommendation tasks

• e.g., P5 [2], POD [3], InstructRec [4]

Rating Prediction	Top-N Recommendation	Sequential Recommendation	Explainable Recommen- dation	Review Generation	Review Sum- marization	Conversational Recommendation
P5 [Geng et al., 2022c], BookGPT [Zhiyuli et al., 2023], LLMRec [Liu et al., 2023b], RecMind [Wang et al., 2023b], [Liu et al., 2023a; Dai et al., 2023]	P5 [Geng et al., 2022c], UP5 [Hua et al., 2023a], VIP5 [Geng et al., 2023], OpenP5 [Xu et al., 2023], POD [Li et al., 2023c], GPTRec [Petrov and Macdonald, 2023], LLMRec [Liu et al., 2023b], RecMind [Wang et al., 2023b], [Zhang et al., 2023a; Zhang et al., 2023b; Liu et al., 2023a; Li et al., 2023f; Dai et al., 2023]	P5 [Geng et al., 2022c], UP5 [Hua et al., 2023a], VIP5 [Geng et al., 2023], OpenP5 [Xu et al., 2023], POD [Li et al., 2023c], GenRec [Ji et al., 2023], GPTRec [Petrov and Macdon- ald, 2023], LMRecSys [Zhang et al., 2021], NIR [Wang and Lim, 2023], PALR [Chen, 2023], LLMRec [Liu et al., 2023b], RecMind [Wang et al., 2023b], BIGRec [Bao et al., 2023a], [Hua et al., 2023b; Liu et al., 2023a; Hou et al., 2023b; Zhang et al., 2023b]	P5 [Geng et al., 2022c], VIP5 [Geng et al., 2023], POD [Li et al., 2023c], PEPLER [Li et al., 2023b], M6-Rec [Cui et al., 2022], LLMRec [Liu et al., 2023b], RecMind [Wang et al., 2023b], KnowRec [Colas et al., 2023], [Liu et al., 2023a]	-	P5 [Geng <i>et</i> <i>al.</i> , 2022c], LLMRec [Liu <i>et al.</i> , 2023b], RecMind [Wang <i>et al.</i> , 2023b], [Liu <i>et al.</i> , 2023a]	M6-Rec [Cui et al., 2022], Re- cLLM [Friedman et al., 2023], Chat-REC [Gao et al., 2023], [Wang et al., 2023a; Lin and Zhang, 2023; He et al., 2023]

Image credit to [1]

[1] Li, Lei, Yongfeng Zhang, Dugang Liu, and Li Chen. "Large Language Models for Generative Recommendation: A Survey and Visionary Discussions." arXiv preprint arXiv:2309.01157 (2023).

[2] Geng, Shijie, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. "Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)." RecSys 2022. [3] Li, Lei, Yongfeng Zhang, and Li Chen. "Prompt Distillation for Efficient LLM-based Recommendation." CIKM 2023.

[4] Zhang, Junjie, et al. "Recommendation as instruction following: A large language model empowered recommendation approach." arXiv preprint arXiv:2305.07001 (2023).

The P5 Generative Recommendation Paradigm

• P5: Pretrain, Personalized Prompt & Predict Paradigm [1]

• Learns multiple recommendation tasks together through a unified sequence-to-sequence framework

GERS

- Formulates different recommendation problems as prompt-based natural language tasks
- User-item information and corresponding features are integrated with personalized prompts as model inputs

[1] Geng, Shijie, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. "Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)." RecSys 2022.

UTGERS Personalization in Prompts

Definition of <u>personalized</u> prompts

A prompt that includes personalized fields for different users and items

• User's preference can be indicated through

A user ID (e.g., "user_23")

Content description of the user such as location, preferred movie genres, etc.

- Item field can be represented by
 - An item ID (e.g., "item_7391")

• Item content metadata that contains detailed descriptions of the item, e.g., item category

RUTGERS Personalized Prompt Design

UTGERS Design Multiple Prompts for Each Task

• To enhance variation in language style (e.g., sequential recommendation)

Prompt ID: 2-1

Input template: Given the following purchase history of
user_{{user_id}}:
{{purchase_history}}
predict next possible item to be purchased by the user?

Target template: {{next_item}}

Prompt ID: 2-2

Input template: I find the purchase history list of user_{{user_id}}:
{{purchase_history}}
I wonder which is the next item to recommend to the user. Can you
help me decide?

Target template: {{next_item}}

Prompt ID: 2-3

Input template: Here is the purchase history list of
user_{{user_id}}:
{{purchase_history}}
try to recommend next item to the user

Target template: {{next_item}}

Prompt ID: 2-4

Input template: Given the following purchase history of
{{user_desc}}:
{{purchase_history}}
predict next possible item for the user

Target template: {{next_item}}

Prompt ID: 2-5

Input template: Based on the purchase history of {{user_desc}}:
{{purchase_history}}
Can you decide the next item likely to be purchased by the user?

Target template: {{next_item}}

Prompt ID: 2-6

Input template: Here is the purchase history of {{user_desc}}:
{{purchase_history}}
What to recommend next for the user?

Target template: {{next_item}}

RUTGERS Multi-Task Pre-training

JTGERS Multi-Task Pre-training

	<t1></t1>	<t2></t2>	<t3></t3>	<t4></t4>	<t5></t5>	<t6></t6>	<t7></t7>	<t8></t8>	<t9></t9>	<t10></t10>	<t11></t11>	<t12></t12>	<t13></t13>	<t14></t14>	<t15></t15>	<t16></t16>	5.0	
	t	†	†	t	t	t	t	t	t	t	t	t	t	t	t	t	1	1
							Bidire	ctiona	l Text E	Encode	r						Autoregressive	e Text Decoder
	t	1	t	t	t	1	t	1	t	t	t	t.	t	t	ŧ	t	t	<u>†</u>
Token Emb.	what	star	rating	do	you	think	user	_	23	will	give	item	_	73	91	?		
	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	<5>	5.0
Position Emb.	<p1></p1>	<p2></p2>	<p3></p3>	<p4></p4>	<p5></p5>	<p6></p6>	<p7></p7>	<p8></p8>	<p9></p9>	<p10></p10>	<p11></p11>	<p12></p12>	<p13></p13>	<p14></p14>	<p15></p15>	<p16></p16>		
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Whole-word Emb.	<w1></w1>	<w2></w2>	<w3></w3>	<w4></w4>	<w5></w5>	<w6></w6>		<w7></w7>		<w8></w8>	<w9></w9>		<w1< td=""><td>10></td><td></td><td><w11></w11></td><td></td><td></td></w1<>	10>		<w11></w11>		

- P5 is pre-trained on top of T5 checkpoints (to enable basic ability for language understanding)
- By default, P5 uses multiple sub-word units to represent personalized fields (e.g., ["item", "_", "73", "91"])

GERS

Generative Recommendation with Beam Search

- The encoder takes input sequence
- The decoder autoregressively generates next words:
 - Autoregressive LM loss is shared by all tasks: $\mathcal{L}_{\theta}^{P5} = -\sum_{j=1}^{15} \log P_{\theta} (\mathbf{y}_j | \mathbf{y}_{< j}, \mathbf{x})$
- P5 can unify various recommendation tasks with one model, one loss, and one data format
- Inference with pretrained P5

Beam size set to N (N candidates)

- Simply apply beam search to generate a list of potential next items
 - Image credit to [1]

Generative Recommendation with Beam Search

- Since item IDs are tokenized (e.g., ["item", "_", "73", "91"]), beam search is bounded on width
 - E.g., 100 tokens width: (00), (01), (02), ..., (98), (99)
- Assigning an item a token as in traditional recommendation is infeasible for LLM
 - Consume a lot of memory and computationally expensive

[1] Li, Lei, Yongfeng Zhang, Dugang Liu, and Li Chen. "Large Language Models for Generative Recommendation: A Survey and Visionary Discussions." arXiv preprint arXiv:2309.01157 (2023).

