
Graph Collaborative Reasoning
Hanxiong Chen

Rutgers University

New Brunswick, NJ, US

hanxiong.chen@rutgers.edu

Yunqi Li

Rutgers University

New Brunswick, NJ, US

yunqi.li@rutgers.edu

Shaoyun Shi

Tsinghua University

Beijing, China

shisy17@mails.tsinghua.edu.cn

Shuchang Liu

Rutgers University

New Brunswick, NJ, US

shuchang.liu@rutgers.edu

He Zhu

Rutgers University

New Brunswick, NJ, US

hz375@cs.rutgers.edu

Yongfeng Zhang

Rutgers University

New Brunswick, NJ, US

yongfeng.zhang@rutgers.edu

ABSTRACT
Graphs can represent relational information among entities and

graph structures are widely used in many intelligent tasks such as

search, recommendation, and question answering. However, most

of the graph-structured data in practice suffers from incompleteness,

and thus link prediction becomes an important research problem.

Though many models are proposed for link prediction, the follow-

ing two problems are still less explored: (1) Most methods model

each link independently without making use of the rich information

from relevant links, and (2) existing models are mostly designed

based on associative learning and do not take reasoning into con-

sideration. With these concerns, in this paper, we propose Graph

Collaborative Reasoning (GCR), which can use the neighbor link

information for relational reasoning on graphs from logical reason-

ing perspectives. We provide a simple approach to translate a graph

structure into logical expressions, so that the link prediction task

can be converted into a neural logic reasoning problem. We apply

logical constrained neural modules to build the network architec-

ture according to the logical expression and use back propagation to

efficiently learn the model parameters, which bridges differentiable

learning and symbolic reasoning in a unified architecture. To show

the effectiveness of our work, we conduct experiments on graph-

related tasks such as link prediction and recommendation based on

commonly used benchmark datasets, and our graph collaborative

reasoning approach achieves state-of-the-art performance.

CCS CONCEPTS
• Computing methodologies→ Logical and relational learn-
ing;Machine learning; Neural networks; • Information sys-
tems→ Recommender systems.

KEYWORDS
Collaborative Reasoning; Relational Reasoning; Neural-Symbolic

Learning and Reasoning; GNNs; Recommendation; Link Prediction

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9132-0/22/02. . . $15.00

https://doi.org/10.1145/3488560.3498410

ACM Reference Format:
HanxiongChen, Yunqi Li, Shaoyun Shi, Shuchang Liu, He Zhu, and Yongfeng

Zhang. 2022. Graph Collaborative Reasoning. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining (WSDM ’22),
February 21–25, 2022, Tempe, AZ, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3488560.3498410

1 INTRODUCTION
Graph is able to describe the entities and their relations inmany real-

world systems and research problems, such as e-commerce user-

item interactions, social networks, citation networks and knowl-

edge graphs. Though graphs can encode rich relationships among

plenty of entities, they still suffer from incompleteness [28, 39].

This issue gives rise to the link prediction task, which is to learn

representations from the known data and then predict the potential

valid connections. Link prediction is essential to many tasks such as

knowledge graph reasoning, entity search, recommender systems

and question answering.

Recent years have witness the success of knowledge graph em-

bedding methods for link prediction [2, 5, 34, 41, 42]. The basic idea

is to encode the entities and their relations into a low dimensional

vector space while the inherent structure information of the graph

is preserved. However, one drawback of these embedding-based

models is that they usually process each (entity, relation, entity)
triplet independently without explicitly considering the informa-

tion from neighborhood links, though information from neighbour-

hood nodes is considered. As a result, these methods are not able

to capture the rich information from the neighbor connections and

hence result in less informative embeddings [1, 20].

Another line of research is graph neural networks (GNNs), which

have shown the power in many graph-related problems [11, 15, 36].

