Improve Collaborative Filtering through Bordered Block Diagonal Form Matrices

Yongfeng Zhang, Min Zhang, Yiqun Liu, Shaoping Ma Dept. CS, Tsinghua University, China

Outline

Backgrounds

- Our Approach
- > Experiments
- Discussions
- ➤ Conclusions

Backgrounds

Recommender Systems

- Playing an important role on the web
- E-Commerce and Review Services, e.g. Amazon and Yelp

Collaborative Filtering

- The ability to recommend without clear content information
- Have achieved significant success

Rating Prediction

- Make rating predictions on user-item rating matrix based on observed ratings
- One of the core tasks of CF
- Widely investigated

Backgrounds

The use of user-item communities

Benefits the efficiency and effect in many cases

Matrix Clustering

- Extract user-item sub-matrices (clusters)
- Conduct Collaborative Filtering on each sub-matrices

Some existing popular approaches

- User / Item Clustering [Corner & Herlocker, SIGIR'99]
- ➤ Co-Clustering [George & Merugu, ICDM'05]
- User-Item Subgroups Mining [Xu & Bu et al, WWW'12]

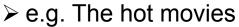
Our Concerns

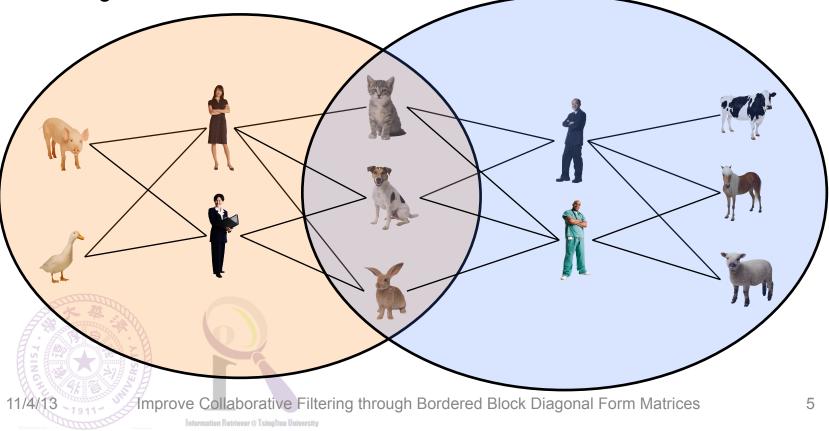
Clusters may not be a 'natural' representation of communities
 Usually forces a user/item to be in a single cluster
 Improve Collaborative Filtering through Bordered Block Diagonal Form Matrices

Observations

Common Interests and Special Interests

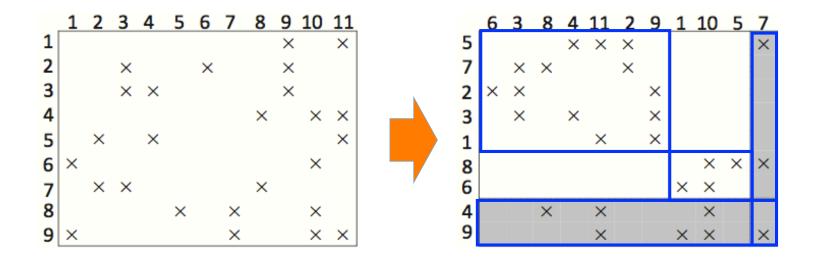
- Common Interests: Items favored by users from different communities
- > Special Interests: items favored by some specific groups of users
- Common Interests can be shared by different user groups





