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ABSTRACT
An important problem of matrix completion/approximation
based on Matrix Factorization (MF) algorithms is the exis-
tence of multiple global optima; this problem is especially
serious when the matrix is sparse, which is common in real-
world applications such as personalized recommender sys-
tems. In this work, we clarify data sparsity by bounding the
solution space of MF algorithms. We present the conditions
that an MF algorithm should satisfy for reliable completion
of the unobservables, and we further propose to augment
current MF algorithms with extra constraints constructed
by compressive sampling on the unobserved values, which
is well-motivated by the theoretical analysis. Model learn-
ing and optimal solution searching is conducted in a prop-
erly reduced solution space to achieve more accurate and
efficient rating prediction performances. We implemented
the proposed algorithms in the Map-Reduce framework, and
comprehensive experimental results on Yelp and Dianping
datasets verified the effectiveness and efficiency of the aug-
mented matrix factorization algorithms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Filtering; F.2.1 [Numerical Algorithms and Problems]:
Computation on Matrices; G1.6 [Mathematics of Com-
puting]: Optimization

Keywords
Matrix Factorization; Collaborative Filtering; Recommender
Systems; Compressed Sensing; Optimization

1. INTRODUCTION
Matrix Factorization (MF) techniques have achieved sig-

nificant success in many real-world applications, such as
Collaborative Filtering (CF)-based recommender systems,
where MF is conducted on partially observed user-item rat-
ing matrices, and the results are thus used to predict the
unobserved ratings (i.e., the missing entries). A number of
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commonly known MF algorithms have been proposed and
extensively investigated, for example, the Singular Value De-
composition (SVD), Nonnegative Matrix Factorization (NMF),
Probabilistic Matrix Factorization (PMF), etc.

The important advantages of fast iterations and flexible
modeling and being amenable to parallelization make MF
widely used in real-world systems. However, despite such
empirical success, MF approaches have mostly been used as
a heuristic with little solid theoretical analysis other than
the guarantees of convergence to the local minima [10]. In
fact, the performance of most MF algorithms relies heavily
on the sparsity and the underlying structure of the matrices.

The existence of multiple global/local optima leads to se-
rious problems when MF is used to predict the unobserv-
ables. Consider conducting regularized NMF on a simple
Block Diagonal Form (BDF) [28, 29, 27] structured matrix
X =

[
X11

X22

]
, where the observed values are restricted

in the diagonal blocks X11 and X22, and the ratings in off-
diagonals X12 and X21 are all unobserved. Suppose the
NMF algorithm gives the global optimal solution that X is
factorized as X ≈ UV ′ =

[
U1
U2

]
[ V ′

1V
′
2 ], where the rows of U

and V are split in the same pattern according to X; then
we have X11 ≈ U1V

′
1 and X22 ≈ U2V

′
2 . Now we rearrange

the columns in U1 and V1 in the same order, which gives Û1

and V̂1. One can see that we have Û1V̂
′
1 = U1V

′
1 and that

the newly constructed factorization X ≈
[
Û1
U2

]
[ V̂ ′

1V
′
2 ] is also

a global optimal solution, as it gives the same predicted rat-
ings on the observed values and the same penalty on the reg-
ularization terms. However, it could give completely differ-
ent predictions on the off-diagonal areas, as Û1V

′
2 and U2V̂

′
1

would not be equal to U1V
′
2 and U2V

′
1 , after the columns of

U1 and V1 have been rearranged.
This example demonstrates the multiple global optima prob-

lem, where an MF algorithm “fails” on BDF matrices, as it
gives completely different predictions on the unobserved val-
ues, while achieving the same minima on the objective loss
function. This contradicts the reason for using MF to pre-
dict unobservables because we assume the preferences of the
users to be “predictable” from their historical choices. As
we will show later, this problem arises not only on BDF ma-
trices but also on many matrices where the observed values
are sparse or improperly distributed; thus, the performance
of the algorithm cannot be properly constrained.

This problem is rarely noticed or investigated in the re-
search community, most likely because most of the public
benchmark datasets, such as MovieLens, Netflix and Yahoo!
Music, have been preprocessed by removing those users who
have rated less than a specific number of items. Such pre-
processing makes a dataset biased from the original rating
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distribution, and thus the insufficiency of the ratings does
not pose as severe a problem as it could be.

Recently, the release of the more “practical” Yelp rating
dataset1 exposed the problem directly. By permuting the
rows and columns of the rating matrix, it can be rearranged
into a BDF structure with 53 diagonal blocks, with a dom-
inating block and 52 scattered blocks, which is shown in
Fig.1(a). The corresponding bipartite graph of the matrix is
highly disconnected, and these scattered blocks correspond
to the 52 connected components, as shown in Fig.1(b). Ac-
cording to the analysis above, the presence of one single
scattered block increases the global optimal solution space
by O(r!), where r is the number of latent factors used in an
MF algorithm, which is typically assigned between 50 to 100.
The algorithm could converge to any of the global optimal
solutions, although they provide very different predictions
on the unobserved values.

The essential reason that MF algorithms fail in such cases
is that they only make constraints on the observed values in
a matrix, without any constraints on the predictions of the
unobserved values. In this work, we indicate with theoretical
analysis that, for an MF algorithm to avoid the multiple
global optima problem, and thus to recover the unobserved
values properly, the following two basic conditions should be
satisfied:

1. The number of constraints should be up to the order
of O(r(m + n) log(mn)), where r is the number of la-
tent factors, and m and n are the number of rows and
columns of a matrix.

2. The distribution of the constraints should be nearly
isometric, which means that they should obey certain
large deviation inequalities.

A single observed value can be viewed as a constraint
in MF algorithms; however, the number of observed values
could be far from the above requirement, and they would
not necessarily be nearly isometrically distributed. In this
work, we treat the MF as a subspace fitting problem and
analyze the difference between the solution space and the
ground truth. We propose to augment MF algorithms with
extra constraints constructed from the unobserved values,
which are selected according to some specific distributions.
In this way, our MF model satisfies the above two conditions,
and the algorithm can find a proper solution in a reduced
solution space. Experimental results verify the effect of our
method in improving the prediction accuracy, stability, con-
vergence rate and computational efficiency.

The paper is structured as follows: In section 2, we in-
troduce some of the related work; In sections 3 and 4 we
give some preliminaries and conduct theoretical analysis of
the solution space, which form the basis of this work, and,
afterwards, we present our method and algorithms; the ex-
perimental results are shown in section 5; finally, the work
is discussed in section 6 and concluded in section 7.

