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Abstract. Local matrix factorization (LMF) methods have been shown to yield
competitive performance in rating prediction. The main idea is to leverage the
ensemble of submatrices for better low-rank approximation. However, the gen-
erated submatrices and recommendation results in the existing methods are usu-
ally hard to interpret. To address this issue, we adopt a probabilistic approach to
enhance model interpretability of LMF methods by leveraging user reviews. In
specific, we incorporate item-topics to construct meaningful “local clusters”, and
further associate them with opinionated word-topics to explain the correspond-
ing semantics and sentiments of users’ ratings. The proposed approach is a joint
model which characterizes both ratings and review text. Extensive experiments
on real-world datasets demonstrate the effectiveness of our proposed model com-
pared with several state-of-art methods. More importantly, the produced results
provide meaningful explanations to understand users’ ratings and sentiments.

1 Introduction

Recently, local matrix factorization (LMF) has attracted increasing attention [10, 4,
19] in recommender system community. LMF methods have been shown to give bet-
ter performance than traditional matrix factorization (MF) techniques [9, 16] in rating
prediction. Typically, LMF methods identify subgroups of users and items, and con-
struct multiple submatrices based on the original user-item rating matrix. They apply
traditional MF methods to each submatrix individually, and combine the results from
submatrices as the final prediction. Such an approach aims to enhance the low-rank
property of submatrices and improve parallel processing.

So far, existing LMF methods mainly focus on how to “look for” subgroups us-
ing the proximity criterion, including random dividing [13], kernel smoothing [10] and
Bregman co-clustering [6]. An important aspect has been usually ignored, i.e., model
interpretability. Due to this, several queries cannot be well answered by previous stud-
ies, including why such subgroups are formed, what are the semantics of each subgroup,
how a user in a subgroup rates and comments. In addition to performance, these prob-
lems are fundamental to understand users’ rating behaviors and explain recommen-
dation results. It is important to consider these factors in order to design an effective
recommender.

To address this issue, we propose a novel explainable probabilistic LMF model
by leveraging user reviews. The key to explainable LMF is how to derive explainable
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subgroups. Inspired by [19], we adopt topic modeling to characterize items clusters as
item-topics, and further assign users to these item-topics “softly” (i.e., in a probabilistic
way). An item-topic is essentially a multinomial distribution over the set of items and
tends to cluster items with similar functions or categories, which is relatively easy to in-
terpret. For each item-topic, we set topic-specific latent factors for both users and items.
In this way, we can better understand users’ rating behaviors with the help of topical
contexts. Such a formulation partially provides the semantics of subgroups, however,
it is still unable to explain why a user gives a high or low rating to an item. Our solu-
tion is to further leverage review information to further enhance the interpretability of
prediction results. In specific, we incorporate opinionated word-topics like that in topic
models [3] to characterize the semantics and sentiments reflected in review text. In our
model, an item-topic is associated with a unique distribution over word-topics in each
sentiment level, and the generation of review text is based on both item-topic and sen-
timent level. The incorporation of opinionated word-topics can improve the learning of
item-topics, since review text is likely to contain relevant aspect words. In addition, we
can identify the most associated words to explain the opinion polarity of user ratings.

To evaluate the performance of the proposed model, we conduct extensive experi-
ments on real-world datasets. The experimental results indicate the effectiveness of our
model. Especially, it has been shown to give better explainability for the learned models
and prediction results. The main contribution of this work is to incorporate item-topics
to construct meaningful subgroups, and associate them with opinionated word-topics
mined from review text to explain the corresponding semantics and ,sentiments for
users ratings. By using topic-specific latent factors, our model yields competitive per-
formance while the learned item- and word-topics give good interpretability. To our
knowledge, it is the first time that word-topics discovered in the review text have been
utilized to explain LMF methods.

2 Related Work

Local matrix factorization. Recently, local matrix factorization (LMF) has received
much attention [10, 26, 25, 4, 13], which aim to enhance the low-rank property and par-
allel processing. Typically, these methods split the original matrix into smaller subma-
trices, and then apply traditional MF technqiues [9, 16] on submatrices individually. The
final predictions are generated by combing the predictions from submatrices. In spe-
cific, the DFC model [13] randomly divided the original matrix into small subgroups;
the kernel smoothing method was used to find nearest neighbors [10]; the Bregman
co-clustering method was exploited to split the original matrix [4]. The most recent
study [19] adopted a probabilistic approach to generating “soft” clusters, however, it
cannot model review text.