Advantages of P5 Generative Recommendation

- Immerses recommendation models into a full language environment
 - With the flexibility and expressiveness of language, there is no need to design feature-specific encoders
- P5 treats all personalized tasks as a conditional text generation problem
 - One data format, one model, one loss for multiple recommendation tasks
 - No need to design data-specific or task-specific recommendation models
- P5 attains sufficient zero-shot performance when generalizing to novel personalized prompts or unseen items in other domains

RUTGERS Performance of P5 under seen Prompts

HOLE STOLES

Rating Prediction:

Methods	Spo	orts	Bea	uty	То	ys
Methous	RMSE	MAE	RMSE	MAE	RMSE	MAE
MF	1.0234	0.7935	1.1973	0.9461	1.0123	0.7984
MLP	1.1277	0.7626	1.3078	0.9597	1.1215	0.8097
P5-S (1-6)	1.0594	0.6639	1.3128	0.8428	1.0746	0.7054
P5-B (1-6)	1.0357	0.6813	1.2843	0.8534	1.0544	0.7177
P5-S <mark>(1-10)</mark>	1.0522	0.6698	1.2989	0.8473	1.0550	0.7173
P5-B <mark>(1-10)</mark>	1.0292	0.6864	1.2870	0.8531	1.0245	0.6931

Sequential Recommendation:

Mathada		Sp	oorts			Be	auty			Т	òys	
Methods	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10
Caser	0.0116	0.0072	0.0194	0.0097	0.0205	0.0131	0.0347	0.0176	0.0166	0.0107	0.0270	0.0141
HGN	0.0189	0.0120	0.0313	0.0159	0.0325	0.0206	0.0512	0.0266	0.0321	0.0221	0.0497	0.0277
GRU4Rec	0.0129	0.0086	0.0204	0.0110	0.0164	0.0099	0.0283	0.0137	0.0097	0.0059	0.0176	0.0084
BERT4Rec	0.0115	0.0075	0.0191	0.0099	0.0203	0.0124	0.0347	0.0170	0.0116	0.0071	0.0203	0.0099
FDSA	0.0182	0.0122	0.0288	0.0156	0.0267	0.0163	0.0407	0.0208	0.0228	0.0140	0.0381	0.0189
SASRec	0.0233	0.0154	0.0350	0.0192	0.0387	0.0249	0.0605	0.0318	0.0463	0.0306	0.0675	0.0374
S ³ -Rec	0.0251	0.0161	0.0385	0.0204	0.0387	0.0244	0.0647	0.0327	0.0443	0.0294	0.0700	0.0376
P5-S (2-3)	0.0272	0.0169	0.0361	0.0198	0.0503	0.0370	0.0659	0.0421	0.0648	0.0567	0.0709	0.0587
P5-B (2-3)	0.0364	0.0296	0.0431	0.0318	0.0508	0.0379	0.0664	0.0429	0.0608	0.0507	0.0688	0.0534
P5-S (2-13)	0.0258	0.0159	0.0346	0.0188	0.0490	0.0358	0.0646	0.0409	0.0647	0.0566	0.0705	0.0585
P5-B <mark>(2-13)</mark>	0.0387	0.0312	0.0460	0.0336	0.0493	0.0367	0.0645	0.0416	0.0587	0.0486	0.0675	0.0536

Explanation Generation:

Mathada		Sports BLUE4 ROUGE1 ROUGE2 ROU				Be	eauty		Toys						
Methods	BLUE4	ROUGE1	ROUGE2	ROUGEL	BLUE4	ROUGE1	ROUGE2	ROUGEL	BLUE4	ROUGE1	ROUGE2	ROUGEL			
Attn2Seq	0.5305	12.2800	1.2107	9.1312	0.7889	12.6590	1.6820	9.7481	1.6238	13.2245	2.9942	10.7398			
NRT	0.4793	11.0723	1.1304	7.6674	0.8295	12.7815	1.8543	9.9477	1.9084	13.5231	3.6708	11.1867			
PETER	0.7112	12.8944	1.3283	9.8635	1.1541	14.8497	2.1413	11.4143	1.9861	14.2716	3.6718	11.7010			
P5-S (3-3)	1.0447	14.9048	2.1297	11.1778	1.2237	17.6938	2.2489	12.8606	2.2892	15.4505	<u>3.6974</u>	12.1718			
P5-B (3-3)	<u>1.0407</u>	14.1589	2.1220	10.6096	0.9742	16.4530	1.8858	11.8765	2.3185	15.3474	3.7209	12.1312			
PETER+	2.4627	24.1181	5.1937	18.4105	3.2606	25.5541	5.9668	19.7168	4.7919	28.3083	9.4520	22.7017			
P5-S (3-9)	1.4101	23.5619	5.4196	17.6245	1.9788	25.6253	6.3678	19.9497	4.1222	28.4088	9.5432	22.6064			
P5-B (3-9)	1.4689	23.5476	<u>5.3926</u>	17.5852	1.8765	25.1183	6.0764	19.4488	3.8933	27.9916	<u>9.5896</u>	22.2178			
P5-S <mark>(3-12)</mark>	1.3212	23.2474	5.3461	17.3780	1.9425	25.1474	6.0551	19.5601	4.2764	28.1897	9.1327	22.2514			
P5-B <mark>(3-12)</mark>	1.4303	23.3810	5.3239	17.4913	1.9031	25.1763	6.1980	19.5188	3.5861	28.1369	9.7562	22.3056			

RUTGERS Performance of P5 under seen Prompts

Suit	ER	8
HONG	历旅	募福
tono	19 BAP	56 TIST

Review Summarization:

Mathada		Sp	orts			Be	eauty		Toys						
Methods	BLUE2	ROUGE1	ROUGE2	ROUGEL	BLUE2	ROUGE1	ROUGE2	ROUGEL	BLUE2	ROUGE1	ROUGE2	ROUGEL			
T0 (4-1)	2.1581	2.2695	0.5694	1.6221	1.2871	1.2750	0.3904	0.9592	2.2296	2.4671	0.6482	1.8424			
GPT-2 (4-1)	0.7779	4.4534	1.0033	1.9236	0.5879	3.3844	0.6756	1.3956	0.6221	3.7149	0.6629	1.4813			
P5-S (4-1)	2.4962	11.6701	2.7187	10.4819	2.1225	8.4205	1.6676	7.5476	2.4752	9.4200	1.5975	8.2618			
P5-B (4-1)	2.6910	12.0314	3.2921	10.7274	1.9325	8.2909	1.4321	7.4000	1.7833	8.7222	<u>1.3210</u>	7.6134			

Direct Recommendation:

Mathada			Sports					Beauty					Toys		
Methods	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10
BPR-MF	0.0314	0.1404	0.0848	0.2563	0.1220	0.0311	0.1426	0.0857	0.2573	0.1224	0.0233	0.1066	0.0641	0.2003	0.0940
BPR-MLP	0.0351	0.1520	0.0927	0.2671	0.1296	0.0317	0.1392	0.0848	0.2542	0.1215	0.0252	0.1142	0.0688	0.2077	0.0988
SimpleX	0.0331	0.2362	0.1505	0.3290	0.1800	0.0325	0.2247	<u>0.1441</u>	0.3090	<u>0.1711</u>	0.0268	0.1958	0.1244	0.2662	0.1469
P5-S (5-1)	0.0638	0.2096	0.1375	0.3143	0.1711	0.0600	0.2021	0.1316	0.3121	0.1670	0.0405	0.1538	0.0969	0.2405	0.1248
P5-B (5-1)	0.0245	0.0816	0.0529	0.1384	0.0711	0.0224	0.0904	0.0559	0.1593	0.0780	0.0187	0.0827	0.0500	0.1543	0.0729
P5-S (5-4)	0.0701	0.2241	0.1483	0.3313	0.1827	0.0862	0.2448	0.1673	0.3441	0.1993	0.0413	0.1411	0.0916	0.2227	0.1178
P5-B (5-4)	0.0299	0.1026	0.0665	0.1708	0.0883	0.0506	0.1557	0.1033	0.2350	0.1287	0.0435	0.1316	0.0882	0.2000	0.1102
P5-S (5-5)	0.0574	0.1503	0.1050	0.2207	0.1276	0.0601	0.1611	0.1117	0.2370	0.1360	0.0440	0.1282	0.0865	0.2011	0.1098
P5-B (5-5)	0.0641	0.1794	0.1229	0.2598	0.1488	0.0588	0.1573	0.1089	0.2325	0.1330	0.0386	0.1122	0.0756	0.1807	0.0975
P5-S <mark>(5-8)</mark>	0.0567	0.1514	0.1049	0.2196	0.1269	0.0571	0.1566	0.1078	0.2317	0.1318	0.0451	0.1322	0.0889	0.2023	0.1114
P5-B <mark>(5-8)</mark>	0.0726	0.1955	0.1355	0.2802	0.1627	0.0608	0.1564	0.1096	0.2300	0.1332	0.0389	0.1147	0.0767	0.1863	0.0997

Observation: P5 achieves promising performances on the five task families when taking seen prompt templates as model inputs