2. RELATED WORK
Latent factor models based on Matrix Factorization (MF)

techniques have long been an important research direction
in Collaborative Filtering (CF)-based recommendations [13,
26]. Recently, the MF approaches have gained great popu-
larity, as they usually outperform traditional methods, and

1http://www.kaggle.com/c/yelp-recsys-2013/

(a) Yelp dataset Matrix (b) Yelp dataset Graph

Figure 1: Structures of Yelp dataset. In the left is
the exampled structure of the rating matrix, and in
the right is the real structure of the scattered blocks.

have achieved state-of-the-art performance [24]. A variety of
MF algorithms have been investigated in different CF set-
tings, for example, Principle Component Analysis (PCA)
[1], Singular Value Decomposition (SVD) [13], Non-negative
Matrix Factorization (NMF) [14], Max-Margin Matrix Fac-
torization (MMMF) [23, 17], and Probabilistic Matrix Fac-
torization (PMF) [19, 18].

However, despite such empirical success, MF approaches
have mostly been used as heuristics and have little solid the-
oretical analysis other than the guarantees of convergence to
local minima. The most recent work concerning the theoret-
ical properties of MF algorithms is given in [10, 25], which
investigate the optimization algorithms for MF and their
stability with adversarial noise in terms of prediction accu-
racy. However, they do not touch upon the topic of how to
overcome the multiple global optimal problem.

This problem is closely related to the research of matrix
Compressed Sensing (CS) [8, 4], which can be viewed as a
generalized form of matrix completion or matrix factoriza-
tion in that a constraint is not restricted to a single observed
value but instead the linear equations of the observations.
According to the mathematical relationships, the CS prob-
lem is formulated as a rank minimization problem in [3] and
further formulated as a convex optimization problem based
on nuclear norm minimization [6, 5]. Later, [21] investigated
the uniqueness of low-rank matrix completion problems with
the basic tools of rigidity theory. However, the success of CS
relies on the assumption that the constraints are sufficient
and isometrically distributed, which can hardly be satisfied
in the real-world scenarios of CF.

In the effort to tackle this problem, recent work has fo-
cused on the idea of reformulating current MF algorithms
to fit the real distributions of data. [20] attempted to con-
duct CF on non-uniformly sampled matrices using a prop-
erly weighted version of nuclear-norm regularizers, and [15]
proposed a graph theoretic approach for matrix completion
under more realistic power-law distributed samples. [12] ex-
plored the relationships between matrix factorization and
combinatorial algebraic theory. To speed up the process of
rank minimization, [16] proposed the Singular Value Projec-
tion (SVP) algorithm for matrix completion with affine con-
straints. However, these approaches make tight assumptions
on the distributions of data, which restricts their application
in practical systems and scenarios. Instead of the traditional
approach of reformulating the algorithms, we attempt to re-
sample the data to alleviate the problem of multiple global
optima, which brings about the advantages of both higher
prediction accuracy and the ability to conveniently integrate
the approach into many MF algorithms.
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3. PRELIMINARIES
Definition 1. Matrix Factorization (MF) algorithms can

be generally defined by the constrained optimization problem:

min
X=UV ′

R(U, V )

s.t. A(X) = b
(1)

where X ∈ Rm×n is the approximation matrix, U ∈ Rm×r
and V ∈ Rn×r are the decision variables, and R is the reg-
ularization term. A : Rm×n → Rp is a linear map defining
a set of p linear constraints on X, where each of the con-
straints is represented as bi = 〈X,Ai〉 = tr(A′iX), 1 ≤ i ≤ p,
and b ∈ Rpis the corresponding vector of the bi’s.

This definition of MF is equal to the frequently used reg-
ularized optimization form in terms of Lagrange multipliers.
Let Λ be the Lagrange multiplier for the linear constraint
A(X)− b = 0, then Eq.(1) could be reformulated as:

min
X=UV ′

R(U, V )+Λ‖A(X)−b‖22 = min
X=UV ′

‖A(X)−b‖22+λR(U, V )

(2)
where λ = 1/Λ is the regularization coefficient. Eq.(2) is a
special case of the unified view of MF given in [22]:

min
X=f(UV ′)

DW (X, X̃) +R(U, V ) (3)

where DW (X, X̃) is the loss between the approximation X

and the original matrix X̃. However, Eq.(1) and Eq.(2)
are general enough to represent the objective function of
most MF algorithms. For example, SVD takes the objective
function ‖W � (X − X̃)‖2F + λ(‖U‖2F + ‖V ‖2F ), where ‖ · ‖F
is the Frobenius norm, and W is an indication matrix such
that Wij = 1 if X̃ij is observed, and 0 otherwise.

Proposition 1. Let X ∈ Rm×n and rank(X) ≤ r, then
there exist matrices U ∈ Rm×r and V ∈ Rn×r, such that
X = UV ′.

Proof. This can be easily proven by the singular value
decomposition ofX, which isX = MΣN ′ = (M

√
Σ)(N

√
Σ)′,

and by setting U = M
√

Σ and V = N
√

Σ.

Proposition 1 guarantees that we can always find an ac-
curate factorization for X using r factors if the rank of X is
no more than r, which allows us to bypass the explicit fac-
torization of X and use the following definition to conduct
matrix factorization.

Definition 2. Low Rank Matrix Factorization (LRMF):

minR(X)

s.t. A(X) = b, rank(X) ≤ r.
(4)

The most frequently used choice for the regularization
term in Eq.(1) is the Frobenius norm regularizer, where
R(U, V ) = ‖U‖2F + ‖V ‖2F , and in Eq.(4) is the nuclear norm
R(X) = ‖X‖∗, where nuclear norm ‖X‖∗ is defined as the
sum of the singular values of X. The following proposition
guarantees their equivalence in terms of low rank matrix
factorization.

Proposition 2. [23] Consider the factorization of X in
an unlimited dimension factorization space; then the nuclear
norm of X can be represented as:

‖X‖∗ = min
X=UV ′

‖U‖2F ‖V ‖2F = min
X=UV ′

1
2
(‖U‖2F + ‖V ‖2F ) (5)

In this work, we leverage the Low Rank Matrix Factor-
ization (LRMF) in Definition 2, as well as the minimization
of nuclear norm ‖X‖∗ primarily to analyze the properties of
the solution space of Eq.(4), based on which we propose our
augmented matrix factorization framework.