These approaches are able to learn effective entity representations

by aggregating its own representation and the representations of

surrounding neighbors. The nodes in the graph can exchange infor-

mation through message passing [7], which alleviates the problem

of aforementioned embedding-based methods. Despite that GNNs

could capture more information than those shallow embedding-

based models, their key idea for handling link prediction tasks

are actually similar—they aim to learn embeddings to capture the

similarity patterns among entities, so that link prediction can be

conducted by calculating the similarity for a pair of nodes over

a specific relation. However, most GNN approaches are designed

from a perceptual perspective and they seldom consider the logical

relationship among entities and links for relational reasoning.

https://doi.org/10.1145/3488560.3498410
https://doi.org/10.1145/3488560.3498410

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA Hanxiong Chen, Yunqi Li, Shaoyun Shi, Shuchang Liu, He Zhu, and Yongfeng Zhang

Logical reasoning is an essential and many times a natural way

to conduct reasoning on graphs for two reasons. First, many triplets

in the graph may be logically related and can be modeled together

through logical connections. Take knowledge graph for example,

the triplet (x, capitalOf, y) logically implies the relation (x, locatedIn,
y). Thus, we can use implication operations in predicate logic to de-

scribe this connection between the two triplets as (x, capitalOf, y)
→ (x, locatedIn, y). The logical relationship among triplets, if ac-

curately captured, would be helpful for predicting unknown links.

Second, each triplet can be naturally represented as a predicate in

logical reasoning, which makes it easy to model the link prediction

task as a reasoning process. For example, we can treat the target

triplet (x, locatedIn, y) as a predicate expression locatedIn(x,y). Then,
the link prediction task can be formulated as answering whether

the logical expression capitalOf(x,y)→ locatedIn(x,y) is true, given
that the predicate capitalOf(x,y) is true. If the logical expression is

true, then we can infer that the target predicate should be true. In

other words, the target triplet is a valid link.

In this paper, we explore an approach that transforms the link

prediction task into a logical reasoning process on graphs. Our goal

is to model the structure of a graph as simple Horn clauses so that

link prediction can be conducted via logical reasoning. Inspired

by [3, 31], we apply modularized logical neural networks to learn

the logical operations. Instead of using explicit hand-crafted logic

rules as many previous approaches did, we introduce a method to

convert graph structures into Horn clauses as potential rules to be

learnt. The logical relations can be captured by the neural networks

so that relational reasoning can be conducted on graphs.

Technically, we propose a Graph Collaborative Reasoning (GCR)

framework for relational reasoning over graphs. Specifically, we

consider that links (or triplets) are potentially related to each other

if they are connected by shared nodes. Based on this, we can infer

a link through its neighbor links for relational reasoning. To com-

pute the Horn clauses via deep neural networks, we encode each

triplet as a predicate embedding, i.e., each entity in a given triplet is

represented as a vector embedding and each relation is modeled as

a neural module to encode the triplet. With the encoded predicate

embeddings, we can construct the network structure using the neu-

ral modules in accordance with the modeled Horn clauses. The key

benefits of our design compared to previous works are four aspects.

First, we can take advantage of GNN strategies to aggregate rich

information from neighbor links through message passing to make

link predictions. Second, we consider logical reasoning for link pre-

diction, which can make use of the logical relationships between

links. Third, we incorporate logical reasoning without manually

predefined rules, which makes our method easily adaptable to differ-

ent scenarios. Finally, our model can handle uncertainty in logical

reasoning. Our contributions can be summarized as follows:

• We introduce a new view of the link prediction task from

logical reasoning perspectives. In this way, the link predic-

tion task is translated into a true/false evaluation problem

of predicate logical expressions.

• Wepropose the Graph Collaborative Reasoning (GCR)model,

which conducts relational reasoning by taking advantage of

the neighbor link information for message passing.

• We show the effectiveness of our approach on various graph

relational reasoning tasks on several real-world graph datasets.

In the following, we will present related works in Section 2. After

that, in Section 3, we formalize the link prediction task in logical

language. Section 4 presents the details of our model and Section 5

gives our experimental setup and results. We will conclude this

work with outlooks for future work in Section 6.