the BBDF structure

Bordered Block Diagonal Form (BBDF) structure



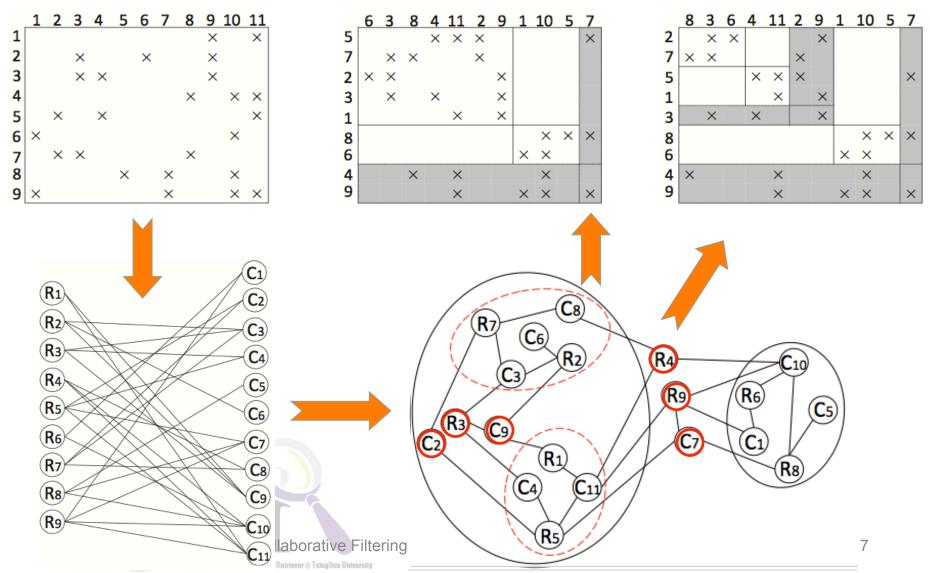
The Intuition

- ➢ Row Borders: Super Users
- Column Borders: Super Items, e.g. hot movies
- Diagonal Blocks: User-Item Communities

Improve Collaborative Filtering through Bordered Block Diagonal Form Matrices

BBDF and **GPVS**

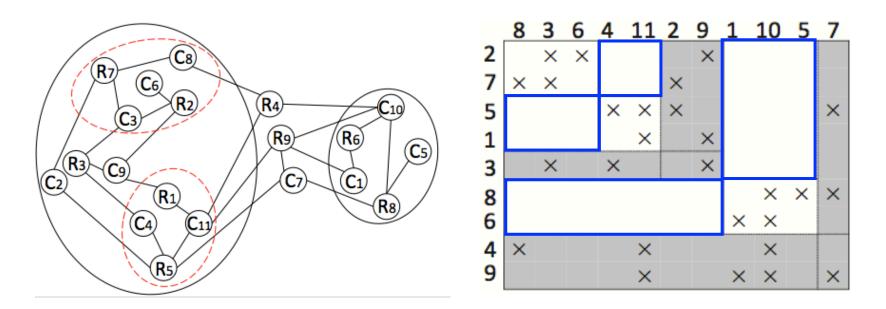
Graph Partitioning by Vertex Separator (GPVS[Karypis,2011])



the ABBDF structure

> An underlying assumption in BBDF structure.

> There is no edge between communities.



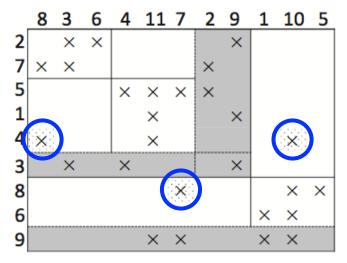
May not be a reasonable assumption
 User might indeed focus on some domains
 They do step into other domains sometimes

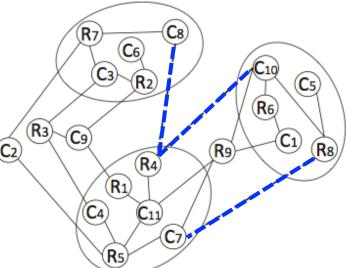
11/4/13

Improve Collaborative Filtering through Bordered Block Diagonal Form Matrices

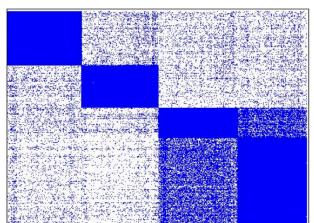
the ABBDF structure

Approximate Bordered Block Diagonal Form (ABBDF)





A special form of ABBDF structure



11/4/13

- * The ABBDF structure without border
- * Can be achieved with Graph Partitioning by Edge Separator (GPES) algorithms
- * Remove some edges (non-zeros in offdiagonal areas) and split the graph

(A)BBDF and Community Detection

More general conclusions

 Any Community Detection result on a bipartite graph can be represented as an ABBDF structure
 Not only GPVS or GPES algorithms

Corollary: Can be represented as an BBDF structure if there is no inter-community edge.