4. METHODOLOGY
It is important to notice that most MF algorithms for

collaborative filtering only consider the observed values and
require the predictions to be close to the corresponding ob-
servations, which means that the measurement matrix Ai =
eje
′
k ∈ Rm×n in Eq.(1) and Eq.(4) has a non-zero value at

only a single element corresponding to one of the observed
values, and thus the number of constraints p is equal to the
number of observations.

As we will show in the following parts, such a measure-
ment set A is usually insufficient to guarantee a global opti-
mal solution. However, the measurement set A could have
not been restricted to such single-valued constraints. In this
section, we analyze the solution space of the LRMF problem
and further propose the Augmented Matrix Factorization
(AMF) framework for more accurate rating prediction.

4.1 Solution Space Analysis
We bound the solution space of the LRMF problem with

the nuclear norm regularizer by analyzing the properties of
the linear map A.

Consider solving the constrained optimization problem
of LRMF in Eq.(4) with the nuclear norm regularization
R(X) = ‖X‖∗ using the method of Lagrange multipliers;
this yields the global optimal solutionX∗, such thatA(X∗) =
b∗. We then define the adjoint problem as follows:

min ‖X‖∗ s.t. A(X) = b∗, rank(X) ≤ r (6)

We have X∗ as one of the exact global optimal solutions
for Eq.(6). Suppose the global optimal solutions of this ad-
joint problem is generally denoted by X, and the residual
matrix between X and the known optimal solution X∗ is de-
noted as R = X∗−X. We then investigate this residual error
under the linear map A by analyzing ‖A(R)‖22, whose ideal
value would be zero because A(X∗−X) = A(X∗)−A(X) =
b∗−b∗ = 0. More specifically, we investigate the appropriate
properties that A should satisfy, which guarantees we will
search for the global optimal solution in a properly reduced
solution space.

4.1.1 Restricted Isometry Property
In this section, we describe the characteristics of an im-

portant class of linear maps, which are those that satisfy the
restricted isometry property, and we bound ‖A(R)‖22 under
the condition that the linear map A satisfies this property.

Definition 3. [10] A linear map A : Rm×n → Rp is said
to satisfy the Restricted Isometry Property (RIP), with the
RIP constant δr, if, for all of the matrices X ∈ Rm×n, s.t.
rank(X) ≤ r, the following holds:

(1− δr)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr)‖X‖2F (7)

Lemma 1. According to the definition of the Restricted
Isometry Property, we have δr ≤ δr′ for r ≤ r′.

This definition of the RIP is a generalization to matrices
from sparse vectors in [9]. The following theorem shows that
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the solution space of Eq.(6) can be properly bounded given
that A satisfies the RIP.

Theorem 1. Suppose that A : Rm×n → Rp is isometri-
cally restricted, and R = X∗ − X is the residual matrix in
Eq.(6); then there exists a matrix R0 whose rank satisfies
rank(R0) ≤ 2r, such that ‖A(R)‖22 = O(rδ2r‖R0‖2F ).

Theorem 1 indicates that, when the linear map A is iso-
metrically restricted, the solution space of Eq.(6) reduces
along with the deceasing of the RIP constant δ. Specially,
when δ is small enough to be close to zero, there would be
one single global optimal solution for the adjoint problem.
The proof of Theorem 1 requires the following lemmas.

Lemma 2. Let A,B be matrices of the same dimensions.
If AB′ = 0 and A′B = 0, then ‖A+B‖∗ = ‖A‖∗ + ‖B‖∗.

Lemma 3. [3] For any matrices A,B ∈ Rm×n of the same
dimensions, there exist matrices B1 and B2, such that: (1)
B = B1 + B2; (2) rank(B1) ≤ 2 rank(A); (3) AB′2 = 0 and
A′B2 = 0; (4) 〈B1, B2〉 = 0.

Proof. Let the singular value decomposition of A be
A = U [ Σ 0

0 0 ]V ′, and let B̂ = U ′BV . Partition B̂ accord-

ing to the SVD of A as B̂ =
[
B̂11 B̂12

B̂21 B̂22

]
, and define B1 =

U
[
B̂11 B̂12

B̂21 0

]
V ′ and B2 = U

[
0 0
0 B̂22

]
V ′; then B1 and B2

satisfy the above four conditions.

Lemma 4. For any matrix X such that rank(X) ≤ r, we
have ‖X‖F ≤ ‖X‖∗ ≤

√
r‖X‖F .

Proof of Theorem 1. By applying Lemma 3 to the ma-
trices X and R, there exist matrices R0 and Rc such that
R = R0 + Rc, rank(R0) ≤ 2r, and XR′c = 0 and X ′Rc = 0.
By the optimality of X∗, we have ‖X‖∗ ≥ ‖X∗‖∗, and it
follows that:

‖X‖∗ ≥ ‖X +R‖∗
ζ1
≥ ‖X +Rc‖∗ − ‖R0‖∗

ζ2= ‖X‖∗ + ‖Rc‖∗ − ‖R0‖∗
(8)

where ζ1 follows from the triangle inequality and ζ2 follows
from Lemma 2. It can be further derived from Eq.(8) that
‖R0‖∗ ≥ ‖Rc‖∗.

Let Rc = U diag(σ)V ′ be the SVD of Rc, where the sin-
gular values in the diagonal matrix diag(σ) are sorted in
descending order. Now we partition Rc into a sum of ma-
trices R1, R2, · · · . For each i ≥ 1, define the index set Ii =
{2r(i− 1) + 1, · · · , 2ri}, and define Ri = UIi diag(σIi)V

′
Ii .

By this construction method, we have rank(Ri) ≤ 2r for
i ≥ 1, and that:

σk ≤
1

2r

∑
j∈Ii

σj =
1

2r
‖Ri‖∗, ∀ i ≥ 1, k ∈ Ii+1 (9)

which further implies that:

‖Ri+1‖2F =
∑

k∈Ii+1

σ2
k ≤

1

2r
‖Ri‖2∗, ∀ i ≥ 1 (10)

With Eq.(10) and the relationship ‖R0‖∗ ≥ ‖Rc‖∗, we can
sum up the following bound:∑

j≥2

‖Rj‖2F ≤
1

2r

∑
j≥1

‖Rj‖2∗ ≤
1

2r

(∑
j≥1

‖Rj‖∗
)2

=
1

2r
‖Rc‖2∗ ≤

1

2r
‖R0‖2∗ ≤ ‖R0‖2F

(11)

where the last step follows from Lemma 4 and the fact
that rank(R0) ≤ 2r. As for ‖R1‖2F , we have the following:

‖R1‖F ≤ ‖R1‖∗ ≤ ‖Rc‖∗ ≤ ‖R0‖∗ ≤
√

2r‖R0‖F (12)

Now we can wrap up the proof to give the following bound
for ‖A(R)‖22:

‖A(R)‖22 = ‖A(R0) +A(R1) +
∑

j≥2
A(Rj)‖22

ζ1
≤ ‖A(R0)‖22 + ‖A(R1)‖22 +

∑
j≥2
‖A(Rj)‖22

ζ2
≤ (1 + δ2r)(‖R0‖2F + ‖R1‖2F +

∑
j≥2
‖Rj‖2F )

ζ3
≤ 2(1 + r)(1 + δ2r)‖R0‖2F = O(rδ2r‖R0‖2F )

(13)
where ζ1 follows from the triangle inequality, ζ2 follows

from the RIP of A and the fact that rank(Ri) ≤ 2r for
i ≥ 0, and ζ3 follows from Eq.(11) and Eq.(12).