UTGERS Performance of P5 under unseen Prompts

Observation: Multitask prompted pretraining empowers P5 good robustness to understand **unseen prompts** with wording variations

Sequential Recommendation:

Explanation Generation:

Mathada		Sp	orts			Be	auty			Т	Toys				SI	ports			Be	auty			Т	oys	
Methous	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	Methods	BLUE4	ROUGE1	ROUGE2	ROUGEL	BLUE4	ROUGE1	ROUGE2	ROUGEL	BLUE4	ROUGE1	ROUGE2	ROUGEL
Caser	0.0116	0.0072	0.0194	0.0097	0.0205	0.0131	0.0347	0.0176	0.0166	0.0107	0.0270	0.0141	Attn2Seq	0.5305	12.2800	1.2107	9.1312	0.7889	12.6590	1.6820	9.7481	1.6238	13.2245	2.9942	10.7398
HGN	0.0189	0.0120	0.0313	0.0159	0.0325	0.0206	0.0512	0.0266	0.0321	0.0221	0.0497	0.0277	NRT	0.4793	11.0723	1.1304	7.6674	0.8295	12.7815	1.8543	9.9477	1.9084	13.5231	3.6708	11.1867
GRU4Rec	0.0129	0.0086	0.0204	0.0110	0.0164	0.0099	0.0283	0.0137	0.0097	0.0059	0.0176	0.0084	PETER	0.7112	12.8944	1.3283	9.8635	1.1541	14.8497	2.1413	11.4143	1.9861	14.2716	3.6718	11.7010
BERT4Rec	0.0115	0.0075	0.0191	0.0099	0.0203	0.0124	0.0347	0.0170	0.0116	0.0071	0.0203	0.0099	P5-S (3-3)	1.0447	14,9048	2.1297	11,1778	1.2237	17.6938	2.2489	12.8606	2 2892	15.4505	3 6974	12,1718
FDSA	0.0182	0.0122	0.0288	0.0156	0.0267	0.0163	0.0407	0.0208	0.0228	0.0140	0.0381	0.0189	P5-B (3-3)	1 0407	14 1589	2 1220	10 6096	0 9742	16 4530	1 8858	11 8765	2.3185	15 3474	3,7209	12 1312
SASRec	0.0233	0.0154	0.0350	0.0192	0.0387	0.0249	0.0605	0.0318	0.0463	0.0306	0.0675	0.0374	10 2 (0 0)	1.0 107		<u></u>	10.0070	0.7712	10.1000	1.0000	11.0700	210 100	10.01/1	017205	
S ³ -Rec	0.0251	0.0161	0.0385	0.0204	0.0387	0.0244	0.0647	0.0327	0.0443	0.0294	0.0700	0.0376	PETER+	2.4627	24.1181	5.1937	18.4105	3.2606	25.5541	5.9668	<u>19.7168</u>	4.7919	28.3083	9.4520	22.7017
P5-S (2-3)	0.0272	0.0169	0.0361	0.0198	0.0503	0.0370	0.0659	0.0421	0.0648	0.0567	0.0709	0.0587	P5-S (3-9)	1.4101	23.5619	5.4196	17.6245	1.9788	25.6253	6.3678	19.9497	4.1222	28.4088	9.5432	22.6064
P5-B (2-3)	0.0364	0.0296	0.0431	0.0318	0.0508	0.0379	0.0664	0.0429	0.0608	0.0507	0.0688	0.0534	Р5-В <mark>(3-9)</mark>	1.4689	23.5476	5.3926	17.5852	1.8765	25.1183	6.0764	19.4488	3.8933	27.9916	<u>9.5896</u>	22.2178
P5-S (2-13)	0.0258	0.0159	0.0346	0.0188	0.0490	0.0358	0.0646	0.0409	0.0647	0.0566	0.0705	0.0585	P5-S <mark>(3-12)</mark>	1.3212	23.2474	5.3461	17.3780	1.9425	25.1474	6.0551	19.5601	4.2764	28.1897	9.1327	22.2514
P5-B <mark>(2-13)</mark>	0.0387	0.0312	0.0460	0.0336	0.0493	0.0367	0.0645	0.0416	0.0587	0.0486	0.0675	0.0536	P5-B <mark>(3-12)</mark>	1.4303	23.3810	5.3239	17.4913	1.9031	25.1763	<u>6.1980</u>	19.5188	3.5861	28.1369	9.7562	22.3056

Direct Recommendation:

Mathada			Sports					Beauty					Toys		
Methods	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10
BPR-MF	0.0314	0.1404	0.0848	0.2563	0.1220	0.0311	0.1426	0.0857	0.2573	0.1224	0.0233	0.1066	0.0641	0.2003	0.0940
BPR-MLP	0.0351	0.1520	0.0927	0.2671	0.1296	0.0317	0.1392	0.0848	0.2542	0.1215	0.0252	0.1142	0.0688	0.2077	0.0988
SimpleX	0.0331	0.2362	0.1505	0.3290	<u>0.1800</u>	0.0325	0.2247	0.1441	0.3090	<u>0.1711</u>	0.0268	0.1958	0.1244	0.2662	0.1469
P5-S (5-1)	0.0638	0.2096	0.1375	0.3143	0.1711	0.0600	0.2021	0.1316	0.3121	0.1670	0.0405	0.1538	0.0969	0.2405	0.1248
P5-B (5-1)	0.0245	0.0816	0.0529	0.1384	0.0711	0.0224	0.0904	0.0559	0.1593	0.0780	0.0187	0.0827	0.0500	0.1543	0.0729
P5-S (5-4)	0.0701	0.2241	0.1483	0.3313	0.1827	0.0862	0.2448	0.1673	0.3441	0.1993	0.0413	0.1411	0.0916	0.2227	0.1178
P5-B (5-4)	0.0299	0.1026	0.0665	0.1708	0.0883	0.0506	0.1557	0.1033	0.2350	0.1287	0.0435	0.1316	0.0882	0.2000	0.1102
P5-S (5-5)	0.0574	0.1503	0.1050	0.2207	0.1276	0.0601	0.1611	0.1117	0.2370	0.1360	<u>0.0440</u>	0.1282	0.0865	0.2011	0.1098
P5-B (5-5)	0.0641	0.1794	0.1229	0.2598	0.1488	0.0588	0.1573	0.1089	0.2325	0.1330	0.0386	0.1122	0.0756	0.1807	0.0975
P5-S (5-8)	0.0567	0.1514	0.1049	0.2196	0.1269	0.0571	0.1566	0.1078	0.2317	0.1318	0.0451	0.1322	0.0889	0.2023	0.1114
P5-B <mark>(5-8)</mark>	0.0726	0.1955	0.1355	0.2802	0.1627	0.0608	0.1564	0.1096	0.2300	0.1332	0.0389	0.1147	0.0767	0.1863	0.0997

UTGERS Easy Handling of Multi-modality Information

• Item images can be directly inserted into personalized prompts [1]

Sequential Recommendation -> 5603 I find the purchase history list of user_1035 : 4011 -> 5632 4406 I wonder what is the next item to recommend to the user . Can you help me decide ? -> 5633 **Direct Recommendation** Pick the most suitable item from the following list and recommend to user_251 : 7162 . 10964 VIP5 2317 , 2317 , 9910 . 11615 . 5709 **Explanation Generation** Based on the feature word exercises, generate an explanation for user_45 about this product : Black Mountain Products Good for those small exercises that one can't do with freeweights Resistance Band Set with Door Anchor, Ankle Strap, Exercise Chart, and Resistance Band Carrying Case

Easy Handling of Multi-modality Information

• Item images can be converted into visual tokens

GERS Easy Handling of Multi-modality Information

- Item images can be directly inserted into prompts
 - Multi-modality information further improves performance