Review-based recommendation. Review information has been shown to improve the
performance of rating prediction [14, 8, 12, 7, 1, 23, 22, 11]. The major benefits gained
from review information can be summarized in two aspects. First, the user-item rating
matrix is sparse, and the auxiliary textual information is able to alleviate this issue to
some extent [21]. More importantly, textual contents in user reviews can provide ex-
plainable information for users’ ratings [14, 20, 24, 5]. The HFT model [14] directly
transformed the latent factors in MF side into the topic distributions. By aligning la-
tent factors with topics, the produced results help understand users’ ratings. The PACO
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model [20] designed a poisson additive co-clustering model to build interpretable rec-
ommendation system. The EFM model [24] extracted product features and users’ cor-
responding sentiments on them, and further used them to explain user ratings.

Our work is closely related to these studies, and makes a meaningful connection
between LMF and explainable MF methods. Although the superiority of LMF methods
in rating prediction has been shown, the explainability has seldom been well addressed.
Hence, the semantics of each subgroup were not clear and users’ rating behaviors can-
not be well understood. As a comparison, we propose to use item-topics to explain
subgroups and opinionated word-topics from review text to explain the ratings and sen-
timents.

Table 1. Notations and descriptions.

Notations Descriptions
N,M number of rows (users) and columns (items)
K1,K2 the number of item- and word-topics respectively
D the number of dimensions for latent vectors

u, i, c, k index variables respectively for users and items, item- and word-topics
p
(c)
u , q(c)i the latent vector (∈ RD) respectively for user u and item i w.r.t. the item-

topic c
ru,i/wu,i the rating and review text of user u on item i
yu,i item-topic assignment associated with ru,i
zu,i,j word-topic assignment for the j-th word inwi,j

ψk word distribution in word-topic k
θc word-topic distribution of item-topic c
ϕc item distribution in item-topic c
φu item-topic distribution of user u

λ0,λP ,λQ priors of latent factors
β/β

′
, α/α′ priors of the word/item-topics and distributions over word/item-topics

respectively

3 Probabilistic Local Matrix Factorization based on User Review

In this section, we present the proposed probabilistic local matrix factorization. To
make more clear presentation, we first list the notations used throughout the paper in
Table 1.

3.1 The Proposed Model

As indicated in [19], lack of interpretability has been one major issue for previous
LMF methods [10, 13]. These models cannot answer two typical queries well: (1) what
are the semantics for the generated submatrices, and (2) why a user likes or dislikes an
item. In our model, we aim to solve the above issues by considering two aspects. First,
we adopt a probabilistic topic modeling approach to learn “soft” subgroup of the items,
and each item-topic together with the associated ratings can be considered as a local
(i.e., topic-specific) view of the entire user-item rating matrix. Second, we incorporate
opinionated word-topics to enhance the learning of item-topics, and describe how a user



4

comment on an item with some sentiment. The final model integrates both aspects (i.e.,
ratings and review).

Modeling local subgroups with probabilistic topic models. The key step for LMF
methods lies in that how to generate subgroups of users and items, which will further
form a corresponding submatrix. We first adopt item-topics to model item subgroups.
Formally, an item-topic c is a multinomial distribution over the set of all the items,
denoted by ϕc. Each entry ϕci denotes the probability of item i in item-topic c. Further,
we model a user u’s interests by a multinomial distribution over item-topics denoted by
φu. Each entry φuc denotes the probability that a user is likely to rate an item in item-
topic c. The interest distribution can be considered as users’ membership over item
subgroups, which forms probabilistic user subgroups. Next, we study how to generate
a rating triplet 〈u, i, ru,i〉. In LMF methods, each user (or item) will be associated with
a unique latent factor in different submatrices. In our case, an item-topic corresponds
to a local submatrix. Following [19], we propose to use topic-specific latent factors.
For each item-topic c, we set a corresponding latent factor pcu (qci ) for user u (item i).
When a user u starts to rate an item i, she first draw a topic assignment yu,i according
to φu, and then generates item i using ϕc like that in LDA [3]. Once the item-topic
assignment has been sampled, following PMF [16, 19], the rating ru,i is generated by
using a topic-specific Gaussian distribution

N(rui|(p
yu,i
u )> · (qyu,i

i ), σ2
yu,i

), (1)

where σ2
yu,i

is the variance corresponding to topic yu,i.