Algorithms

How to permute matrices into (A)BBDF structures?

BBDF Permutation Algorithm

Algorithm1, Basic-BBDF-Permutation procedure

> Algorithm2, BBDF-Permutation procedure

ABBDF Permutation Algorithm

- > Algorithm3, ABBDF-Permutation procedure
- Algorithm4, Improve-Density procedure

BBDF permutation algorithm

The basic procedure for BBDF permutation

Algorithm 1 Basic-BBDF-Permutation(A, \mathcal{G})

Require:

User-Item rating matrix A.

Bipartite graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}) = (\mathcal{R} \cup \mathcal{C}, \mathcal{E})$ of $A. \triangleright \mathcal{R}/\mathcal{C}$

are row/column vertex sets of \mathcal{V} correspondingly.

Ensure:

11/4/13

Average density of resulting diagonal blocks $\bar{\rho}$.

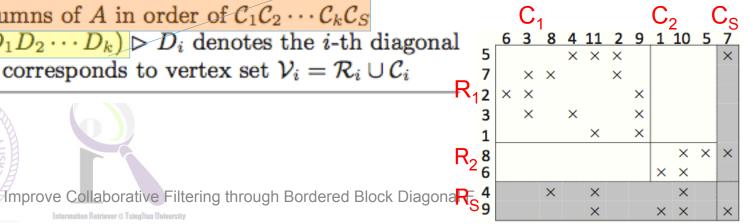
Information Retriever @ Tsinghua University

- 1: $\Gamma_v \leftarrow \{\mathcal{V}_1 \mathcal{V}_2 \cdots \mathcal{V}_k; \mathcal{V}_S\} \leftarrow \text{GPVS}(\mathcal{G})$
- 2: Permute rows of A in order of $\mathcal{R}_1 \mathcal{R}_2 \cdots \mathcal{R}_k \mathcal{R}_S$
- **3**: Permute columns of A in order of $C_1 C_2 \cdots C_k C_S$
- 4: return $\bar{\rho}(D_1 D_2 \cdots D_k) \triangleright D_i$ denotes the *i*-th diagonal block which corresponds to vertex set $\mathcal{V}_i = \mathcal{R}_i \cup \mathcal{C}_i$

Remove a set of vertices V_s and split the graph into k connected components.

Remove the vertex set $V_{\rm S}$ to borders and permute the reaming to diagonals

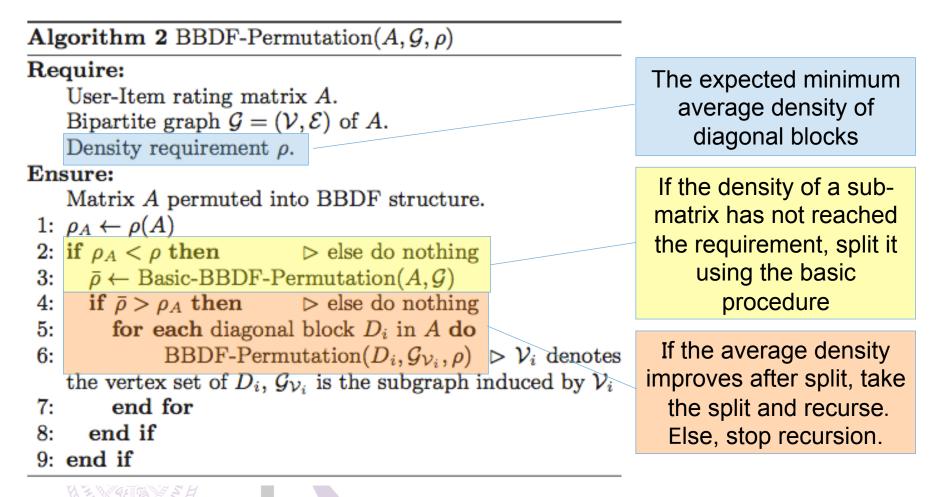
Return the average density of resulting diagonal blocks in this stage



BBDF permutation algorithm (cont.)

BBDF Permutation algorithm

Permute sub-matrices into BBDF structure recursively



ABBDF permutation algorithm

Algorithm 3 ABBDF-Permutation (A, \mathcal{G}, ρ)

Require:

User-Item rating matrix A.