Matha da		SI	oorts			Be	eauty		M - 41 1-			Sports					Beauty		
Methods	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	Methods	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10
HGN	0.0189	0.0120	0.0313	0.0159	0.0325	0.0206	0.0512	0.0266	BPR-MF	0.0314	0.1404	0.0848	0.2563	0.1220	0.0311	0.1426	0.0857	0.2573	0.1224
SASRec	0.0233	0.0154	0.0350	0.0192	0.0387	0.0249	0.0605	0.0318	BPR-MLP	0.0351	0.1520	0.0927	0.2671	0.1296	0.0317	0.1392	0.0848	0.2542	0.1215
S ³ -Rec	0.0251	0.0161	0.0385	0.0204	0.0387	0.0244	0.0647	0.0327	VBPR	0.0262	0.1138	0.0691	0.2060	0.0986	0.0380	0.1472	0.0925	0.2468	0.1245
P5 (A-3)	0.0272	0.0169	0.0361	0.0198	0.0503	0.0370	0.0659	0.0421	P5 (B-5)	0.0574	0.1503	0.1050	0.2207	0.1276	0.0601	0.1611	0.1117	0.2370	0.1360
VIP5 (A-3)	0.0412	0.0345	0.0475	0.0365	0.0556	0.0427	0.0677	0.0467	VIP5 (B-5)	0.0606	0.1743	0.1185	0.2539	0.1441	0.0580	0.1598	0.1099	0.2306	0.1327
P5 (A-9)	0.0258	0.0159	0.0346	0.0188	0.0490	0.0358	0.0646	0.0409	P5 (B-8)	0.0567	0.1514	0.1049	0.2196	0.1269	0.0571	0.1566	0.1078	0.2317	0.1318
VIP5 (A-9)	0.0392	0.0327	0.0456	0.0347	0.0529	0.0413	0.0655	0.0454	VIP5 (B-8)	0.0699	0.1882	0.1304	0.2717	0.1572	0.0615	0.1655	0.1147	0.2407	0.1388
Matha da		Clo	othing			Т	oys		Mada ala			Clothing	g				Toys		
Methods	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	Methods	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10
HGN	0.0107	0.0071	0.0175	0.0092	0.0321	0.0221	0.0497	0.0277	BPR-MF	0.0296	0.1280	0.0779	0.2319	0.1112	0.0233	0.1066	0.0641	0.2003	0.0940
SASRec	0.0107	0.0066	0.0194	0.0095	0.0463	0.0306	0.0675	0.0374	BPR-MLP	0.0342	0.1384	0.0858	0.2327	0.1161	0.0252	0.1142	0.0688	0.2077	0.0988
S ³ -Rec	0.0076	0.0045	0.0135	0.0063	0.0443	0.0294	0.0700	0.0376	VBPR	0.0352	0.1410	0.0877	0.2420	0.1201	0.0337	0.1294	0.0808	0.2199	0.1098
P5 (A-3)	0.0478	0.0376	0.0554	0.0401	0.0655	0.0570	0.0726	0.0593	P5 (B-5)	0.0320	0.0986	0.0652	0.1659	0.0867	0.0418	0.1219	0.0824	0.1942	0.1056
VIP5 (A-3)	0.0603	0.0564	0.0632	0.0573	0.0662	0.0577	0.0749	0.0604	VIP5 (B-5)	0.0481	0.1287	0.0890	0.1992	0.1116	0.0428	0.1225	0.0833	0.1906	0.1051
P5 (A-9)	0.0455	0.0359	0.0534	0.0385	0.0631	0.0547	0.0701	0.0569	P5 (B-8)	0.0355	0.1019	0.0688	0.1722	0.0912	0.0422	0.1286	0.0858	0.2041	0.1099
VIP5 (A-9)	0.0569	0.0531	0.0597	0.0540	0.0641	0.0556	0.0716	0.0580	VIP5 (B-8)	0.0552	0.1544	0.1058	0.2291	0.1297	0.0433	0.1301	0.0875	0.2037	0.1110

Sequential Recommendation Performance

Direct Recommendation Performance

UTGERS ChatGPT as Recommender

- Instruct ChatGPT to perform different tasks w/o fine-tuning
 - Few-shot or zero-shot settings (w/ or w/o demonstration examples)

ChatGPT on Recommendation Tasks

		1.200.60		1.200.61
Caser	0.0205	0.0131	0.0347	0.0176
HGN	0.0325	0.0206	0.0512	0.0266
GRU4Rec	0.0164	0.0099	0.0283	0.0137
BERT4Rec	0.0203	0.0124	0.0347	0.0170
FDSA	0.0267	0.0163	0.0407	0.0208
SASRec	0.0387	0.0249	0.0605	0.0318
S ³ -Rec	0.0387	0.0244	0.0647	0.0327
P5-B	0.0493	0.0367	0.0645	0.0416
ChatGPT(zero-shot)	0.0000	0.0000	0.0000	0.0000
ChatGPT(few-shot)	0.0135	0.0135	0.0135	0.0135

GERS

Beauty Methods NDCG@5 HR@10 HR@5 NDCG@10 **BPR-MF** 0.0857 0.2573 0.1426 0.1224 **BPR-MLP** 0.2542 0.1215 0.1392 0.0848 SimpleX 0.2247 0.1441 0.3090 0.1711 P5-B 0.1564 0.1096 0.2300 0.1332 ChatGPT(zero-shot) 0.0217 0.0252 0.0111 0.0652 ChatGPT(few-shot) 0.0349 0.0216 0.0930 0.0398

Rating Prediction

Mathada	Beauty						
Wethous	RMSE	MAE					
MF	1.1973	0.9461					
MLP	1.3078	0.9597					
ChatGPT(zero-shot)	1.4059	1.1861					
ChatGPT(few-shot)	1.0751	0.6977					

Ch

ChatGPT on Generation Tasks

- Performance with automatic metrics is bad
- Rated highly by human evaluators
 - Existing metrics (BLEU and ROUGE) overly stress the matching between generation and ground-truth [2]

Review Summarization

	Methods Beauty								Beauty						
	Methou	5	BLUE4	ROUGE1	ROUGE2	ROUGEL	Methods		BLUE	4 R	OUGE	1 RC	DUGE2	ROU	GEL
	Attn2Se	q	0.7889	12.6590	1.6820	9.7481			DICL					1.00	
	NRT		0.8295	12.7815	1.8543	9.9477	T0		1.287	1 :	1.2750		.3904	0.9	592
	PETER		1.1541	14.8497	2.1413 11.4143		GPT-2		0.587	9 3	3.3844		0.6756		956
	Р5-В		0.9742	16.4530	1.8858	11.8765	P5-B		2.122	5 8	8.4205		1.6676 7.		476
	PETER+		3.2606	25.5541	5.9668	19.7168	ChatCPT(zero-s	(hot)	0.000	0	3 8246	0	2857	3.1	311
С	ChatGPT(zero-shot)		0.0000	8.5992	0.6995	4.7564		1 1)	0.000	0.	0.7000	0	.2037	5.1.	200
C	ChatGPT(few	v-shot)	1.1967	11.4103	2.5675 5.9119		ChatGP1(few-shot)		0.000	0	2.7822	0	.0000	2.4.	328
		Eval	uators				Mathada		Evaluators				aver top1	nation	aug positio
Methods	Eva_1	Eva_2	Eva_3	Eva_4	avg_top1_rat	ion avg_po	Methods	Eva_1	Eva_2	Eva_3	Eva_4	Eva_5	avg_top1		avg_positio
Ground truth	25.0%	45.0%	45.0%	50.0%	38.0%	15	Ground truth	12.5%	10.6%	8.7%	17.3%	22.1%	14.2	%	2.91
P5	0.0%	0.0%	0.0%	0.0%	0.0%	2.7	P5	5.8%	0.0%	5.7%	11.5%	19.2%	8.5%	6	3.16
IJ	0.0%	5.0%	0.0%	E0.00	62.07	2.1	ChatGPT(zero-shot)	46.2%	37.5%	36.5%	45.2%	23.1%	37.7	%	1.90
atGP1(zero-sh	atGP1(zero-shot) 75.0% 55.0%		55.0%	50.0%	62.0%	1.4	ChatGPT(few-shot)	35.6%	51.9%	49.0%	26.0%	35.6%	39.6	%	2.01

Explanation Generation

[1] Liu, Junling, et al. "Is chatgpt a good recommender? a preliminary study." arXiv preprint arXiv:2304.10149 (2023).