4.1.2 Nearly Isometric Property
In real-world applications, such as CF-based recommender

systems, the linear map A is usually viewed to be gener-
ated from some (perhaps unknown) random distributions.
For example, it is observed that most real-world datasets in
practical recommender systems usually exhibit power-law
distributed samples [15, 20]. Unfortunately, the linear map
A corresponding to the original power-law distributed ob-
servations hardly ever satisfies the RIP property, which, ac-
cording to Theorem 1, makes the solution space of MF al-
gorithms poorly bounded and further leads to the multiple
global optimal problem.

Consequently, we focus on the task of augmenting the
original linear map A by resampling the unobserved entries
in order to add extra constraints on the MF algorithm and
bound the solution space properly. As a result, we need to
investigate the necessary properties that A should satisfy
under the circumstance of conducting entry sampling. The
following definition describes the isometric property in terms
of distributions in a probabilistic view.

Definition 4. Let A be a random variable that takes val-
ues in linear maps from Rm×n to Rp. We say that A satisfies
the Nearly Isometric Property (NIP) if, for all X ∈ Rm×n,

E
[
‖A(X)‖22

]
= ‖X‖2F (14)

and, for all 0 < ε < 1,

P
(
|‖A(X)‖22 − ‖X‖2F | ≥ ε‖X‖2F

)
≤ 2 exp

(
−p

2

(
ε2

2
− ε3

3

))
(15)

In order for a random linear map to be nearly isometric,
Definition 4 requires two essential ingredients. First, it must
be isometric in expectation, which is indicated by Eq.(14);
and second, the probability of large distortions of length
must be exponentially small, as implied by Eq.(15).

Several frequently used linear maps satisfy the NIP in real
applications. For easier explanation of such types of linear
maps, we introduce the following matrix representation of a
linear map:

Definition 5. Given X ∈ Rm×n, linear map A : Rm×n →
Rp, and a set of p constraints A(X) = b, where each con-
straint is of the form bi = 〈X,Ai〉 = tr(A′iX). Let d = mn
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and x = vec(X) be the vectorization of X. Then, we define
the constraint matrix A = [vec(A1) vec(A2) · · · vec(Ap)]

′ ∈
Rp×d so that the linear constraints A(X) = b can be equally
reformulated as Ax = b.

Generally, it is proven in [7, 11] that, whenever the entries
Aij are independently and identically distributed with zero
mean and finite fourth moment, the maximum singular value
of the constraint matrix A is almost surely 1 +

√
d/p for d

that is sufficiently large, and thus the matrix A and the
corresponding linear map A satisfy the NIP.

Specifically, we give some frequently used examples of
distributions that satisfy the NIP, which are considered in
the experiments primarily for augmenting MF algorithms.
The linear map A satisfies the NIP when Aij is sampled
independently and identically from the Gaussian distribu-
tion Aij ∼ N (0, 1

p
). The entries sampled from a symmetric

Bernoulli distribution also meet the requirements: P(Aij =√
1
p
) = P(Aij = −

√
1
p
) = 1

2
; a generalization of this distri-

bution that takes zeros into account is also frequently used
due to its convenience in reducing the number of parame-

ters, which is P(Aij =
√

1
2pη

) = P(Aij = −
√

1
2pη

) = η, and

P(Aij = 0) = 1− 2η(0 < η < 1
2
) [3, 2].

The following theorem characterizes the family of linear
maps that satisfy the NIP regarding the upper bound of the
isometric constant.

Theorem 2. [3] Given fixed 0 < δ < 1, and let A :
Rm×n → Rp be a linear map that satisfies the NIP; then,
for every 1 ≤ r ≤ min(m,n), there exist positive constants
c0 and c1, depending only on δ, such that, with probabil-
ity of at least 1 − exp(−c1p), we have δr ≤ δ whenever
p ≥ c0r(m+ n) log(mn).

The readers might refer to [3] for a proof of this theorem.
The theorem indicates that, given A is nearly isometrically
distributed, the upper bound of the isometric constant δr
can be closely bounded almost surely, as long as the number
of linear constraints p of A is sufficiently large at the order
of O(r(m+ n) log(mn)). In consideration of Theorem 1, we
further arrive at the following corollary.

Corollary 1. Suppose that the maximum rank r allowed
in the LRMF problem defined by Eq.(4) and Eq.(6) satisfies
r ≤ min(m,n)/2, and that A : Rm×n → Rp is a linear map
with the NIP. Then, ‖A(R)‖22 reduces almost surely with the
increase of p, whenever p = O(r(m + n) log(mn)), where
R = X∗ −X is the residual matrix.

Proof. According to the definition of LRMF problem,
we have rank(X) ≤ r and rank(X∗) ≤ r; as a result, rank(R) =
rank(X∗−X) ≤ 2r ≤ min(m,n), and the corollary can now
be deduced from Theorem 2.

This corollary indicates that, under the assumption that
the linear constraints are isometrically distributed, the so-
lution space of the LRMF problem reduces with the in-
crease of the number of linear constraints p, as long as
r ≤ min(m,n)/2, which means that the rank requirement
is not “too” large. In fact, this requirement is easily satisfied
in practical applications of CF, especially in the scenario of
LRMF, because the rank of a matrix is usually far less than
the number of rows or columns. This is because the prefer-
ences of users are usually determined by a limited number

of latent factors, e.g., in most MF algorithms the number of
factors is set to be a few tens, while the number of rows or
columns of the matrix could be in the millions.