Bipartite graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}) = (\mathcal{R} \cup \mathcal{C}, \mathcal{E})$ of A.

Density requirement ρ .

Ensure:

Matrix A permuted into ABBDF structure.

- 1: if $\rho(A) \ge \rho$ then
- 2: return

3: else

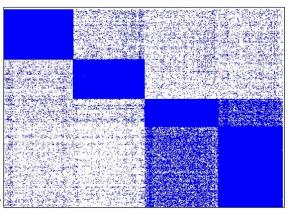
4: $\Gamma_e \leftarrow \{\mathcal{V}_1 \mathcal{V}_2 \cdots \mathcal{V}_k\} \leftarrow \text{GPES}(\mathcal{G})$

- 5: Permute rows of A in order of $\mathcal{R}_1 \mathcal{R}_2 \cdots \mathcal{R}_k$
- 6: Permute columns of A in order of $C_1 C_2 \cdots C_k$
- 7: $\{\mathcal{V}'_1\mathcal{V}'_2\cdots\mathcal{V}'_k;\mathcal{V}'_S\} \leftarrow \text{Improve-Density}(A,\mathcal{G},\Gamma_e)$
- 8: for each diagonal block D_i in A do
- 9: ABBDF-Permutation $(D_i, \mathcal{G}_{\mathcal{V}'_i}, \rho)$
- 10: end for
- 11: end if

13 - 79 11 - Improve Collaborative Filtering through Bordered Block Diagonal Form Matrices

Split the corresponding graph using GPES, resulting in a ABBDF matrix without borders.

If the average density of diagonal blocks didn't improve, try to improve it by moving some rows/ columns to borders.



ABBDF permutation algorithm(cont.)

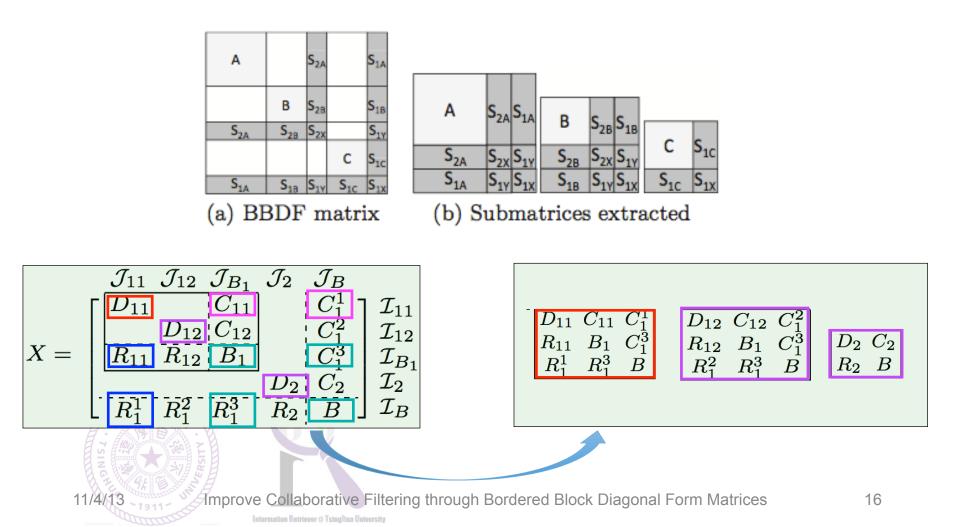
Algorithm 4 Improve-Density $(A, \mathcal{G}, \Gamma_e)$

Require:

User-Item rating matrix A. For each row and column from Bipartite graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}) = (\mathcal{R} \cup \mathcal{C}, \mathcal{E})$ of A. GPES result $\Gamma_e = \{\mathcal{V}_1 \mathcal{V}_2 \cdots \mathcal{V}_k\}$ of \mathcal{G} . each diagonal block, check Ensure: whether its removal improves Average density of diagonal blocks greater than $\rho(A)$. average density 1: $\{\mathcal{V}'_1\mathcal{V}'_2\cdots\mathcal{V}'_k;\mathcal{V}'_S\} \leftarrow \{\mathcal{V}_1\mathcal{V}_2\cdots\mathcal{V}_k;\emptyset\}$ 2: while $\bar{\rho}(D_1 D_2 \cdots D_k) < \rho(A)$ do $l', i' \leftarrow 0, \bar{\rho}' \leftarrow 0$ 3: Permute the row/column to for each diagonal block D_i do 4: borders whose removal for each line l in D_i do 5: improves average density most $\bar{\rho} \leftarrow \frac{\sum_{j=1}^{k} \mathbf{n}(D_j) - \mathbf{n}(l(D_i))}{\sum_{j=1}^{k} \operatorname{area}(D_j) - \operatorname{area}(l(D_i))}$ 6: if $\bar{\rho} > \bar{\rho}'$ then 7: $l' \leftarrow l, i' \leftarrow i, \bar{\rho}' \leftarrow \bar{\rho}$ 8: Until average density is higher end if 9: than the original matrix end for 10: 11: end for Permute line l' to borders 12:13: $\mathcal{V}'_{i'} \leftarrow \mathcal{V}'_{i'} - \{\operatorname{node}(l')\}$ 14: $\mathcal{V}'_{S} \leftarrow \mathcal{V}'_{S} \cup \{ \text{node}(l') \} \triangleright \text{node}(l') \text{ denotes the node in }$ $\mathcal{V}'_{i'}$ corresponding to line l'15: end while 16: return $\{\mathcal{V}'_1\mathcal{V}'_2\cdots\mathcal{V}'_k;\mathcal{V}'_S\}$

Make Rating Predictions

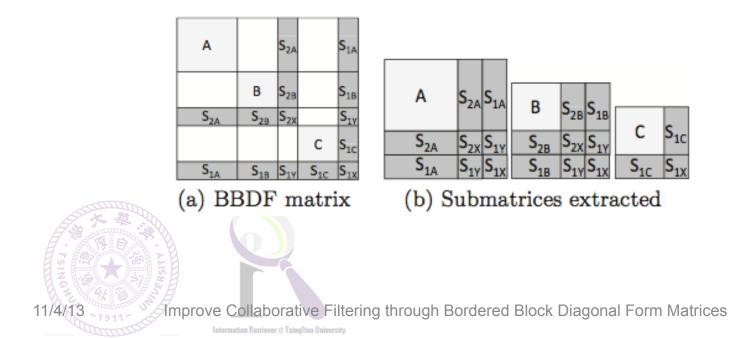
Extract sub-matrices representing communities from the (A)BBDF structure



Make Rating Predictions (cont.)

> Make rating predictions in 2 steps:

- Step1 : Conduct CF in each of the sub-matrices
- Step2: Average predictions in duplicated blocks
 E.g. S_{2x} is predicted twice in sub-matrices A and B

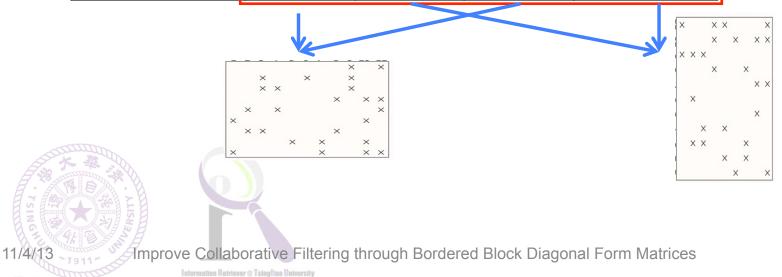


Experiment Setup

Dataset Description

4 real-world datasets: MovieLens-100k, MovieLens-1m, Dianping, and Yahoo! Music.

		3.67 - 13.6	D . D .	
	ML-100K	ML-1M	DianPing	Yahoo!Music
#users	943	6,040	11,857	1,000,990
#items	1,682	3,952	22,365	624,961
#ratings	100,000	1,000,209	$510,\!551$	$256,\!804,\!235$
#ratings/user	106.045	165.598	43.059	256.550
#ratings/item	59.453	253.089	22.828	410.912
average density	0.0630	0.0419	0.00193	0.000411



18

Experiment Setup (cont.)