[2] Wang, Xiaolei, et al. "Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models." arXiv preprint arXiv:2305.13112 (2023).

rGERS ChatGPT as Recommender

- ChatGPT on three types of recommendation w/o fine-tuning
 - Point-wise (rate), pair-wise (compare), list-wise (rank)

Recommendation Performance of ChatGPT

Outperform weak baselines on the three recommendation tasks

• Random, pop

Domain	Matric	random	non	tex	t-davinci-00	2	tex	t-davinci-00	3	gpt-3.5-turbo (ChatGPT)			
Domain	Weute	Tanuom	pop	point-wise	pair-wise	list-wise	point-wise	pair-wise	list-wise	point-wise	pair-wise	list-wise	
	Compliance Rate	-	-	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	99.98%	100.00%	
Mourio	NDCG@1	0.2000	0.2240	0.3110	0.3203	0.2600	0.2259	0.2843	0.3260	0.3342	0.3230	0.3320	
Movie	NDCG@3	0.4262	0.4761	0.5416	0.5728	0.4990	0.4618	0.5441	0.5564	0.5912	0.5827	0.5785	
	MRR@3	0.3667	0.4103	0.4824	0.5071	0.4363	0.3998	0.4763	0.4950	0.5260	0.5162	0.5167	
	Compliance Rate	-	-	99.96%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	99.98%	99.80%	
Dool	NDCG@1	0.2000	0.2440	0.2420	0.2847	0.2000	0.2325	0.2887	0.2440	0.2823	0.3061	0.3126	
DOOK	NDCG@3	0.4262	0.4999	0.4889	0.5298	0.4290	0.4585	0.5293	0.4597	0.5075	0.5350	0.5395	
	MRR@3	0.3667	0.4340	0.4247	0.4646	0.3690	0.3993	0.4665	0.4040	0.4495	0.4774	0.4800	
	Compliance Rate	-	-	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	99.96%	99.80%	
Music	NDCG@1	0.2000	0.1780	0.2354	0.2397	0.2300	0.2377	0.2690	0.2540	0.2892	0.3077	0.3086	
wiusic	NDCG@3	0.4262	0.4094	0.4623	0.4681	0.4277	0.4732	0.5072	0.4506	0.5201	0.5439	0.5567	
	MRR@3	0.3667	0.3470	0.4030	0.4082	0.3750	0.4113	0.4448	0.4000	0.4605	0.4830	0.4950	
15 	Compliance Rate	-	-	99.80%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	99.60%	
Nowe	NDCG@1	0.2000	0.3080	0.2183	0.2200	0.2920	0.2532	0.2630	0.2540	0.2591	0.2491	0.2892	
TICW S	NDCG@3	0.4262	0.5444	0.4483	0.4550	0.5059	0.4880	0.4892	0.4742	0.4826	0.4991	0.5094	
	MRR@3	0.3667	0.4840	0.3879	0.3936	0.4497	0.4271	0.4294	0.4173	0.4246	0.4354	0.4515	

With Fine-tuning or Without Fine-tuning

- Without fine-tuning, LLM cannot easily solve RS problems
 - RS is a highly specialized area that requires collaborative knowledge, which LLM did not learn during the pre-training stage [1]
 - Collaborative knowledge such as user behavior data is highy dynamic
- RS practitioners do not have an existential crisis as NLP community
 - Many NLP problems can be easily addressed by LLM
- RS is still an open problem and will evolve with LLM

Role of LLM in Recommendation

- LLM as RS
 - E.g., P5 and ChatGPT-based recommenders
- LLM in RS as a component

Image credit to [1]

Image credit to [2]

<u>ITGERS</u> LLM as Feature Encoder

- LLM is grounded to recommendation space by generating tokens for items
- Then these tokens are grounded to actual items in the actual item space

Image credit to [2]

Image credit to [1]

[1] Bao, Keqin, et al. "A bi-step grounding paradigm for large language models in recommendation systems." arXiv preprint arXiv:2308.08434 (2023).
 [2] Wu, Likang, et al. "A Survey on Large Language Models for Recommendation." arXiv preprint arXiv:2305.19860 (2023).

LLM as Feature Encoder

ΓGERS

- Instruct LLM to generate search queries
- Then a searching algorithm is applied to retrieve items based on the queries

LLM as Scoring Function

GERS

- Instruct LLM to generate a binary score (like or dislike) for each item
 - Discriminative as traditional recommenders

[1] Bao, Keqin, et al. "Tallrec: An effective and efficient tuning framework to align large language model with recommendation." arXiv preprint arXiv:2305.00447 (2023).

LLM as Ranking Function

TGERS

Chain of thought

selection

Preferred item

Recommendation

1

2.

3.

Provide LLM with candidates from another RS for re-ranking

Image credit to NIR [1]

Image credit to PALR [2]

[1] Wang, Lei, and Ee-Peng Lim. "Zero-Shot Next-Item Recommendation using Large Pretrained Language Models." arXiv preprint arXiv:2304.03153 (2023). [2] Chen, Zheng. "PALR: Personalization Aware LLMs for Recommendation." Gen-IR@SIGIR 2023: The First Workshop on Generative Information Retrieval (2023).

FGERS LLM as Ranking Function

- LLM takes candidates from a Recall model for re-ranking
 - Design prompts for different recommendation settings

Instantiation Model Instructions

- $\langle P_1, I_0, T_0 \rangle$ The user has purchased these items: https://www.endowedimensionless.com. Based on this information, is it likely that the user will interact with target items next?
- $\langle P_2, I_0, T_3 \rangle$ You are a search engine and you meet a user's query: <explicit preference>. Please respond to this user by selecting items from the candidates: <candidate items>.
- $\langle P_0, I_1, T_2 \rangle$ As a recommender system, your task is to recommend an item that is related to the user's vague intention. Please provide your recommendation.
- $\langle P_0, I_2, T_2 \rangle$ Suppose you are a search engine, now the user search that <specific Intention>, can you generate the item to respond to user's query?
- $\langle P_1, P_2, T_2 \rangle$ Here is the historical interactions of a user: <a href="https://www.estimateractions-comm
- $\langle P_1, I_1, T_2 \rangle$ The user has interacted with the following <historical interactions>. Now the user search for <vague intention>, please generate products that match his intent.
- $\langle P_1, I_2, T_2 \rangle$ The user has recently purchased the following <historical items>. The user has expressed a desire for <specific intention>. Please provide recommendations.

LLM as Pipeline Controller

- Break each task into several planning steps
 - Thought, action and observation

GERS

- Control personalized memory and world knowledge
- Perform specific tasks with tools, e.g., task-specific models

[1] Wang, Yancheng, et al. "RecMind: Large Language Model Powered Agent For Recommendation." *arXiv preprint arXiv:2308.14296* (2023).

Recommendation Tasks

- Rating Prediction
- Sequential Recommendation
- Top-N Recommendation
- Explanation Generation
- Review Summarization
- Review Generation
- Conversational Recommendation

Conversational Recommendation

- LLM as the whole conversational recommender
 - T: Task description
 - F: Format requirement
 - S: Conversational context

Image credit to [1]

[2] Cui, Zeyu, et al. "M6-rec: Generative pretrained language models are open-ended recommender systems." arXiv preprint arXiv:2205.08084 (2022).

Conversational Recommendation

- LLM as dialogue manager that merges various types of info
 - Recommendations (from another model)
 - Dialogue history


```
Q1: Could you recommend some action movies
to me?

Determine1: Use RecSys? Yes

Execute 1: Recommendate Action Movies →

Inputs: (history interaction, user profile, action

movie)

Intermediate Answer A1:

Top-20 results (...)
```

Determine 2: Use RecSys? No Execute 2: Rerank and adjust Top-k results \rightarrow Inputs: (history interaction, user profile, Intermediate Answer A₁: top-20 results) Outputs A₁: Top-5 results (...)

Q2: Why did you recommend the "Fargo" to me? **Determine1:** Use RecSys? **No Execute 1:** Explanation for recommendation→ Inputs: ("Fargo", history interaction, user profile)

Explanation(I recommend "Fargo" because it ...)

Conversational Recommendation

- Multiple LLMs play separate roles
 - Dialogue Manager
 - Ranking Function
 - User Simulator

Dialogue Manager

Conversation Context

Example:

Evaluation Protocols

- Recommendation
 - RMSE and MAE for rating prediction
 - NDCG, Precision and Recall for top-N and sequential recommendation
 - Online A/B test
- Generation

GERS

- BLEU and ROUGE for text similarity
 - Overly stress the matching between generation and ground-truth [1]
 - Advanced metrics are needed
- Human Evaluation

Trustworthy LLMs for Recommendation

Trustworthy LLM4RS

- Hallucination (item ID indexing)
- Fairness

TGERS

- Transparency
- Robustness
- Controllability
- etc.

Generate recommendations

所募 旅福

Hallucination: Item Generation

ERS

- LLM-based Generative Recommendation Paradigm
 - We want to directly generate the recommended item
 - Avoid one-by-one ranking score calculation
- However, item descriptions can be very long
 - e.g., product description: >100 words
 - e.g., news article: >1,000 words

Hallucination: Item Generation

- Generating long text is difficult, especially for recommendation
 - Hallucination problem
 - Generated text does not correspond to a real existing item in database
 - Calculating similarity between generated text and item text?
 - Goes back to one-by-one similarity calculation for ranking!
- Item ID: A short sequence of tokens for an item
 - Easy generation, and can be indexed!
- Item ID can take various forms
 - A sequence of numerical tokens <73><91><26>
 - A sequence of word tokens <the><lord><of><the><rings>

RUTGERS Why Item IDs can eliminate hallucination?