4.2 Case Study
According to the theoretical analysis, we see that, for an

MF algorithm to find the appropriate global optimal solution
in a properly reduced solution space, the following two basic
conditions are needed:

• The number of constraints should be up to the order
of O(r(m+ n) log(mn)).

• The distribution of the constraints should satisfy the
nearly isometric property.

An MF algorithm might fail if either of the two conditions
is not satisfied. For a better understanding of the condi-
tions, we present the following two case studies utilizing the
previously noted Yelp rating dataset and BDF structured
matrices.

Case Study I. The Yelp Rating Dataset.
This dataset violates the first condition. In fact, the Yelp

dataset is different from many previous public datasets, and
it is in better conformity with practical situations because
the previous datasets usually eliminate those users with less
than 20 ratings, which relieves them of the multiple global
optimal problem to a great extent. The following table lists
the statistics of some frequently used datasets.

Table 1: Statistics of some frequently used datasets,
where m, n, p are the number of rows, columns and
observed values, and p̂=r(m+n)log(mn) is the re-
quired number of constraints, where we use r=10 to
keep the magnitude, as r is usually set to be a few
tens in practical applications.

Dataset m n p p̂ p/p̂

ML-100k 943 1,682 100,000 162,759 0.61
ML-1m 6,040 3,952 1,000,209 737,195 1.36
Netflix 480,189 17,770 100,480,507 49,452,804 2.03
Yahoo 1,000,990 624,961 256,804,235 191,801,776 1.34

Yelp 51,296 12,742 229,907 5,645,155 0.04

We see that the number of constraints in the MovieLens,
Netflix and Yahoo! Music datasets are all approximately to
the order of the corresponding requirements, while, for the
Yelp dataset, they differ by two orders of magnitude. Exper-
imental findings are consistent with the theoretical analysis:
previous work conducted on traditional datasets [13, 14, 23,
19] reported significant improvement in terms of prediction
accuracy that MF approaches could achieve, while the ex-
perimental results show that many MF algorithms perform
even worse than a simple global averaging strategy on the
Yelp dataset challenge.

Case Study II. The BDF Structured Matrices.
This type of matrix violates the second condition. Note

that the number of constraints in a BDF structured matrix
could be extremely high. Suppose a BDF matrix has k diag-
onal blocks, each of which is an n×n fully filled sub-matrix
with n2 observed values; then we have:

p

p̂
=

kn2

r(2kn) log(k2n2)
=

n

4r log(kn)
� 1 (16)
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However, such a matrix would still suffer from the multiple
global optimal problem, as shown by the example in the pre-
vious sections of this paper. The underlying reason is that
the observed values are all restricted to the diagonal blocks,
which makes the constraints biased from the requirement of
nearly isometric distributions.

4.3 Augmented Matrix Factorization
The two basic conditions inspire us to augment MF algo-

rithms by adding extra constraints to the linear map A if
the requirement on the number of constraints is not satis-
fied, and, at the same time, we attempt to make it nearly
isometrically distributed, which allows us to reduce the solu-
tion space of the LRMF problem. An MF algorithm is then
conducted in this reduced solution space for a global optimal
solution. Algorithm 1 shows the procedure of augmenting
the constraints in the LRMF problem, followed with more
detailed explanations and analyses.

Algorithm 1: Augment(A, b,m, n, p, r, c0, η)

Input: A := {Ai}pi=1, b,m, n, p, r, c0, η
Output: A := {Ai}pi=1, b, p

1 A← [vec(A1) vec(A2) · · · vec(Ap)]
′;

2 A0 ← A, b0 ← b;
3 p̂← c0r(m+ n) log(mn), d← mn;
4 if p < p̂ then
5 ∆p← p̂− p;
6 A← [A′ 0d×∆p]

′, b← [b′, 01×∆p]
′;

7 end
8 p← max(p, p̂);
9 for i←1 to p do

10 for j ← 1 to d do
11 if Aij = 0 then
12 ω ← random(0, 1);

13 if ω < η then Aij ←
√

1/2pη;

14 if ω > 1− η then Aij ← −
√

1/2pη;

15 end

16 end

17 end

18 b← AA+
0 b0; //A+

0 is the pseudoinverse of A0

19 {Ai}pi=1 ← {vec−1(A′i·)}pi=1; //Ai· is the ith row of A
20 return A := {Ai}pi=1, b, p;

In this algorithm, we first check whether the original num-
ber of constraints p has reached the requirement p̂, and if
not, the constraint matrix A and vector b are augmented by
appending some zero vectors or values, respectively, to gain
the required number of constraints.

These augmented constraints, as well as the original ones,
are then resampled in the second stage to meet the require-
ment of nearly isometric distributions. Note that we choose
to use the generalized form of the symmetric Bernoulli distri-
bution for constraint resampling because it keeps Aij set to
zero with high probability, compared with the Gaussian dis-
tribution and symmetric Bernoulli distribution, which ben-
efits the computational time in practical applications. How-
ever, it is important to note that the selection of distribution
for resampling is not restricted to the generalized form of
the symmetric Bernoulli distribution, and any distribution
satisfying the NIP can be integrated into the framework of
Algorithm 1.

In the last stage, the constraint vector b is reconstructed
to match up with the augmented constraint matrix A by
multiplying A with the estimated vector x̂ = A+

0 b0, where
A0 and b0 are the constraint matrix and constraint vector
before augmentation, respectively. This estimation given by
the pseudoinverse of A0 is chosen based on the least square
property, namely, we have ‖A0x − b0‖2 ≥ ‖A0x̂ − b0‖2 for
all x. For an arbitrary matrix A0, the pseudoinverse A+

0 can
be calculated from the singular value decomposition of A0,
which is shown as follows:

A0 = UΣV ′ ⇒ A+
0 = V Σ−1U ′ ⇒ x̂ = V Σ−1U ′b0 (17)

The pseudoinverse is chosen also for the purpose of keep-
ing the generality of the algorithm because we do not apply
any restriction to the form of the constraint matrix A0 in
the original LRMF problem. However, this also brings about
the problem of computational efficiency because the compu-
tation of the SVD of a high dimensional matrix could be
notably expensive in practical applications.

Fortunately, it is important to note that, in most MF
settings, each of the measurement matrices Ai in the linear
map A has only a single non-zero, whose value is one, at
the very position corresponding to an observed value in X.
More formally, we have Ai(p, q) = 1 for the i-th observed
value in X, where X(p, q) 6= 0. As a result, A0 is a matrix
where there is at most one non-zero in each row and each
column, which gives us that A+

0 = A′0, and we thus have:

A+
0 = A′0 ⇒ x̂ = A′0b (18)

Furthermore, we achieve ‖A0x̂ − b0‖22 = 0 in such cases.
As a result, we need not compute the SVD of the original
constraint matrix A0 in practice, and the estimated vector
x̂ is achieved by simple matrix-vector multiplications.