Modeling user reviews to explain the item subgroups. Above, a subgroup of items is
modeled as an item-topic, which is a soft clustering of the items. These item-topics pro-
vide important topical contexts to explain rating predictions using topic-specific latent
factors. However, the item-topics mainly reflect co-occurrence patterns based on users’
rating history, and they cannot capture the sentiment level of a user towards an item, i.e.,
why a user gives a high rating or a low rating. Intuitively, the opinion polarity of a user
review tends to be more positive if her rating is higher, and the generation of review text
is closely related to the sentiment levels of a user on an item. Let O = {1, ..., l, ..., L}
be a set of L sentiment labels, in which each label l denotes a sentiment level and a
higher level indicates a more positive polarity. Our key idea lies in that the generation
of a review text should be based on both item-topic and sentiment level. Formally, we
assume that there are a set ofK2 word-topics. Each word-topic k is modeled as a multi-
nomial distribution over the terms in the vocabulary, denoted by ψk. We assume that an
item-topic c will correspond to an opinionated distribution over word-topics for each
sentiment level l, denoted by θc,l. Each entry θc,lk denotes the probability of word-topic
k for item-topic c with sentiment label l. Let wu,i denote a vector of words in the re-
view associated with the rating record 〈u, i, ru,i〉. For each word token wu,i,j ∈ wu,i,
we first draw a word-topic assignment zu,i,j according to θzu,i,lu,i , where zu,i and lu,i
correspond to the item-topic and sentiment label respectively for 〈u, i, ru,i〉. Then we
generate word wu,i,j according to the word-topic ψzu,i,j . Our generation process in-
volves the sentiment label for a user review. There can be several ways to set the sen-
timent labels. Here we adopt a simple yet effective method: we consider two sentiment
levels (i.e., positive and negative) and set it based on the corresponding rating score. In
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a five-star rating system, the sentiment label of a user review is set to positive, if the
rating score is higher than three stars, otherwise it will be set to negative.

The final model. Our final model combines the above two parts: it characterizes user
ratings by probabilistic LMF and models user reviews to explain the item subgroups
learned in LMF. We implement a full Bayesian formulation for this model. In specific,
for each item-topic c, we put priors on topic-specific latent factors pcu and qci , denoted
by λc

P ,λ
c
Q,λ

c
0 as in BPMF [17]; we also put priors on variables ϕc, φu, ψk and θc,

denoted by α, α′, β, β′ respectively. We refer to the proposed model as ELMF (Ex-
plainable LMF). The generation process and complete plate notation for our model
have been shown in Fig. 1 and 2 respectively. In our model, the item-topic yu,i is not
only used to generate the items, but associated with distributions over word-topics to
generate review text. The incorporation of review text is able to improve the coherence
of item subgroups (i.e., topics), and also enhance the semantic explainability of user
ratings. When generating review text, the sentiment label of a review also plays an im-
portant role. As indicated [18], when a user is praising or criticizing an item, the word
topics she selects are likely to be different. Based on this consideration, the generation
of review text is based on both item-topic and sentiment level.

1. For each item-topic c = 1, ...,K1, draw a multinomial distribution over all the items ϕc ∼
Dir(β

′
);

2. For each word-topic k = 1, ...,K2, draw a multinomial distribution over all the words ψk ∼
Dir(β);

3. For item-topic c = 1,...,K1,
i. Draw the hyperparameters of the user and item latent vectors P (λc

P |λc
0) and

P (λc
Q|λc

0)
ii. For each item i = 1, ...,M , draw the topic-specific item latent vector qci ∼ P (qci |λc

Q);
iii. For each user u = 1, ..., N , draw the topic-specific item latent vector pc

u ∼ P (pc
u|λc

P );
iv. For each sentiment label l = 1, ..., L, draw a multinomial distribution over all the word-

topics θc,l ∼ Dir(α);
3. For each user u = 1, ..., N ,

i. Draw a multinomial distribution over all the item-topics φu ∼ Dir(α′);
ii. For each rated item i by u,

(1) Draw an item-topic yu,i ∼ Disc(φu);
(2) Draw the item i ∼ Disc(ϕyu,i);
(3) Draw the rating ru,i ∼ N(ru,i|(p

yu,i
u )> · (qyu,i

i ), σ2
yu,i

);
(4) Set the sentiment label lu,i based on ru,i;
(5) For each word token wu,i,j inwu,i,

· Draw a word-topic zu,i,j ∼ Disc(θyu,i,lu,i);
· Draw the word wu,i,j ∼ Disc(ψzu,i,j ).