With item indices consisting of a limited vocabulary and known structure, we can constrain the beam search over limited allowed tokens for every generation step.

Thus, hallucination will be eliminated.

picture credited to: Li, Lei, et al. "Large Language Models for Generative Recommendation: A Survey and Visionary Discussions." arXiv preprint arXiv:2309.01157 (2023).

How to Index Items?

GERS

- Item ID: item needs to be represented as a sequence of tokens
 - e.g., an item represented by two tokens <73> <91>

	<t1></t1>	<t2></t2>	<t3></t3>	<t4></t4>	<t5></t5>	<t6></t6>	<t7></t7>	<t8></t8>	<t9></t9>	<t10></t10>	<t11></t11>	<t12></t12>	<t13></t13>	<t14></t14>	<t15></t15>	<t16></t16>	5.0	
	t	t	t	†	t	t	t	t	t	t	t	t	t	t	t	t	1	1
		Bidirectional Text Encoder												Autoregressi	ve Text Decoder			
	1	1	1	1	1	1		1	1	<u>†</u>	<u>†</u>	<u>†</u>	<u>†</u>	1	Î	1	t	t
Token Emb.	what	star	rating	do	you	think	user	-	23	will	give	item	_	73	91	?	<5>	5.0
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		0.0
Position Emb.	<p1></p1>	<p2></p2>	<p3></p3>	<p4></p4>	<p5></p5>	<p6></p6>	<p7></p7>	<p8></p8>	<p9></p9>	<p10></p10>	<p11></p11>	<p12></p12>	<p13></p13>	<p14></p14>	<mark><p15></p15></mark>	<p16></p16>		
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Whole-word Emb.	<w1></w1>	<w2></w2>	<w3></w3>	<w4></w4>	<w5></w5>	<w6></w6>		<w7></w7>		<w8></w8>	<w9></w9>		<w:< td=""><td>10></td><td></td><td><w11></w11></td><td></td><td></td></w:<>	10>		<w11></w11>		

• Different item indexing gives very different performance

How to Index Items (create Item IDs)

- Three properties for good item indexing methods
 - Items are distinguishable (different items have different IDs)
 - Similar items have similar IDs (more shared tokens in their IDs)
 - Dissimilar items have dissimilar IDs (less shared tokens in their IDs)
- Three naïve Indexing methods
 - Random ID (RID): Item (73)(91), item (73)(12), ...
 - Title as ID (TID): Item (the) (lord) (of) (the) (rings), ...
 - Independent ID (IID): Item (1364), Item (6321), ...

Method		Amazo	on Sport	S		Amazo	n Beaut	y	Yelp				
	HR@5	NCDG@5	HR@10	NCDG@10	HR@5	NCDG@5	HR@10	NCDG@10	HR@5	NCDG@5	HR@10	NCDG@10	
SASRec	0.0233	0.0154	0.0350	0.0192	0.0387	0.0249	0.0605	0.0318	0.0170	0.0110	0.0284	0.0147	
S ³ -Rec	$\underbrace{0.0251}_{\ldots}$	0.0161	$\underbrace{0.0385}_{\ldots}$	0.0204	0.0387	0.0244	0.0647	$\underbrace{0.0327}_{\ldots}$	0.0201	0.0123	$\underbrace{0.0341}_{\ldots$	0.0168	
RID	0.0208	0.0122	0.0288	0.0153	0.0213	0.0178	0.0479	0.0277	0.0225	0.0159	0.0329	0.0193	
TID	0.0000	0.0000	0.0000	0.0000	0.0182	0.0132	0.0432	0.0254	0.0058	0.0040	0.0086	0.0049	
IID	0.0268	0.0151	0.0386	$\underbrace{0.0195}_{}$	0.0394	0.0268	$\underbrace{0.0615}_{\ldots}$	0.0341	0.0232	$\underbrace{0.0146}_{\ldots}$	0.0393	0.0197	

How to Index Items (create Item IDs)

- Three naïve Indexing methods
 - Random ID (RID): Item <73><91>, item <73><29>, ...
 - Very different items may share the same tokens
 - Mistakenly making them semantically similar
 - Title as ID (TID): Item <the><lord><of><the><rings>
 - Very different movies may share similar titles
 - Inside Out (animation) and Inside Job (documentary)
 - The Lord of the Rings (epic fantasy) and The Lord of War (crime drama)
 - Independent ID (IID): Item <1364>, Item <6321>, ...
 - Too many out-of-vocabulary (OOV) new tokens need to learn
 - Computationally unscalable

RUTGERS Meticulous Item Indexing Methods are Needed

LLM4RS

Title-based indexing

According to what places user_1 has visited : The Great Greek, Sal's Pizza, Las Vegas Cigar Outlet, Weiss Restaurant Deli Bakery, Can you recommend another place to the user?

Random indexing

According to what places user_1 has visited : location_1123, location_4332, location_8463, location_12312, Can you recommend another place to the user?

Independent indexing

According to what places user_1 has visited : location_<IID1>, location_<IID2>, location_<IID3>, location_<IID4>, Can you recommend another place to the user?

Sequential indexing

According to what places user_1 has visited : location_1001, location_1002, location_1003, location_1004, Can you recommend another place to the user?

Semantic indexing

According to what places user_1 has visited : location_<restaurant><Greek><2>, location_<restaurant><American><FaseFood><10>, Can you recommend another place to the user?

Collaborative indexing

According to what places user_1 has visited : location_<cluster1><subcluster2><1>, location_<cluster1><subcluster5><3>, Can you recommend another place to the user?

location 1934 location_<IID5> location 1439 location <shopping> <cigarettes><10> location <cluster2> <subcluster1><1>

Las Vegas Cigar Outlet

Sequential Indexing (SID)

GERS

• Leverage the local co-appearance information between items

		Validation	Testing									
User 1	1001	1002	1003	1004	1005	1006	1007	1008	1009		1018	1019
User 2	1010	1011	1001	1012	1008	1009	1013	1014			1022	1023
User 3	1015	1016	1017	1007	1018	1019	1020	1021	1009		1015	1016
User 4	1022	1023	1005	1002	1006	1024					1002	1008
User 5	1025	1026	1027	1028	1029	1030	1024	1020	1021	1031	1033	1034

- After tokenization, co-appearing items share similar tokens
 - Item 1004: <100><4>
 - Item 1005: <100><5>

Collaborative Indexing (CID)

GERS

- Leverage the global co-appearance information between items
 - Spectral Matrix Factorization over the item-item co-appearance matrix

6

• Hierarchical Spectral Clustering

(a) Recursive spectral clustering on item co-appearance graph

4 5 6 ... 3 5 6 2 0 3 2 0 0 0 ... 2 -3 6 -2 0 3 0 2 0 0 1 ... 3 2 0 1 0 0 ... -2 -2 6 -1 0 0 1 0 4 0 ... 4 0 0 1 0 0 0 4 0 1 ... 5 0 0 0 -4 5 -1 ... 1 0 0 1 0 ... 6 0 1 0 0 -1 2

(b) Adjacency matrix

(c) Laplacian matrix

· HONG TOPE APTIST

Collaborative Indexing (CID)

GERS

- Leverage the global co-appearance information between items
 - Root-to-Leaf Path-based Indexing
 - Items in the same cluster share more tokens

Semantic (Content-based) Indexing (SemID)

- Leverage the item content information for item indexing
 - e.g., the multi-level item category information in Amazon

Hybrid Indexing (HID)

- Concatenate more than one of the following indices
 - Random ID (RID)
 - Title as ID (TID)

GERS

- Independent ID (IID)
- Sequential ID (SID)
- Collaborative ID (CID)
- Semantic ID (SemID)
- For example, if an item's Semantic ID and Collaborative ID are as follows:
 - SemID: (Makeup)(Lips)(Lip_Liners)(5)
 - CID: (1)(9)(5)(4)
- Then its Hybrid ID is (Makeup)(Lips)(Lip_Liners)(1)(9)(5)(4)