2 RELATEDWORKS
Existing techniques for link prediction can be roughly classified

into three categories: translation-based, tensor factorization-based,

and neural network-based. The translation-based models [2, 13,

17, 41, 43] translate a head embedding into a tail embedding via a

relation. The scoring function is defined as the distance between

the translated head embedding and the tail embedding. Tensor

factorization-based methods, such as RESCAL [23], ComplEx [34],

RotatE [32], DistMult [42] and HolE [22], consider the graph as a

3D adjacency matrix, which represents the head, tail and relation

embeddings along each dimension. They apply operations such as

linear mapping (RotatE), bilinear mapping (DistMult and ComplEx)

or circular correlation operation (HolE) to obtain low-dimensional

representations for each entity and relation. The deficiency of these

methods lie in treating each triplet independently and thus the rich

structural information in the graph cannot be adequately used.

Neural network-based methods, such as CNN-based [5, 21] and

GNN-based [30, 35] methods, use neural network structures to cap-

ture the rich information among the links. CNN-based methods,

such as ConvE [5], use 2D convolution layers to extract the relation-

ships between head entity embeddings and relation embeddings.

The relations are represented as multiple feature maps, which are

obtained through various filters. Then all these feature maps are

concatenated and fed into a fully connected layer to get the pro-

jected embeddings for similarity calculation with the tail entity

embeddings. These models still consider each triplet independently

which also suffer from the aforementioned problem. GNN-based

models, such as GCN [15], GAT [36] and GraphSAGE [11], can help

to resolve this issue by using message passing strategy to aggregate

information from neighbor nodes so as to enrich the vector repre-

sentation of each entity. Since the original design of these models

are based on homogeneous graphs, they are unable to handle multi-

relational link prediction tasks. Later, an extension of GCN named

R-GCN [30] is proposed to deal with multi-relational data. How-

ever, none of the above methods consider the logical relationships

between nodes/links in the graph for relational reasoning.

Recently, there have been some research works on integrating

logic into link prediction. The related approaches can be broadly

classified into hard-logic-based and soft-logic-based methods. The

hard-logic-based methods focus on applying hard logic rules to the

learning process [4, 9, 27, 37, 38]. The problem of using hard logic

rules is that the model does not tolerate to any violation. As a result,

the logic rules need to be carefully designed and the application

scenarios can be limited. For example, the hard-rule-based methods

are able to handle rules like “𝑥 is the capital of 𝑦 implies 𝑥 is located

in 𝑦,” however, they can hardly deal with rules like “user purchased

a cellphone 𝑥 implies that user probably will purchase a phone case

𝑦,” since the rule can be violated in some cases.

To solve the problem, soft-logic-based methods try to handle this

uncertainty by using soft logic constraints, which assign probabili-

ties to the logic rules to make the model more tolerate to exceptions

Graph Collaborative Reasoning WSDM ’22, February 21–25, 2022, Tempe, AZ, USA

[8, 10, 12, 24, 25, 44, 45]. One powerful model is pLogicNet [24],

which is based onMarkov Logic Network. It can learn the weight for

each predefined logic rule to handle uncertainty and noise. However,

these models usually need to ground the logic rules by traversing

all potential valid links in a graph, which makes these methods

difficult to scale to large graphs. Though recent works try to get rid

of the grounding process by directly adding rule-based constraints

on the relation vector representations [6, 8, 19], they can only deal

with simple rules such as (𝑥, ℎ𝑦𝑝𝑒𝑟𝑛𝑦𝑚,𝑦) → (𝑦,ℎ𝑦𝑝𝑜𝑛𝑦𝑚, 𝑥).
All of the aforementioned logical rule-based methods need ex-

plicitly predefined logic rules either as part of a pipelined frame-

work or as a constraint of the learning process. This makes the

model highly dependent on the effectiveness of the predefined logic

rules. An open challenge, as mentioned in [8], is to design models

that can handle not only simple (manually) designed rules but also

complex learned rules while considering the scalability and un-

certainty. Although soft-logic-based methods can be more flexible

than hard-logic-based approaches, these works all need the back-

ground knowledge of the data so that logical rules can be created

reasonably, which needs considerable manual efforts.