Fig. 1. The generative process of the ELMF model.

Insights into the model interpretability of ELMF. The model interpretability of ELMF
has been reflected in two aspects. First, it tries to look for more meaningful subgroups of
items and users in a probabilistic way. We achieve this by capturing item co-occurrence
patterns in rating history. The derived item-topics can be meaningful with similar func-



6

Fig. 2. The plate notation for our ELMF model.

tions or categories. For each item-topic, we set topic-specific latent factors for both users
and items. In this way, we can better understand users’ rating preference with the help
of topical contexts. Second, an item-topic is associated with different word-topics in
different sentiment labels. We incorporate textual contexts as opinionated word-topics
to explain why a user likes or dislikes an item. The combination of these two aspects
yields a better model explainability and meanwhile keeps the performance superiority
of LMF methods.

3.2 Model Learning

We would like to learn the following parameters or variables: {θ, ψ, φ, ϕ,p, q} by
fixing the hyper-parameters. We aim to maximize the joint likelihood of observed rat-
ings and review text. The problem is hard to directly optimize, and we adopt a col-
lapsed Gibbs sampling method for solving it. Our learning tasks involve two major
parts, inferring word- and item-topic assignments {y, z} and optimizing the latent fac-
tors {p, q}. Once the topic assignments {y, z} have been obtained, the distribution
parameters {θ, ψ, φ, ϕ} can be then estimated based on the word- and item-topic as-
signments. Let r,m,w, l,y and z be the vectors for ratings, items, words, sentiment
labels, item-topic assignments and word-topic assignments respectively. Next we give
the Gibbs sampling formula for topic assignments and the update formula for latent
factors. For convenience, let Ψ denote all the hyper-parameters.

Sampling item-topics. Fixing all latent factors {p, q}, the item-topic assignment for
the rating triplet 〈u, i, ru,c〉 can be drawn according to:

P (yu,i = c|r,m,w, l,y¬(u,i),z,p, q;Ψ) (2)

∝ nu
c + α′∑K1

c′=1 n
u
c′ + α′

× nc
i + β′∑M

i′=1 n
c
i′ + β′

×N(ru,i|pc
u, q

c
i , σ

2
c )× ∆(nc,lu,i + nu,i +α)

∆(nc,lu,i +α)
,

where nuc denotes the number of the rated items by user u assigned to item-topic c, nci
denotes the number that item i is assigned to item-topic c, nc,lu,i is a V -dimensional
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(vocabulary size) count vector in which nc,lu,i
w denotes the number of word w attached

to items in item-topic c with sentiment label lu,i, nu,i is a V -dimensional count vector
in which nu,iw denotes the number of word w appearing the review associated with
rating ru,i, and α is a V -dimensional vector of equal value α. All the count statistics
are computed by excluding the information associated with 〈u, i, ru,i〉. We define the

∆(x) function as ∆(x) =
ΠV

w=1Γ (xw)

Γ (
∑V

w′=1
xw′ )

.

Sampling word-topics. Given the item-topic assignment yu,i, we sample the word-
topic for the j-th word nkwu,i,j

in the review associated with the rating ru,i according
to:

P (zu,i,j = k|r,m,w,y, l,z¬(u,i,j),p, q;Ψ)

∝
n
yu,i,lu,i

k + α∑K2
k′=1 n

yu,i,lu,i

k′ + α
×

nk
wu,i,j

+ β∑
w′ n

k
w′ + β

,
(3)

where nyu,i,lu,i

k is the number that words assigned to word-topic k with the associated
item-topic yu,i and sentiment label lu,i, nkwu,i,j

denotes the number that word wu,i,j is
assigned to word-topic k.