When Gaussian fast sampling is used based on the central
limit theorem, the computational complexity of Algorithm
1 is quasilinear: O(p log(d)) = O(r(m+ n) log2(mn)).

4.4 Algorithms for the LRMF Problem
There exist several possible methods for optimizing the

LRMF problem in Eq.(1) and Eq.(4), including Semi-Definite
Programming (SDP), the interior point methods, projected
subgradient methods and low rank parameterization [3].

The SDP solvers and the interior point methods can achieve
quite accurate solutions, even to the machine precision. How-
ever, they are also rather computationally expensive and
could hardly be applied to the large-scale real-world datasets,
where the number of rows and/or columns of a matrix could
be in the millions. The projected subgradient method is
also expensive as it involves the computation of the SVD of
a high dimensional matrix as a core stage.

In this work, we adopt the approach of low rank parame-
terization based on the method of Lagrange multipliers for
model learning after the constraints have been augmented,
which is shown in Eq.(2) and is a standard method for solv-
ing equality constrained optimization problems. According
to Proposition 2, this approach applies both to the case
when the nuclear norm R(X) = ‖X‖∗ is used for regular-
ization and the case when the Frobenius norm R(U, V ) =
‖U‖2F + ‖V ‖2F is used [3].

Let X = UV ′ be the low rank parameterization of X,
where U ∈ Rm×r and V ∈ Rn×r are the low rank parame-
ters, and let L(U, V ) = ‖U‖2F + ‖V ‖2F + Λ‖A(UV ′)− b‖22 be
the Lagrangian function. Then the partial deviations are:
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∇U = U + Λ
(∑p

i=1

(
tr(A′iUV

′)− bi
)
Ai
)
V

∇V = V + Λ
(∑p

i=1

(
tr(A′iUV

′)− bi
)
A′i

)
U

(19)

In the method of multipliers, we minimize the Lagrangian
function by updating the decision variables U and V al-
ternately. The minimization of the Lagrangian function in
terms of U and V can be conducted using any local search
technique. In this work, we adopt the linear search method
for the convenience of implementation, and the updating
rules for U and V are:

U ← U + γU∇U , V ← V + γV∇V (20)

where the corresponding step sizes for U and V are:

γU = −
tr(∇′UU) + Λ

∑p
i=1 tr(A′i∇UV ′)(tr(A′iUV ′)− bi)

tr(∇′U∇U ) + Λ
∑p
i=1 tr2(A′i∇UV ′)

γV = −
tr(∇′V V ) + Λ

∑p
i=1 tr(A′iU∇′V )(tr(A′iUV

′)− bi)
tr(∇′V∇V ) + Λ

∑p
i=1 tr2(A′iU∇′V )

(21)
The readers could refer to the supplementary materials2

for the detailed derivation of Eq.(19)∼(21). The following
algorithm shows the procedure of solving the LRMF problem
after augmentation, where the parameters N and θ are used
to determine when to terminate the algorithm.

Algorithm 2: AugmentMF(A, b,m, n, p, r, c0, η,Λ, N, θ)
Input: A := {Ai}pi=1, b,m, n, p, r, c0, η,Λ, N, θ
Output: X

1 A := {Ai}pi=1, b, p←Augment(A, b,m, n, p, r, c0, η);

2 U ← Rm×r, V ← Rn×r; //Initialize randomly
3 X ← UV ′, t← 0;
4 repeat
5 X† ← X, t← t+ 1;
6 Compute ∇U , γU as in Eq.(19) and Eq.(21);
7 U ← U + γU∇U ;
8 Compute ∇V , γV as in Eq.(19) and Eq.(21);
9 V ← V + γV∇V ;

10 X ← UV ′;

11 until ‖X −X†‖2F < θ or t > N ;
12 return X;

The computational complexity of Algorithm 2 under the
generalized symmetric Bernoulli distribution is O(pr(m +
n)) = O(r2(m + n)2 log(mn)), which is unfortunately not
quasilinear like that of Algorithm 1. However, the observa-
tion that both the gradients in Eq.(19) and the step sizes
in Eq.(21) are summed from the p measurement matrices
{Ai}pi=1 makes it easy to fit into the Map-Reduce paral-
lelization framework. In this work, when the augmentation
factor c0 and the number of latent factors r are given, we use
dc0re mapping tasks in the Map-Reduce framework, which
makes the computational time comparable to that of solving
the original optimization problem without augmentation.

5. EXPERIMENTS
In this section, we conduct extensive experiments to inves-

tigate the performance of the proposed Augmented Matrix
Factorization (AMF) framework in terms of several impor-
tant evaluation aspects. We mainly focus on the following
two research questions:

2http://yongfeng.me/attach/amf-supplementary.pdf

1. What is the performance of the framework in terms of
rating prediction on highly sparse matrices?

2. What is the performance on the matrices that are
highly biased from the nearly isometric distributions?

One can see that these two research questions correspond
to the two conditions required of a matrix for reliable rating
prediction, which are the number and the distribution of the
constraints. Through the experimentations, we would like
to investigate the performance of the framework in these two
different CF settings.

5.1 Datasets Description
We chose the Yelp3 and Dianping4 user-item rating matrix

datasets for the experiments. The Yelp rating dataset is
from the Yelp dataset challenge, as has been indicated in
the previous sections, and the Dianping dataset is collected
from the website. Some statistical information about the
datasets is shown in the table below:

Table 2: Statistics of the two datasets.
Dataset m(#users) n(#items) p(#ratings) density

Yelp 45,981 11,537 229,907 0.00043
Dianping 8,361 11,392 210,382 0.00221

The Yelp dataset consists of the user ratings of businesses
that are mostly located in the city of Phoenix in the US,
while the Dianping dataset consists of the ratings on restau-
rants located in three of the main cities in China: Beijing,
Shanghai and Guangzhou.

In the Dianping dataset, the inter-city ratings are far
sparser than the inner-city ratings, e.g., users from Bei-
jing would more likely make ratings on Beijing restaurants,
while it is rare for them to rate the restaurants in Shanghai
or Guangzhou. This makes the Dianping dataset approxi-
mately BDF structured, where each of the diagonal matrices
represents a city and they are denser than the off-diagonals.
We use the Yelp dataset primarily to verify the performance
on matrices that violate the first condition and use the Di-
anping dataset for the second condition.