TGERS Different Item Indexing Gives Different Performance

	Method		Amazo	on Sport	:S		Amazo	n Beaut	y		Yelp				
	Methou	HR@5	NCDG@5	HR@10	NCDG@10	HR@5	NCDG@5	HR@10	NCDG@10	HR@5	NCDG@5	HR@10	NCDG@10		
	Caser	0.0116	0.0072	0.0194	0.0097	0.0205	0.0131	0.0347	0.0176	0.015	0.0099	0.0263	0.0134		
	HGN	0.0189	0.0120	0.0313	0.0159	0.0325	0.0206	0.0512	0.0266	0.0186	0.0115	0.0326	0.159		
	GRU4Rec	0.0129	0.0086	0.0204	0.0110	0.0164	0.0099	0.0283	0.0137	0.0176	0.0110	0.0285	0.0145		
	BERT4Rec	0.0115	0.0075	0.0191	0.0099	0.0203	0.0124	0.0347	0.0170	0.0051	0.0033	0.0090	0.0090		
	FDSA	0.0182	0.0122	0.0288	0.0156	0.0267	0.0163	0.0407	0.0208	0.0158	0.0098	0.0276	0.0136		
	SASRec	0.0233	0.0154	0.0350	0.0192	0.0387	0.0249	0.0605	0.0318	0.0170	0.0110	0.0284	0.0147		
	S ³ -Rec	0.0251	0.0161	0.0385	0.0204	0.0387	0.0244	0.0647	0.0327	0.0201	0.0123	0.0341	0.0168		
Naïvo indoving	RID	0.0208	0.0122	0.0288	0.0153	0.0213	0.0178	0.0479	0.0277	<u>0.0225</u>	<u>0.0159</u>	<u>0.0329</u>	<u>0.0193</u>		
	TID	0.000	0.000	0.000	0.000	0.0182	0.0132	0.0432	0.0254	0.0058	0.0040	0.0086	0.0049		
methods	IID	0.0268	0.0151	<u>0.0386</u>	0.0195	<u>0.0394</u>	<u>0.0268</u>	0.0615	<u>0.0341</u>	0.0232	<u>0.0146</u>	<u>0.0393</u>	<u>0.0197</u>		
Advanced indexing	SID	<u>0.0264</u>	<u>0.0186</u>	0.0358	<u>0.0216</u>	<u>0.0430</u>	0.0288	0.0602	<u>0.0368</u>	0.0346	0.0242	0.0486	0.0287		
Auvanceu muexing	CID	0.0313	0.0224	0.0431	0.0262	0.0489	<u>0.0318</u>	<u>0.0680</u>	0.0357	0.0261	0.0171	0.0428	0.0225		
methods	SemID	0.0274	<u>0.0193</u>	0.0406	0.0235	<u>0.0433</u>	<u>0.0299</u>	<u>0.0652</u>	<u>0.0370</u>	<u>0.0202</u>	<u>0.0131</u>	<u>0.0324</u>	<u>0.0170</u>		
	SID+IID	0.0235	0.0161	0.0339	0.0195	0.0420	0.0297	0.0603	0.0355	0.0329	0.0236	0.0465	0.0280		
Hybrid indexing	CID+IID	0.0321	0.0227	0.0456	0.0270	0.0512	0.0356	0.0732	0.0427	0.0287	0.0195	0.0468	0.0254		
methods	SemID+IID	0.0291	0.0196	0.0436	0.0242	0.0501	0.0344	0.0724	0.0411	0.0229	0.0150	0.0382	0.0199		
	SemID+CID	0.0043	0.0031	0.0070	0.0039	0.0355	0.0248	0.0545	0.0310	0.0021	0.0016	0.0056	0.0029		

- Advanced indexing methods are better than naïve methods
- Some hybrid indexing can further improve performance
RUTGERS

Fairness of LLM for Recommendation

- 1. Fairness of general LLM on critical domains (education, criminology, finance and healthcare) [1]
- 2. User-side fairness: UP5 [2], FaiRLLM benchmark [3]
- 3. Item-side fairness: popularity bias [4]

[1] Li, Yunqi, et al. "Fairness of ChatGPT." arXiv preprint arXiv:2305.18569 (2023).

- [2] Hua, Wenyue, et al. "UP5: Unbiased Foundation Model for Fairness-aware Recommendation." arXiv preprint arXiv:2305.12090 (2023).
- [3] Zhang, Jizhi, et al. "Is chatgpt fair for recommendation? evaluating fairness in large language model recommendation." arXiv preprint arXiv:2305.07609 (2023).
- [4] Hou, Yupeng, et al. "Large language models are zero-shot rankers for recommender systems." *arXiv preprint arXiv:2305.08845* (2023).

Fairness of General LLM

- Fairness of ChatGPT on four critical domains [1]
 - Education, Criminology, Finance and Healthcare
 - Four Datasets

GERS

- PISA (education), COMPAS (criminology)
- German Credit (finance), Heart Disease (healthcare)
- Five Fairness Evaluation Dimensions
 - Statistical Parity
 - Equal Opportunity
 - Equalized Odds
 - Overall Accuracy Equality
 - Counterfactual Fairness
- Main Observation
 - ChatGPT is fairer than small models such as regression and MLP classifier, though ChatGPT still has unfairness issues

Users want to be treated fairly, independent on their sensitive user features.

Are pretrained LLM4RS fair on recommending items?

[1] Li, Yunqi, et al. "Towards personalized fairness based on causal notion." *Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.* 75 2021.

RUTGERS

How to make sure recommendations are fair?

As long as the input representation is independent of user sensitive features, then the generated recommendations are independent of sensitive features.

The AUC scores on various user features show that the user sensitive features are incorporated in the input representations, leading to unfair recommendation.

JTGERS Fairness Prompts for LLM

Encoder prompt

For each feature k, the adversarial loss is:
$$L_k = \sum_u L_{rec}^k - \lambda_k \cdot L_{dis}^k$$

Single-feature fairness results

JTGERS

Dataset	MovieLens							Insurance										
Attribute	ite Gender		Gender Age O		Occ	Occupation		Age		Marital		Occupation						
Model	C-PMF	C-SX	CFP	C-PMF	C-SX	CFP	C-PMF	C-SX	CFP	C-PMF	C-SX	CFP	C-PMF	C-SX	CFP	C-PMF	C-SX	CFP
↑ Hit@1	16.73	13.96	16.38	17.42	13.87	21.22	15.60	14.06	21.00	67.61	71.14	82.53	66.68	71.50	81.03	68.51	71.09	82.53
↑Hit@3	34.03	29.56	35.04	34.20	29.61	39.22	34.36	29.56	38.50	73.25	83.23	92.68	74.23	83.00	90.58	74.09	82.23	92.68
↑Hit@5	46.72	40.05	47.33	46.72	39.25	48.85	46.80	39.82	49.35	78.86	86.50	96.44	76.57	86.12	94.76	76.48	88.00	96.44
↑ Hit@10	65.32	56.02	65.82	65.18	55.42	67.30	65.33	56.02	69.49	85.98	92.65	98.89	85.99	96.50	97.66	85.95	93.27	98.89
↓ AUC	56.62	70.80	54.19	62.55	79.26	52.91	56.01	57.02	50.00	50.81	51.26	50.09	52.10	56.23	52.19	54.40	52.09	53.28

Results of single-attribute fairness-aware prompting on matching-based models (%)

Dataset	MovieLens								Insurance										
Attribute Gender		•		Age		Oc	cupati	on		Age		N	Iarita	l	Oc	cupati	ation		
Model	S-SAS	S-B4	CFP	S-SAS	S-B4	CFP	S-SAS	S-B4	CFP	S-SAS	S-B4	CFP	S-SAS	S-B4	CFP	S-SAS	S-B4	CFP	
↑ Hit@1	20.87	23.48	26.82	22.95	27.98	31.23	18.90	24.33	31.66	69.40	81.20	82.08	70.10	75.33	80.63	70.09	81.20	82.62	
↑Hit@3	41.64	42.09	45.18	44.10	49.32	51.18	20.84	43.29	50.73	80.05	93.33	92.62	80.38	84.54	90.16	80.38	93.33	92.65	
↑Hit@5	49.65	55.77	53.46	54.99	56.56	58.91	29.57	51.02	58.26	84.48	97.50	96.12	85.02	90.02	94.33	84.39	97.50	95.81	
↑ Hit@10	60.82	62.43	64.38	66.00	69.38	67.70	43.87	59.74	67.45	88.34	98.78	98.37	88.49	94.34	98.38	88.91	98.78	98.54	
\downarrow AUC	59.72	58.33	54.19	60.20	67.33	52.91	67.27	60.36	50.00	57.48	53.34	51.23	66.51	69.11	50.03	86.66	54.30	50.82	

Results of single-attribute fairness-aware prompting on sequential models (%)

RUTGERS Fairness on multiple features

Users may require recommendation fairness on multiple features. Do we retrain a fairness prompt on each feature combination?