Experimented the framework on 4 CF algorithms

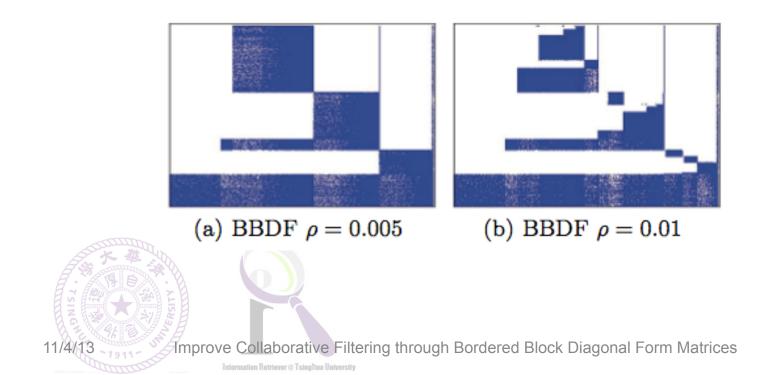
- ➤ User-based
- ➤ Item-based
- SVD (Singular Value Decomposition)
- ➤ NMF (Nonnegative Matrix Factorization)
- Evaluation Metric
 - ➢ Root Mean Square Error (RMSE)

$$\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{N} (r_i - \hat{r}_i)^2}{N}}$$

Community Analysis

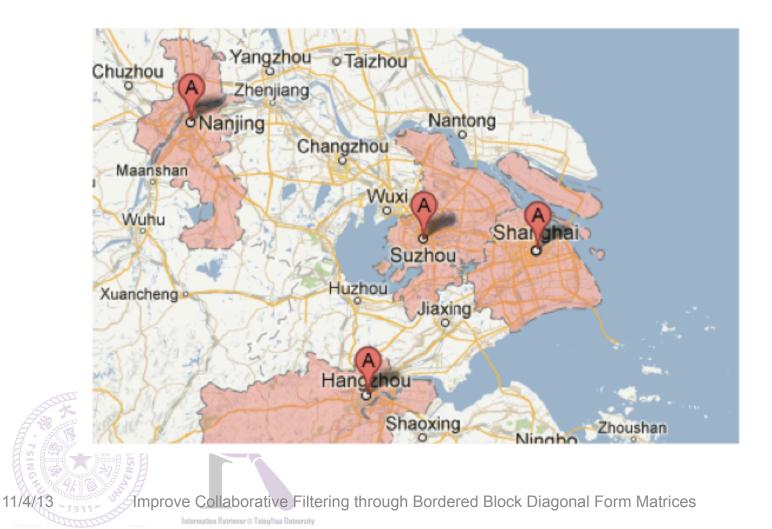
Density requirement v.s. # diagonal blocks
 Low density -> A small number of big communities
 High density -> A large number of small communities

Example of BBDF permutation results on DianPing



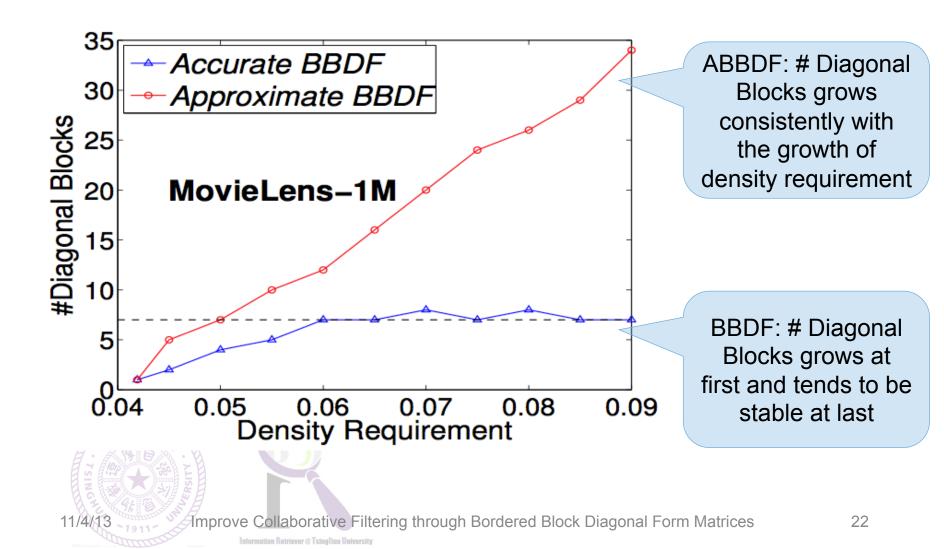
Community Analysis (cont.)

