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Backgrounds 
Ø Recommender Systems 

Ø Playing an important role on the web 
Ø E-Commerce and Review Services, e.g. Amazon and Yelp 

Ø Collaborative Filtering 
Ø The ability to recommend without clear content information 
Ø Have achieved significant success  

Ø Rating Prediction 
Ø Make rating predictions on user-item  
   rating matrix based on observed ratings 
Ø One of the core tasks of CF 
Ø Widely investigated 
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Backgrounds 
Ø The use of user-item communities 

Ø Benefits the efficiency and effect in many cases 

Ø Matrix Clustering 
Ø Extract user-item sub-matrices (clusters) 
Ø Conduct Collaborative Filtering on each sub-matrices 

Ø Some existing popular approaches 
Ø User / Item Clustering [Corner & Herlocker, SIGIR’99] 
Ø Co-Clustering [George & Merugu, ICDM’05] 
Ø User-Item Subgroups Mining [Xu & Bu et al, WWW’12] 

Ø Our Concerns 
Ø Clusters may not be a ‘natural’ representation of communities 
Ø Usually forces a user/item to be in a single cluster 
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Observations 
Ø Common Interests and Special Interests 

Ø Common Interests: Items favored by users from different communities 
Ø Special Interests: items favored by some specific groups of users 
Ø Common Interests can be shared by different user groups 

Ø e.g. The hot movies 
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the BBDF structure 
Ø Bordered Block Diagonal Form (BBDF) structure 

Ø The Intuition 
Ø Row Borders: Super Users 
Ø Column Borders: Super Items, e.g. hot movies 
Ø Diagonal Blocks: User-Item Communities 
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BBDF and GPVS 
Ø Graph Partitioning by Vertex Separator (GPVS[Karypis,2011]) 
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the ABBDF structure 
Ø An underlying assumption in BBDF structure. 

Ø There is no edge between communities. 

Ø May not be a reasonable assumption 
Ø User might indeed focus on some domains 
Ø They do step into other domains sometimes 
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the ABBDF structure 
Ø Approximate Bordered Block Diagonal Form (ABBDF) 

 
Ø A special form of ABBDF structure 

                                          * The ABBDF structure without border 
                                          * Can be achieved with Graph Partitioning 
                                             by Edge Separator (GPES) algorithms 
                                          * Remove some edges (non-zeros in off- 
                                             diagonal areas) and split the graph 
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(A)BBDF and Community Detection 
Ø More general conclusions 

Ø Any Community Detection result on a bipartite graph 
can be represented as an ABBDF structure 
Ø Not only GPVS or GPES algorithms 

Ø Corollary: Can be represented as an BBDF structure if 
there is no inter-community edge. 
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Algorithms 
Ø How to permute matrices into (A)BBDF structures? 
 
Ø BBDF Permutation Algorithm 

Ø Algorithm1, Basic-BBDF-Permutation procedure 
Ø Algorithm2, BBDF-Permutation procedure 

Ø ABBDF Permutation Algorithm 
Ø Algorithm3, ABBDF-Permutation procedure 
Ø Algorithm4, Improve-Density procedure 
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BBDF permutation algorithm 
Ø The basic procedure for BBDF permutation 
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BBDF permutation algorithm (cont.) 
Ø BBDF Permutation algorithm 

Ø Permute sub-matrices into BBDF structure recursively 
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The expected minimum 
average density of 

diagonal blocks 

If the density of a sub-
matrix has not reached 
the requirement, split it 

using the basic 
procedure 

If the average density 
improves after split, take 

the split and recurse. 
Else, stop recursion. 



ABBDF permutation algorithm 
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Split the corresponding 
graph using GPES, 

resulting in a ABBDF 
matrix without borders. 

If the average density of 
diagonal blocks didn’t 

improve, try to improve it 
by moving some rows/

columns to borders. 



ABBDF permutation algorithm(cont.) 
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For each row and column from 
each diagonal block, check 

whether its removal improves 
average density 

Permute the row/column to 
borders whose removal 

improves average density most 

Until average density is higher 
than the original matrix 



Make Rating Predictions 
Ø Extract sub-matrices representing communities from 

the (A)BBDF structure 
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Make Rating Predictions (cont.) 
Ø Make rating predictions in 2 steps: 

Ø Step1 : Conduct CF in each of the sub-matrices 

Ø Step2: Average predictions in duplicated blocks 
Ø E.g. S2x is predicted twice in sub-matrices A and B 

11/4/13 Improve Collaborative Filtering through Bordered Block Diagonal Form Matrices 17 



Experiment Setup 
Ø Dataset Description 

Ø 4 real-world datasets: MovieLens-100k, MovieLens-1m, 
Dianping, and Yahoo! Music. 
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Experiment Setup (cont.) 
Ø Experimented the framework on 4 CF algorithms 

Ø User-based 
Ø Item-based 
Ø SVD  (Singular Value Decomposition) 
Ø NMF (Nonnegative Matrix Factorization) 

Ø Evaluation Metric 
Ø Root Mean Square Error (RMSE) 
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Community Analysis 
Ø Density requirement v.s. # diagonal blocks 

Ø Low density -> A small number of big communities 
Ø High density -> A large number of small communities 

Ø Example of BBDF permutation results on DianPing 
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Community Analysis (cont.) 
Ø An appropriate density requirement gives reasonable 

community detection results. 
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Community Analysis (cont.) 
Ø Density requirement v.s. # diagonal blocks 
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BBDF: # Diagonal 
Blocks grows at 

first and tends to be 
stable at last 

ABBDF: # Diagonal 
Blocks grows 

consistently with 
the growth of 

density requirement 



Community Analysis (cont.) 
Ø Similar results are observed on the other datasets 
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Prediction Accuracy 
Ø BBDF: RMSE v.s. Density Requirements 
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Gains better prediction 
accuracy given 

appropriate density 
requirement 

Prediction accuracy 
tends to be stable (the 
BBDF algorithm stop 
to split matrices when 
density requirement is 

too high.) 



Prediction Accuracy (cont.) 
Ø ABBDF: RMSE v.s. Density Requirements 
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But the performance 
tends to drop rapidly 
given high density 

requirements. 

Tends to gain better 
prediction accuracy at first 

The algorithm leads to 
many small scattered 

communities 



Prediction Accuracy (cont.) 
Ø Similar results were observed on the other datasets 
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Discussions 
Ø Potential advantage: Selective re-training in practical 

systems 
Ø Ratings are made by users continuously in real-world systems 
Ø Have to retrain a CF model every period of time  
Ø Only need to retrain those really in need of re-training 

Ø E.g. The RMSE has reached a criterion 
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Wrap up 
Ø In this work: 

Ø Investigated the relationship between  (A)BBDF structure and 
community detection 

Ø Designed density-based algorithms to transform a matrix into 
(A)BBDF structure 

Ø Proposed a framework to make rating predictions on this 
structure 

Ø Future directions 
Ø (A)BBDF structure is independent of specific community 

detection algorithm 
Ø Investigate other kinds of (A)BBDF permutation algorithms 

except for GPVS and GPES 
Ø Conduct selective re-training using our framework 
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Thanks! 