Updating latent factors. Following BPMF [17], given an item-topic c,λc
P = {µcp, ΛcP }

is first generated according to a Gaussian-Wishart distribution with parameter λc
0 =

{µc0, νc0,W c
0 } by P (λc

P |λc
0) = N(µcp|µc0, (ΛcP )−1)W(ΛcP |νc0,W c

0 ), then the condi-
tional distribution over user u’s latent factor pcu is:

P (pc
u|r, qc;Φ)

= N(pc
u|µ̄c

p, (Λ̄
c
P )−1)

∝ P (pc
u|µc

P , (Λ
c
P )−1)×

M∏
v=1

N(rui|P c
u , q

c
i , σ

2
c )

(4)

where we have: Λ̄cP = ΛcP + 1
σ2
c

∑M
v=1(qci (q

c
i )
>)I(yu,i,c) and µ̄cP = (Λ̄cP )−1(ΛcPµ

c
P +

1
σ2
c

∑M
v=1(qci ru,i)

I(yu,i,c)), where I(yu,i, c) is an indicator function which returns 1 only
when yu,i = c otherwise 0. Following Eq. 5, qci can be updated in a similar way, we
omit it here.

Computational complexity. Let D be the dimension number of latent factors in pcu
and qcv , S =

∑
u,c,i I(yu,i, c), K1 be the number of item-topics, then according to

[19], updating users’ and items’ latent factors in each iteration takes a cost of O(D2S+
D3K1N + D3K1M). Let A be the number of all the observed ratings, B be average
number of words in a review, K2 be the number of word-topics. The complexity for
item-topic and word-topic assignment is O(A(K1DB + BK2)). Hence, the overall
cost in an iteration is O(D2S +D3K1N +D3K1M +ABK1D +ABK2)

Rating Prediction. Once the model parameters have been learned, we can predict the
final ratings by: r̂u,i =

∑K1

c=1{
Zc

Z(·)
(pcu)> · qci }, where Zc = φuc × ϕci and Z(·) =∑K1

c=1 Zc. Zc can be understood as the weight coefficient for the predictions from the
item-topic c. Zc will be large if both u and i have close associations with item-topic c,
i.e., φuc and ϕci are large.
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4 Experiments

In this section, we conduct evaluation experiments to examine the performance of
the proposed model.

4.1 Experimental Setup

Datasets. Six datasets [15] from diverse Amazon categories have been used as evalua-
tion collection. We present the statistics of the datasets in Table 2. For each dataset, we
randomly select 80% ratings to train our model, and the rest are held out for testing.

Table 2. Statistics of our datasets.

Datasets #Users #Items #Ratings #Reviews
#Users

Density

Music 1492 900 7931 5.55 0.59%
Auto 2928 1835 18308 6.25 0.34%
Office 4905 2420 39974 8.14 0.33%
Patio 1686 962 11740 6.96 0.72%
Video 5130 1685 33146 6.46 0.38%
DigiMu 5541 3568 48255 8.71 0.24%

Baseline methods. We compare our models with the following baselines:

– PMF [16]: It’s a Bayesian probabilistic implementation of the traditional matrix
factorization, shown to give accurate predictions in practice.

– HFT [14]: It’s a competitive review-based rating prediction method by leveraging
review information to enhance the prediction performance.

– BPMTMF [19]: It’s a state-of-art local matrix factorization method which adopts a
Bayesian formulation approach to model user ratings.

There can be more LMF baselines to compare here, including DFC [13], LLORMA [10]
and WEMAREC [4]. As shown in [19], BPMTMF is better than these baselines. Our
empirical results have also confirmed this. Hence, we only select BPMTMF as the only
representative for LMF baselines. We use a five-fold cross validation to obtain the final
performance for all the comparison methods. To set various parameters in both base-
lines and our models, we use a grid search method by finding the values which lead
to the best performance in five-fold cross validation. For our model ELMF, we set the
number of latent factors to 20, the number of item-topicsK1 to 20, the number of word-
topics K2 to 15, and the hyper-parameters are set as follows α′ = 0.01, β′ = 2.5, α =
0.1, β = 2.5, µc0 = 0, νc0 = 20,W c

0 is a identity matrix, σ =
√

2.

4.2 Evaluation on Rating Prediction

We first evaluate the performance of the proposed models in rating prediction, and
adopt the commonly used Root Mean Square Error (RMSE) as the evaluation metrics,
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defined as

√∑
〈u,i,ru,i〉∈D

(ru,i−r̂u,i)2

|D| , where |D| is the number of samples in the test

set D.