An appropriate density requirement gives reasonable community detection results.



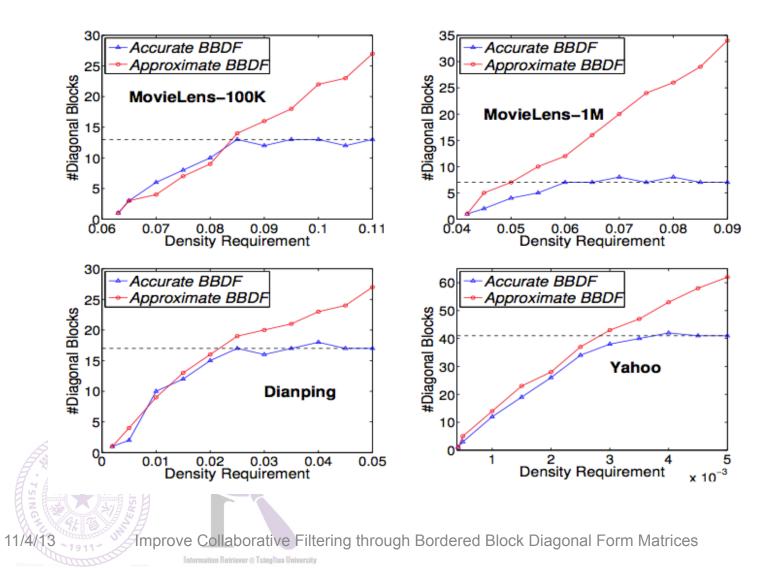
Community Analysis (cont.)

> Density requirement v.s. # diagonal blocks



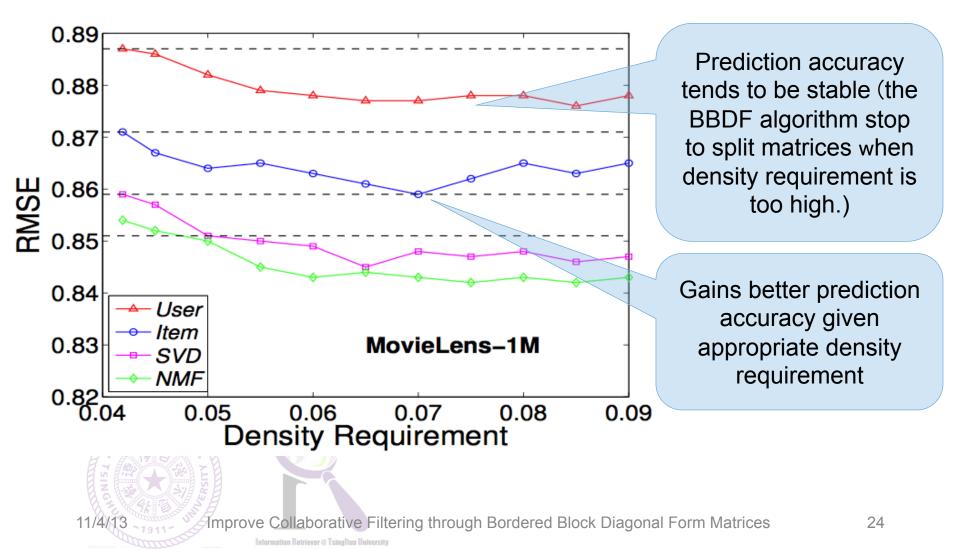
Community Analysis (cont.)