5.2 Experimental Setup
The test set of the Yelp dataset is not publicly available;

as a result, we conduct ten-fold cross-validation on the train-
ing set for model learning and evaluation. In the Dianping
dataset, we use all of the inner-city ratings and randomly se-
lect 20% of the inter-city ratings each time for training, and
use the remaining 80% of the inter-city ratings for testing.
We also conduct the procedure of training and evaluation 10
times on the Dianping dataset.

The experiments were conducted on a 3.1GHz Linux server
with 64 cores and 64GB RAM. Three popular and state-of-
the-art MF algorithms were chosen for performance compar-
isons, which are NMF in [14], PMF in [18] and fast MMMF
in [17]. For easy comparison with the previous work, we use
Root Mean Square Error (RMSE) as the evaluation metric.
We set Λ = 50 for regularization and use the parameters
θ = 0.01 and N = 100 in Algorithm 2 to ensure conver-
gence. A series of experiments were conducted to verify the
performance of the AMF algorithm in terms of prediction
accuracy, stability, convergence rate and computational effi-
ciency.
3http://www.yelp.com/dataset_challenge
4http://www.dianping.com
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5.3 Prediction Accuracy
We investigate the prediction accuracy in terms of three

important parameters in the AMF algorithm: the number
of latent factors r, the augmentation factor c0, and the sam-
pling rate η in the generalized Bernoulli distribution.

5.3.1 Number of Latent Factors
We first investigate the prediction accuracy regarding the

number of latent factors r in the low rank parameters U and
V . We set c0 = 1 and η = 0.01 in the AMF algorithm, and
the regularization coefficient λ is set to 0.06 in the NMF
algorithm of [14]. For PMF in [18], λU and λV are both
set to be 0.005, and the regularization constant C = 1.5 in
the fast MMMF algorithm of [17]. These hyper parameters
are chosen according to grid search-based cross-validation to
achieve the best performance for each of the algorithms. We
then tune the parameter r in the range of 10 ∼ 100 with a
tuning step of 10, and the experimental results are shown in
the figures below.
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Figure 2: RMSE vs different choices of the number
of latent factors r in matrix factorization algorithms.

The experimental results show that when the number of
latent factors r is sufficient, better performance in terms of
RMSE can be achieved in the AMF framework, compared
with all of the other three frequently used MF algorithms.
The best prediction accuracy and the corresponding r for
each of the four algorithms are shown in Table 3.

Table 3: The best prediction accuracy achieved by
each MF algorithm on each dataset.

Dataset
NMF PMF MMMF AMF

r RMSE r RMSE r RMSE r RMSE
Yelp 90 1.244 100 1.259 100 1.268 90 1.233
Dianping 60 0.961 100 0.983 100 1.011 80 0.958

We see that the prediction accuracy tends to be stable
with the increase of r. This is because the underlying fac-
tors affecting users’ decisions are limited, which gives us rel-
atively stable performance when the latent factors used are
sufficient. In the following experiments, we set r = 60 for
all four algorithms on both of the datasets. Applying more
factors is allowed, but it is sufficient to achieve stable and
satisfactory accuracies according to the experiments.

5.3.2 Augmentation Factor
To investigate the relationship of prediction accuracy with

the augmentation factor c0, we fix the parameters η = 0.01
and r = 60. For the Yelp dataset, we tune c0 in the range
of 0.5 ∼ 1.5 with a tuning step of 0.1, and, for the Dianping
dataset, c0 is tuned from 0.5 to 4 with a tuning step of
0.5. Different ranges and tuning steps are used because we
find that the optimal augmentation factor c0 is different on
different datasets. The experimental results are plotted in
Figure 3.
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Figure 3: RMSE vs different choices of augmenta-
tion factor c0 in the AMF algorithm.

We see that the AMF framework helps to gain better pre-
diction accuracy when appropriate augmentation factors are
given, yet might bring negative effects if c0 is not appropri-
ately set. It is shown that RMSE decreases with the increase
of c0 at the beginning, until an optimal selection of the aug-
mentation factor, and then tends to increase along with c0.
This is mainly because that sampling noise might be in-
troduced when too many augmented extra constraints are
involved. Though these constraints help in reducing the so-
lution space of the LRMF problem and further lead to more
stable convergence in fewer iterations, they might guide the
problem into a deflected optimal solution.

The best prediction accuracy on Yelp is RMSE = 1.231,
with the corresponding augmentation factor c0 = 1.2, and,
on Dianping the best performance RMSE = 0.951 is achieved
when c0 = 2. In the following experiments, we use the best
selection of c0 for both of the two datasets, correspondingly.

5.3.3 Sampling Rate
We investigate the impact of the sampling rate η in the

generalized symmetric Bernoulli distribution. In this exper-
iment, we also set r = 60 on both datasets and use c0 = 1.2
for Yelp, while using c0 = 2 for Dianping. We tune the pa-
rameter η in the range of 10−4 ∼ 10−1 with a tuning step of
timing 10, and in the range of 0.1 ∼ 0.5 with a step of 0.1.
The experimental results are shown in Figure 4 below.
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Figure 4: RMSE vs different sampling rates η.

Similarly, it is observed that an appropriate sampling rate
is required to achieve the optimal prediction accuracy, and
that, whenever η is too small or too large, negative effects
might be introduced. Moreover, the prediction accuracy
might even be worse than NMF, PMF and MMMF when
the sampling rate η is set too high on the Yelp dataset.

To understand the underlying reason for this observation,
we go back to the intuitional effect of η in Algorithm 1.
One can see that a higher η makes the linear constraints
denser, and thus each of the linear constraints, including the
augmented ones, involves more parameters in the estimated
matrix X. In the extreme case where η = 0.5, each of the
linear constraints attempts to restrict each of the estimations
in X. As a result, there, in fact, would be no augmentation
to take advantage of if η is too small, while the augmented
constraints would counteract or eliminate with each other
and even act as noise constraints if η is too large.
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5.4 Stability
To verify the effect on solution space reduction of the AMF

framework, we investigate the AMF algorithm, as well as
the three competing algorithms, in terms of the stability of
the final optimal solutions that they converge to. The pa-
rameters (r, c0, η) are assigned as (60, 1.2, 0.01) on Yelp and
(60, 2, 0.1) on Dianping, and the parameters for NMF, PMF
and MMMF algorithms are the same as those in Section
5.3.1. We calculate the standard deviation σ and the coef-
ficient of variation cv of the 10 RMSE evaluation results on
each of the datasets and for each of the algorithms. The
experimental results are shown in Table 4.