3 PROBLEM FORMULATION
The link prediction task predicts the potential connections among

nodes/entities from the known information in a graph. Different

from previous works which treat each triplet independently, we con-

sider that triplets may have potential relations to each other if they

have shared nodes. This information is helpful in many cases. For

example, in a social network, the reason that Alice and Bob follow

each other is probably because of their common habits. That means

the triplet (Alice, follows, Bob) is valid due to (Alice, likes, Pop) and
(Bob, likes, Pop), which can be represented as the logical expression

likes(Alice, Pop) ∧ likes(Bob, Pop) → follows(Alice, Bob). Based on

this, we can take advantage of the neighbor information to help link

prediction. To realize this idea, we model the link prediction task in

three steps: 1) convert the graph structure into a logic expression; 2)

use neural modules to encode triplets as predicate embeddings; 3)

apply logical constrained modules to generate ranking scores. The

details for step 2) and 3) will be given in Section 4. In this section,

we focus on how to convert an graph structure into a logic expres-

sion and how to formulate the link prediction task as a true/false

evaluation problem of logical expressions.

Suppose we have a graph G = (V,R,T), whereV is the vertex

set, R is the relation set, and the known triplets (edges) in the graph

are represented as T . For any 𝑣𝑖 , 𝑣 𝑗 ∈ V and a relation 𝑟𝑘 ∈ R, we
need to predict if the target triplet 𝑇𝑥 = (𝑣𝑖 , 𝑟𝑘 , 𝑣 𝑗) is valid, where
𝑇𝑥 ∉ T . To solve this problem, we first get the neighbors of both 𝑣𝑖
and 𝑣 𝑗 and get all the triplets T𝑖 𝑗 that contain either 𝑣𝑖 or 𝑣 𝑗 .

T𝑖 𝑗 = {(𝑣𝑖 , 𝑟𝑖𝑛, 𝑣𝑛) |𝑣𝑛 ∈ N𝑖 } ∪ {(𝑣 𝑗 , 𝑟 𝑗𝑚, 𝑣𝑚) |𝑣𝑚 ∈ N𝑗 }
= {𝑟𝑖𝑛 (𝑣𝑖 , 𝑣𝑛) |𝑣𝑛 ∈ N𝑖 } ∪ {𝑟 𝑗𝑚 (𝑣 𝑗 , 𝑣𝑚) |𝑣𝑚 ∈ N𝑗 }

(1)

where N𝑖 and N𝑗 are the neighbor vertex sets of node 𝑣𝑖 and 𝑣 𝑗 ,

respectively, and the link is considered as a predicate. Since it is

possible that not all the triplets in T𝑖 𝑗 are the reasons of the target
triplet 𝑇𝑥 , we apply the OR operator to model the prediction task.

The intuition here is that: the reason that 𝑇𝑥 holds could be any of

its neighbour links or any combination of its neighbour links. We

translate this idea into the following expression:

(𝑇1 → 𝑇𝑥) ∨ (𝑇2 → 𝑇𝑥) ∨ · · · ∨ (𝑇𝑛 → 𝑇𝑥)
∨ (𝑇1 ∧𝑇2 → 𝑇𝑥) ∨ (𝑇1 ∧𝑇3 → 𝑇𝑥) ∨ · · · ∨ (𝑇𝑛−1 ∧𝑇𝑛 → 𝑇𝑥)
∨ (𝑇1 ∧𝑇2 ∧𝑇3 → 𝑇𝑥) ∨ · · · ∨ (𝑇𝑛−2 ∧𝑇𝑛−1 ∧𝑇𝑛 → 𝑇𝑥)
· · ·

∨ (𝑇1 ∧𝑇2 ∧ · · · ∧𝑇𝑛 → 𝑇𝑥)
(2)

where 𝑇1,𝑇2 · · ·𝑇𝑛 are triplets in T𝑖 𝑗 , and “→” is called the impli-

cation operation
1
. This expression contains not only simple Horn

clauses, such as (𝑇1 → 𝑇𝑥), but also higher-order Horn clauses,

such as (𝑇1 ∧ 𝑇2 → 𝑇𝑥) and (𝑇1 ∧ 𝑇2 ∧ · · · ∧ 𝑇𝑛 → 𝑇𝑥). Based on

this definition, we have the following theorem:

Theorem 1. Equation (2) is true if and only if 𝑇𝑥 is true.