Similar results are observed on the other datasets



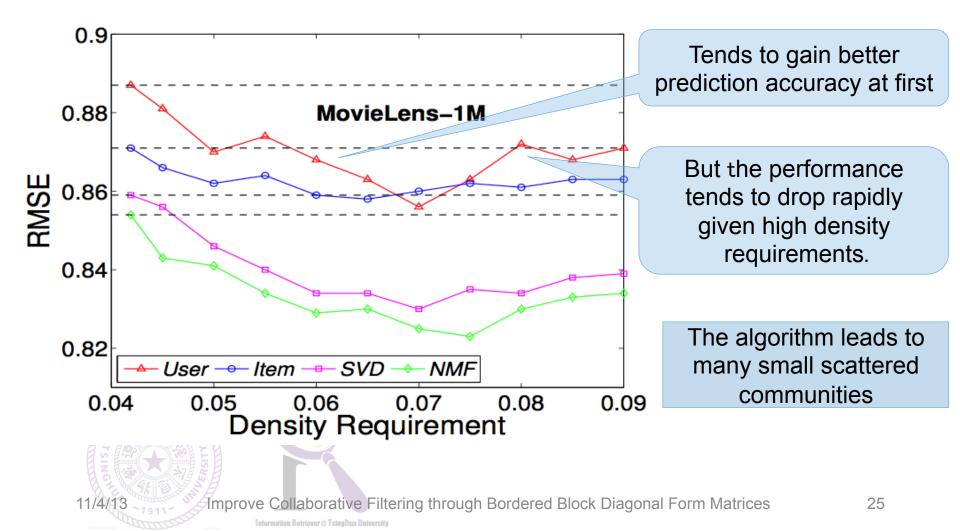
Prediction Accuracy

> BBDF: RMSE v.s. Density Requirements



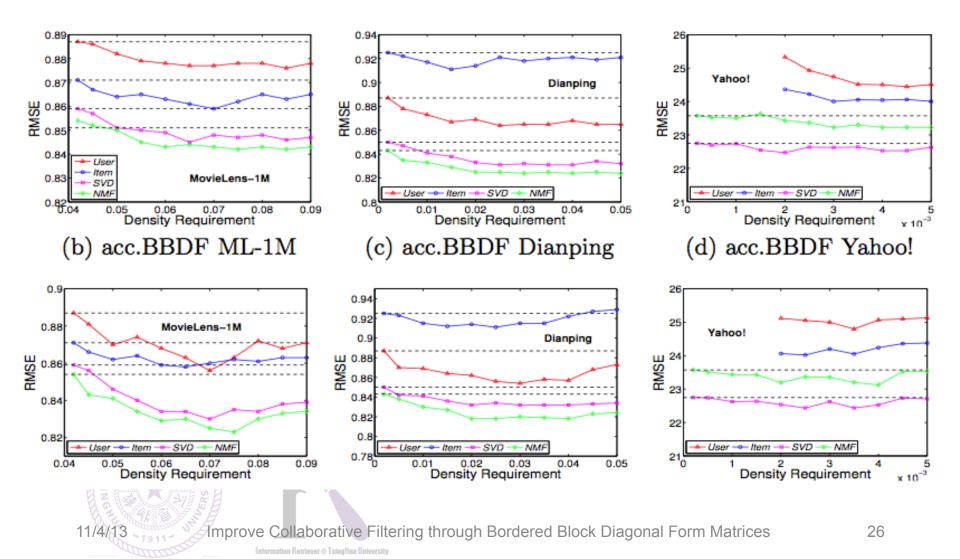
Prediction Accuracy (cont.)

> ABBDF: RMSE v.s. Density Requirements



Prediction Accuracy (cont.)

Similar results were observed on the other datasets

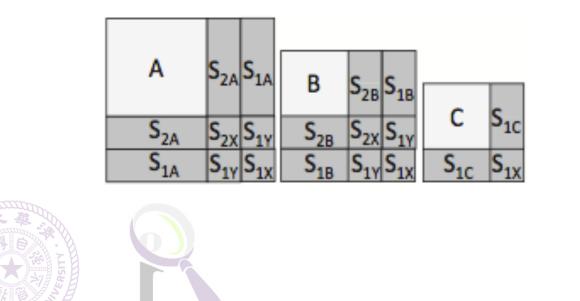


Discussions

Potential advantage: Selective re-training in practical systems

- Ratings are made by users continuously in real-world systems
- Have to retrain a CF model every period of time
- Only need to retrain those really in need of re-training

➢ E.g. The RMSE has reached a criterion



Information Retriever @ Tsinghua University

Wrap up

\succ In this work:

- Investigated the relationship between (A)BBDF structure and community detection
- Designed density-based algorithms to transform a matrix into (A)BBDF structure
- Proposed a framework to make rating predictions on this structure

Future directions

- (A)BBDF structure is independent of specific community detection algorithm
 - Investigate other kinds of (A)BBDF permutation algorithms except for GPVS and GPES

Conduct selective re-training using our framework

Thanks!