Table 4: The standard deviations σ and coefficient
of variations cv of the evaluation results on RMSE.

σ, cv(×10−2)
NMF PMF MMMF AMF
σ cv σ cv σ cv σ cv

Yelp 1.30 1.04 1.72 1.36 0.94 0.74 0.049 0.040
Dianping 1.86 1.93 2.14 2.13 1.43 1.38 0.093 0.098

We see that the standard deviation and coefficient of vari-
ation in the AMF algorithm are at least an order of mag-
nitude smaller than those of the NMF, PMF and MMMF
algorithms. This observation implies that the optimal solu-
tions achieved in the AMF algorithm are more stable and
further verifies the fact that the augmented constraints help
in reducing the solution space of the LRMF problem, which
is in accordance with the theoretical analysis in Section 4.

The experimental results also show that the variation of
RMSE is more obvious on the Dianping dataset than on
the Yelp dataset. This observation is not surprising because
the inter-city ratings falling into the off-diagonal areas are
hardly effectively constrained, which further expands the so-
lution space of the LRMF problem. As a result, different
initializations of the optimization procedure might result in
different optimal solutions. This experimental result is con-
sistent with our solution space analysis on the BDF struc-
tured matrices in the previous sections.

5.5 Convergence Rate
In this section, we experiment on the convergence rate of

the AMF algorithm in order to further investigate the effect
of conducting augmentation on the constraints in the LRMF
problem. We use the same parameter assignments as those
in Section 5.4 and record the RMSE on the training set in the
model learning process for every 5 iterations, which is called
an epoch, for both the AMF algorithm and the competing
algorithms. The experiments were conducted 10 times, and
the average RMSE is calculated on each epoch. The results
are plotted in Figure 5.
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Figure 5: RMSE on training set vs the number of
iterations in the model learning process.

We see that the training loss tends to be stable after ap-
proximately 30 ∼ 40 iterations in the AMF algorithm, while

it takes 50 or more iterations for NMF and PMF. As for the
MMMF algorithm, training loss tends to decrease consis-
tently in the tuning range. This experimental result implies
the fast convergence rate of the AMF framework, where the
augmented constraints help in guiding the optimization al-
gorithm to converge to an optimal solution.

The underlying reason for this observation can be ex-
plained in relation to two aspects. First, the solution space
itself has been reduced by incorporating the augmented con-
straints, and, second, the extra constraints help in calculat-
ing a more accurate and rigorous descent gradient in Eq.(19)
for model learning in each iteration.

5.6 Computational Efficiency
As the constraints are augmented and extra constraints

are introduced in the AMF framework, the computational
time is increased remarkably in the model learning process.
However, the independence of the constraints makes it easy
to conduct optimization in a simple Map-Reduce framework,
which makes the computational time comparable to that of
the NMF, PMF and MMMF algorithms. In this section, we
report the computational efficiency of the AMF algorithm.

We use dc0re mapping tasks in the Map step to compute
the gradients ∇U ,∇V in Eq.(19) and the step sizes γU , γV
in Eq.(21), and then update U and V in the Reduce step.
We still choose the optimal settings of the parameters (r, η),
where (60, 0.01) is used for Yelp and (60, 0.1) is used for
Dianping. We then tune the parameter c0 to simulate the
augmentation process and record the computational time.
Parameters for the NMF, PMF and MMMF algorithms are
also the same as those in Section 5.3.1. Experimental results
are shown in Figure 6.
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Figure 6: Computational time in minutes vs the aug-
mentation factor c0 on both datasets.

The results show that the computational time of the AMF
algorithm is comparable to the NMF and PMF algorithm
under the Map-Reduce framework with dc0remapping tasks,
where each task processes approximately (m + n) log(mn)
constraints, which is numerically comparable to the original
number of observed values on both datasets.

One might notice that the computational time begins to
rise when c0 = 1.1. This is because the experiments were
conducted on a machine with 64 cores and r = 60 is set
for model learning; thus, when dc0re is greater than 64, the
mapping tasks cannot be truly and efficiently distributed
among the cores. Nevertheless, the relatively stable compu-
tational time when c0 ≤ 1 implies that the nature of par-
allelization of the AMF framework makes it scale efficiently
with the processing power in practical applications.

6. DISCUSSIONS
In this section, we discuss aspects of the presented work

and note some of the future directions.
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The relationship between augmentation and regulariza-
tion, especially the parallel between augmentation and the
Bayesian interpretation of regularization, is of important
theoretical interest in conducting matrix completion. For
example, the frequently used Frobenius norm regularizer is,
actually, guiding the model learning process around a cen-
tral point under the assumption of Gaussian distribution,
while, in the augmentation framework, one can integrate
many distributions satisfying the NIP, where the Gaussian
distribution is only a special case.

The augmentation framework might also be closely related
to other methods like bagging, stacking, or more generally,
ensemble learning. In our understanding, the augmentation
framework is better than a simple bagging method in that
one can appropriately control the resampling procedure to
make the constraints satisfy the NIP. However, a deeper rela-
tionship therein under the background of matrix completion
may bring brand new insights into this well studied problem.

Although the constraints are restricted to linear measure-
ments in this work, they could be much more flexible in that
multiple assumptions can be incorporated into the model by
means of adding rather“direct”constraints constructed from
the observed or unobserved values, instead of only incorpo-
rating a single and simple Gaussian distribution assumption
in the regularization approach. In addition, we can even
integrate various types of external information beyond nu-
merical ratings into the augmented constraints.

We will investigate the deep relationship between augmen-
tation, regularization and ensemble learning both theoreti-
cally and practically, as well as take more general non-linear
constraints into consideration in the further work.

7. CONCLUSIONS
The problem of data sparsity leads to multiple global op-

tima in matrix factorization algorithms, which further leads
to unreliable predictions. In this paper, we investigated the
data sparsity with solution space analysis of low rank matrix
factorization algorithms, under the conditions of restricted
and nearly isometric properties of the linear maps. We found
that two basic requirements should be satisfied for reliable
completion of matrices in real-world applications, which was
verified by the case studies on several frequently used pub-
lic datasets. Based on these theoretical analyses, we further
designed the augmented matrix factorization framework to
improve the performance of low-rank matrix factorization.
Extensive experimental studies demonstrated the new AMF
framework in terms of prediction accuracy, stability, conver-
gence rate and computational efficiency.
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