To show why, we first have the following lemma:

Lemma 2. Let the premise 𝑝 be true, then the clause 𝑝 → 𝑞 is true
if and only if the conclusion 𝑞 is true.

The lemma naturally follows from the definition of the implica-

tion operation: 𝑝 → 𝑞 ⇔ ¬𝑝 ∨ 𝑞. Now back to Theorem 1, since

all of the known triplets in the training data are valid, we know

that each 𝑇∗ ∈ T𝑖 𝑗 is true, and thus any conjunction among 𝑇∗ is
also true. As a result, if 𝑇𝑥 is true, then Eq.(2) must be true, and

if Eq.(2) is true, we know that at least one of the Horn clauses in

Eq.(2) must be true, and thus 𝑇𝑥 must be true, meaning that 𝑇𝑥 is

a valid triplet. Now the problem of judging if a target triplet 𝑇𝑥 is

valid or not becomes answering the question that whether the logic

expression in Eq.(2) is true given the known triplets. The intuition

here is that𝑇𝑥 is true as long as at least one of its known neighbour

connections or their conjunctions can imply 𝑇𝑥 .

However, one problem is that the size of the expression is huge,

which is equal to 𝑂 (2𝑛)—the size of the power set of T𝑖 𝑗 , making

it impractical to implement Eq.(2). Fortunately, we can simplify

the expression in Eq.(2) through implication rule and De Morgan’s

Law
2
, which translates Eq.(2) into following simplified form:

¬𝑇1 ∨ ¬𝑇2 ∨ · · · ∨ ¬𝑇𝑛 ∨𝑇𝑥 (3)

Compare to the 𝑂 (2𝑛) complexity of Expression (2), the com-

plexity of Expression (3) is only𝑂 (𝑛). We will use Expression (3) for

our model implementation. In the next section, we will introduce

how to encode triplets into embeddings and then build logic neural

networks to generate ranking scores for relational reasoning.

4 GRAPH COLLABORATIVE REASONING
Our GCR framework views a graph from the edge perspective and

aims to learn the relationship between adjacent edges that are

connected by common nodes. Instead, traditional GNN views a

graph from the node perspective and aims to learn the relation-

ship between nodes that are connected by common edges. In Fig-

ure 1, we use an example to show how a link prediction task on

a heterogeneous graph can be viewed from logical perspective.

In this example, we hope to predict if node 𝑣1 and 𝑣2 could be

1
In classical logic, 𝑝 → 𝑞 is equivalent to ¬𝑝 ∨ 𝑞

2
De Morgan’s Law, in formal language, is written as ¬(𝑝 ∨ 𝑞) ⇔ ¬𝑝 ∧ ¬𝑞 and

¬(𝑝 ∧ 𝑞) ⇔ ¬𝑝 ∨ ¬𝑞

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA Hanxiong Chen, Yunqi Li, Shaoyun Shi, Shuchang Liu, He Zhu, and Yongfeng Zhang

Figure 1: An example of link prediction on a heterogeneous
graph. From a logical view, 𝑟𝑥 (𝑣1, 𝑣2) to be true could result
from any order of combinations of the neighbor links, e.g.
first-order 𝑟1 (𝑣1, 𝑣4), second-order 𝑟1 (𝑣1, 𝑣4) ∧ 𝑟2 (𝑣2, 𝑣6) or even
higher-order 𝑟1 (𝑣1, 𝑣4) ∧ 𝑟2 (𝑣1, 𝑣3) ∧ . . . ∧ 𝑟3 (𝑣2, 𝑣5).

connected by relation 𝑟𝑥 . Intuitively, 𝑟𝑥 (𝑣1, 𝑣2) could be true due

to: 1) any first-order implication, e.g. 𝑟1 (𝑣1, 𝑣4) → 𝑟𝑥 (𝑣1, 𝑣2) or
𝑟3 (𝑣2, 𝑣5) → 𝑟𝑥 (𝑣1, 𝑣2) is true, or 2) any second-order implication,

e.g. 𝑟1 (𝑣1, 𝑣4) ∧ 𝑟2 (𝑣2, 𝑣6) → 𝑟𝑥 (𝑣1, 𝑣2) is true, or even higher-order

implication, e.g. 𝑟1 (𝑣1, 𝑣4) ∧𝑟2 (𝑣1, 𝑣3) ∧ . . .∧𝑟3 (𝑣2, 𝑣5) → 𝑟𝑥 (𝑣1, 𝑣2)
is true. With Eq.(3), this problem can be simplified as predicting if

the following expression consisting of all neighbour links is true:

¬𝑟1 (𝑣1, 𝑣4)∨¬𝑟2 (𝑣1, 𝑣3)∨¬𝑟2 (𝑣2, 𝑣6)∨¬𝑟3 (𝑣2, 𝑣5)∨¬𝑟4 (𝑣2, 𝑣7)∨𝑟𝑥 (𝑣1, 𝑣2)
(4)

In the following subsections, we will show the details of our

graph collaborative reasoning framework.

4.1 Node and Link Encoding
We treat each type of relation in the graph as a predicate, e.g., each

of the previously mentioned relations such as 𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑂 𝑓 , 𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐼𝑛,

𝑓 𝑜𝑙𝑙𝑜𝑤𝑠 , 𝑙𝑖𝑘𝑒𝑠 is a predicate. We learn each node as a vector embed-

ding, same as traditional graph neural networks. Meanwhile, we

learn each predicate (relation type) as a small neural module. The

predicate serves as a function that converts the two connected

nodes into a latent vector in the reasoning space, e.g., to pro-

cess the link (𝐴𝑙𝑖𝑐𝑒, 𝑙𝑖𝑘𝑒𝑠, 𝑃𝑜𝑝), we write it as the predicate form
𝑙𝑖𝑘𝑒𝑠 (𝐴𝑙𝑖𝑐𝑒, 𝑃𝑜𝑝), then the node embeddings of 𝐴𝑙𝑖𝑐𝑒 and 𝑃𝑜𝑝 are

fed into the neural module of 𝑙𝑖𝑘𝑒𝑠 to get the output representation

for this link. More specifically, the encoding process is given as:

e𝑟
ℎ,𝑡

= 𝑃𝑟 (eℎ, e𝑡) = W𝑟
2
𝜙 (W𝑟

1
(eℎ ; e𝑡) + b𝑟1) + b

𝑟
2

(5)

where 𝑃𝑟 (·, ·) is the predicate function for relation 𝑟 ∈ R; eℎ, e𝑡 ∈
R𝑑 are embeddings for head and tail entities; (·; ·) is concatenation
operation; 𝜙 (·) is ReLU activation function;W𝑟

1
,W𝑟

2
∈ R𝑛×2𝑑 and

b𝑟
1
, b𝑟

2
∈ R𝑛 are network parameters and bias terms. Here e𝑟

ℎ,𝑡
is

the predicate embedding of the triplet (𝑣ℎ, 𝑟 , 𝑣𝑡). One thing we

need to clarify here is that the order of the head and tail entity

embeddings must be correctly sorted during the implementation,

because we use concatenation operation to combine the head and

tail embeddings, different ordering of head and tail concatenation

will result in different outputs. However, this can be a problem for

undirected graphs where the triplet (ℎ, 𝑟, 𝑡) should have the same

vector representation as (𝑡, 𝑟, ℎ). In our implementation, we solve

this problem by assigning a unique ID to each vertex in the graph

and sort their ID in ascending order. This will make sure that the

triplet always comes with the smaller ID entity as the head entity

while the bigger ID entity as the tail entity. For directed graphs, we

will not conduct the sorting operation since the ordering is part of

the graph information.

Figure 2: The logical network structure of the link predic-
tion task given in Figure 1. The network is assembled using
the logical equivalent expression which is converted via De
Morgan’s Law.