80

ITGERS Prompt Mixture

Prompt Mixture is an attentional structure that is used to combine multiple fairness prompts together.

UTGERS Fairness on multiple features

Model	GA			GO			AO			GAO		
Attribute	C-PMF	C-SX	CFP									
↑ Hit@1	14.93	15.61	16.33	15.25	15.53	18.67	14.84	15.43	21.37	15.09	15.67	20.18
↑ Hit@3	32.11	31.79	37.48	32.70	31.84	39.02	31.83	31.87	39.83	32.58	31.85	38.79
↑ Hit@5	43.28	42.33	47.86	43.39	42.41	48.94	42.36	42.47	49.53	43.58	42.54	48.50
↑ Hit@10	60.51	58.82	66.89	60.58	58.78	66.39	59.51	58.71	68.40	60.75	58.87	66.78
\downarrow Avg. AUC	58.03	70.25	54.22	56.57	60.90	52.10	56.57	64.41	50.00	56.54	65.19	53.21

Table 5: Results of multi-attribute fairness-aware prompting on MovieLens dataset (%)

Model	AO			AM				MO		AMO		
Attribute	C-PMF	C-SX	CFP	C-PMF	C-SX	CFP	C-PMF	C-SX	CFP	C-PMF	C-SX	CFP
↑ Hit@1	63.68	71.58	79.00	62.27	71.23	80.91	62.44	71.11	78.30	64.38	72.30	81.63
↑ Hit@3	70.55	80.50	89.22	69.78	79.18	90.97	69.39	81.22	88.45	70.11	81.78	91.52
↑ Hit@5	75.00	85.14	93.65	74.33	84.50	95.23	74.58	85.43	93.44	74.84	84.58	95.37
↑ Hit@10	84.88	93.61	97.66	83.85	93.22	98.73	84.88	93.52	97.33	85.90	93.35	97.37
\downarrow Avg. AUC	58.38	55.98	50.80	55.60	59.97	50.79	57.86	59.79	50.64	57.44	58.43	50.74

Table 6: Results of multi-attribute fairness-aware prompting on Insurance dataset (%)

GERS User-side Fairness Benchmark: FaiRLLM

GERS Unfairness on ChatGPT for recommendation system

X-axis: number of recommended items

Y-axis: similarity score compared with neutral instruction recommendation result

Conclusion: ChatGPT is not user-side fair

RUTGERS

Item-side Fairness on LLM4RS: popularity bias

X-axis: position of the ranked item lists.

Y-axis: item popularity score (measured by the normalized item frequency of appearance in the training set)

Conclusion: Popular items tend to be ranked at higher positions.

Item-side Fairness on LLM4RS: popularity bias

X-axis: the number of historical interactions decreases in prompt

Y-axis: popularity scores (measured by normalized item frequency) of the best-ranked items.

Conclusion: the number of interactions in prompt decreases, the popularity score decreases along

Trustworthy LLM4RS

- Hallucination (item ID indexing)
- Fairness

TGERS

- Transparency
- Robustness
- Controllability
- etc.

CUTGERS Transparency

87

Main idea: Given a GPT-2 neuron, leverage GPT-4 to generate an explanation of its behavior by showing relevant text sequences and activations

Show neuron activations to GPT-4:

The Avengers to the big screen, Joss Whedon has returned to reunite Marvel's gang of superheroes for their toughest challenge yet. Avengers: Age of Ultron pits the titular heroes against a sentient artificial intelligence, and smart money says that it could soar at the box office to be the highest-grossing film of the

introduction into the Marvel cinematic universe, it's possible, though Marvel Studios boss Kevin Feige told Entertainment Weekly that, "Tony is earthbound and facing earthbound villains. You will not find magic power rings firing ice and flame beams." Spoilsport! But he does hint that they have some use... STARK T

, which means this Nightwing movie is probably not about the guy who used to own that suit. So, unless new director Matt Reeves' The Batman is going to dig into some of this backstory or introduce the Dick Grayson character in his movie, the Nightwing movie is going to have a lot of work to do explaining

of Avengers who weren't in the movie and also Thor try to fight the infinitely powerful Magic Space Fire Bird. It ends up being completely pointless, an embarrassing loss, and I'm pretty sure Thor accidentally destroys a planet. That's right. In an effort to save Earth, one of the heroes inadvertantly blows up an

GPT-4 gives an explanation, guessing that the neuron is activating on

references to movies, characters, and entertainment.

Robustness

GERS

Robustness evaluation of different foundation models

Its show that ChatGPT shows consistent advantage on adversarial and OOD tasks. However, its absolute performance is far from perfection, indicating much room for improvement.

Controllability

GERS

Controllable text generation: user can denote the style, content, or specific

[1] Zhang, Hanqing, et al. "A survey of controllable text generation using transformer-based pre-trained language models." ACM Computing Surveys (2022).

A Hands-on Demo of LLM-RecSys Development based on OpenP5

RUTGERS OpenP5

- An open-source platform for LLM-based Recommendation development, finetuning, and evaluation
- OpenP5 is a general framework for LLM-based recommendation model development based on P5 paradigm [1].
- Support different backbone LLMs, such as T5, LLaMA.
- GitHub Link: https://github.com/agiresearch/OpenP5/tree/main

RUTGERS OpenP5

OpenP5 Public		⊙ Watch 3
ి main 👻 ి 2 branches 🚫 0 tags		Go to file Add file - <> Code -
🐈 shuyuan-x Update README.md		5baa917 now 🕲 35 commits
data/Beauty	rewrite openp5 framework	4 days ago
log/Beauty	rewrite openp5 framework	4 days ago
src src	rewrite openp5 framework	4 days ago
	Initial commit	5 months ago
OpenP5_more_results.pdf	upload more results	3 months ago
🗋 README.md	Update README.md	now
🗋 environment.txt	Create environment.txt	4 months ago
🗋 prompt.txt	update code and command	3 months ago

 \equiv README.md

OpenP5: An open-source platform for LLM-based Recommendation development, finetuning, and evaluation

Introduction

This repo presents OpenP5, an open-source platform for LLM-based Recommendation development, finetuning, and evaluation.

Ø

- Popular datasets: 10 popular datasets, from Amazon, Yelp, Movielens.
- Item indexing [1]: Random, Sequential, Collaborative
- Downstream tasks: Sequential, Straightforward
- Backbone LLMs: T5, LLaMA
- Training acceleration: Distributed Learning, LoRA

RUTGERS A Hand-on Demo

RUTGERS

Custom LLM-based Recommendation

- Apply new data: only require user-item interactions
- Apply new prompt template: add your prompt files
- Apply new backbone LLMs: import other backbone models pretrained from transformers

Summary and Future Vision

UTGERS The Future of Generative Recommendation

- Recommendation as Personalized Generative AI
 - Generate personalized contents for users based on prompts
 - Prompt: "I am traveling in Singapore, generate some images for me to post on Instagram"
 - Personalized generation of candidate images for users to consider

RUTGERS

The Future of Generative Recommendation

- Recommendation as Personalized Generative Advertisement
 - Personalized Advertisement Generation
 - Same ad, different wording, real-time generation given user's context
 - e.g., an environmental protection ad for an NGO

For Children:

Join us in protecting our planet. Let's work together to make the world a better place for ourselves and for future generations. For Business Leaders:

Join the movement towards sustainability and create a brighter future for your business and our planet. By adopting environmentally-friendly practices, you can reduce your costs, attract new customers, and enhance your reputation as a responsible business leader. 98

ITGERS Summary

- Large Language Model for Recommendation take aways
 - From Discriminative Recommendation to Generative Recommendation
 - From Multi-stage Ranking to Single-stage Ranking
 - From Single-task learning to Multi-task learning
 - From Single-modality modeling to Multi-modality modeling
- Key Topics
 - Large Language Model based Recommendation Models and Evaluation
 - Trustworthy Large Language Model for Recommendation
 - Hands on tutorials of LLM-based recommendation model development

TORS Special Issue Call for Papers

GERS

- Topic: Large Language Models for Recommender Systems
- Submission deadline: December 15, 2023
- First-round review decisions: March 15, 2024
- Deadline for revision submissions: May 15, 2024
- Notification of final decisions: July 15, 2024