Results and Analysis. We present the comparison results in Table 3 and have the
following observations. First, HFT gives better performance than PMF in four of six
datasets. HFT leverages review information to enhance rating prediction, which indi-
cates the usefulness of review information. Second, BPMTMF performs best among
the three baselines. The improvement margins over PMF and HFT are substantial, es-
pecially it yields 14.1% reduction of RMSE on the DigiMu dataset. It indicates the ef-
fectiveness of LMF methods for rating prediction. Third, our proposed models achieve
similar or better performance compared with BPMTMF. As shown in [19], so far,
BPMTMF has been the most competitive LMF method in rating prediction by com-
paring with DFC [13], LLORMA [10] and WEMAREC [4]. The margins that our mod-
els improve over BPMTMF are not large, while small RMSE reductions are likely to
yield significant system performance improvement in practice [2]. The above results
and analysis have shown the effectiveness of our proposed models.

Table 3. Performance comparisons of RMSE results on six datasets. Smaller is better.

Datasets PMF HFT BPMTMF ELMF
Music 0.953 0.954 0.905 0.902
Auto 1.004 0.981 0.970 0.969
Office 0.955 0.965 0.950 0.947
Patio 1.110 1.091 1.070 1.063
Video 1.352 1.312 1.301 1.281
DigiMu 1.363 1.313 1.171 1.165

Parameter Tuning. In our models, two important parameters are the number of item-
topics (i.e., K1) and the number of word-topics (i.e., K2). Here, we examine how they
affect the model performance. We select the Music dataset to report the tuning results
and the rest datasets give the similar findings. We first find the optimal values by using
cross validation. Then we fix one and vary the other. To tune K1 and K2, we use a
grid search method by varying the values from 5 to 40 with a gap of 5. We present the
tuning results in Fig. 3. Overall, the model performance is relatively robust for both
parameters, and a range between 5 and 20 usually give good performance.

4.3 Evaluation on Model Interpretability

Besides the performance, interpretability is also important to consider in rating pre-
diction. Here, we conduct evaluation experiments to examine the model interpretability.
We start with an illustrative example to show the explainable recommendation results
for our model.

Qualitative analysis of the ELMF model. In specific, we are particularly interested in
two queries: (1) what are the semantics for the subgroups of users and items, and (2)
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Fig. 3. Parameter tuning for the numbers of item- and word-topics. Smaller is better.

why a user likes or dislikes an item. To answer the first query, ELMF probabilistically
clusters items using topic models, and each item-topic groups items with coherent se-
mantics. We present three sample item-topics on Music dataset discovered by ELMF in
Fig. 4. As we can see, the identified item-topics are clear and coherent. To answer the
second query, we attach each topic with the most related words. Given an item-topic c,
we select words by computing

∑K2

k=1 P (w|k)P (k|c, l) with a specific sentiment label
l. Here, we consider two sentiment labels, i.e., positive and negative. It is interesting
to see different item-topics are related to different word-topics and different sentiment
labels are related to different opinionated words.

Fig. 4. Three sample item-topics learned on Music dataset with associated words. Red and blue
words come from positive and negative sentiment labels respectively. We use icons but not words
to present each item for ease of understanding.
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Quality evaluation of the identified item-topics. Above, we have shown the sample
item-topics learned by our model. Now we quantitatively evaluate the quality of these
item-topics. We select BPMTMF as a baseline since it is also able to generate item-
topics. Intuitively, a good item-topic should group items from same categories. Our
datasets provide the original Amazon category labels of these items in a three-layer hi-
erarchy. We select the purity as the evaluation metrics. Purity4 is a popular measure to
evaluate the clustering quality. It compares the generated clusters against the gold re-
sults. We take the categorization of items on Amazon as the ground truth for evaluation.
We present the comparison results in Table 4. Since each item is associated with three
category labels, we can compute three different purity scores. Overall, our method has
better purity performance compared with BPMTMF. The major reason is that BPMTMF
only utilizes rating information while our model further leverages review information.

Table 4. Purity comparison with three-level category labels.

Category level 1st 2nd 3rd

BPMTMF 0.659 0.622 0.246
ELMF 0.702 0.628 0.264

5 Conclusion

In this paper, we made an attempt to improve the interpretability of LMF methods by
leveraging both item co-rated patterns and user reviews. We incorporated item-topics
to construct meaningful subgroups, and associate them with opinionated word-topics
to explain the semantics and sentiments for users ratings. By using topic-specific la-
tent factors, our model yields competitive performance while the learned item- and
word-topics give good interpretability to the recommendation results. Currently, our
work only considers two sentiment labels, in the future, we will explore more levels of
sentiments for more fine-grained explanations on the correlations between ratings and
sentiments.
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