4.2 Logical Reasoning Modules
After obtaining all the encoded triplet vectors, we can rewrite the

Expression (3) in the predicate embedding form:

(¬e𝑟𝑖𝑛1
𝑖,𝑛1

∨ ¬e𝑟𝑖𝑛2
𝑖,𝑛2

∨ . . . ∨ ¬e𝑟 𝑗𝑚1

𝑗,𝑚1

∨ ¬e𝑟 𝑗𝑚2

𝑗,𝑚2

) ∨ e𝑟𝑥
𝑖, 𝑗

(6)

Here e𝑟𝑥
𝑖, 𝑗

represents the predicate embedding for the target triplet

𝑇𝑥 = (𝑣𝑖 , 𝑟𝑥 , 𝑣 𝑗). Since the target triplet is unknown and need to

be predicted, we use 𝑟𝑥 instead of 𝑟𝑖, 𝑗 to make the notation con-

cise. e
𝑟𝑖𝑛𝑘
𝑖,𝑛𝑘

and e
𝑟 𝑗𝑚𝑘

𝑗,𝑚𝑘
are the encoded predicate embeddings for the

known neighbour triplets in the graph that contain either 𝑣𝑖 or

𝑣 𝑗 . Our goal is to predict if the above logical expression is true

in a continuous reasoning space. We define a constant vector T,
which is an anchor vector in the reasoning space that represents

true. It is randomly initialized and kept unchanged during model

training. We expect that the final vector representation of the entire

expression is close to this true vector T if the target triplet 𝑇𝑥 is

valid. Otherwise, the vector representation of the logical expression

should be far from T.
To achieve this goal, we create neural modules OR(·, ·) and

NOT(·) to represent the logical operations ∨ and ¬, where each
module is an MLP with ReLU as activation function. To allow the

neural logical modules to perform logical operations as expected,

we add logical regularizers to the neural modules to constrain their

behavior as defined in [3, 31]. The regularizers are not only added

to the input predicate embeddings but also to the intermediate hid-

den vectors as well as the output vector to guarantee that all the

embeddings are in the same representation and reasoning space.

The logic constraint is represented as L𝑙𝑜𝑔𝑖𝑐 .
With these logical modules, we can then assemble a neural net-

work for Expression (6). To make the explanation easy to follow,

we use a specific example as shown in Figure 2 to explain the net-

work construction process. This reasoning network structure is

corresponding to the heterogeneous graph given in the Figure 1.

Suppose we are given two vertices 𝑣1 and 𝑣2, our goal is to predict if

they could have a valid connection through relation 𝑟𝑥 . According

to the steps mentioned before, we need to first find the neighbors

of both 𝑣1 and 𝑣2, in this example are {𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7}. Then we

feed these vertex pairs into the corresponding predicate encoders

to get the predicate embeddings based on Eq.(5). By sending these

predicate embeddings into the NOT(·) module, we can calculate

Graph Collaborative Reasoning WSDM ’22, February 21–25, 2022, Tempe, AZ, USA

the negated embeddings, e.g. ¬e𝑟1
1,4

. After that, we follow the struc-

ture of Eq.(6) to send the target predicate embedding e𝑟𝑥
1,2

together

with the negated embeddings into the OR(·, ·) module to get the

final vector representation of the entire expression in the reasoning

space. Since OR(·, ·) only takes two inputs at one time, we calcu-

late the joint embedding for more than two predicate embeddings

in a recurrent manner. That is, we first send two predicates, e.g.

¬e𝑟1
1,4

and ¬e𝑟2
1,3

in Figure 2, into the OR module and get the hidden

vector e𝑟1,𝑟2 , which represents the result of ¬e𝑟1
1,4
∨ ¬e𝑟2

1,3
. The next

predicate embedding in the expression and the previous hidden

vector e𝑟1,𝑟2 will be sent into the same OR neural module. This

process is recurrently conducted until we get the final vector rep-

resentation of the entire logical expression. However, we need to

guarantee that the order information will not affect the final output

since the logical OR operation need to satisfy the associativity and

commutativity laws. This is done by randomly shuffling the order

of the expression terms in each iteration. The following equations

describe the process shown in Figure 2:

¬e𝑟𝑘
𝑖, 𝑗

= NOT(e𝑟𝑘
𝑖, 𝑗
),∀𝑖, 𝑗

E = OR

(
¬e𝑟1

1,4
,¬e𝑟2

1,3
, · · · ,¬e𝑟4

2,7
, e𝑟𝑥

1,2

) (7)

For expressions that have more predicate embeddings in the

expression, we can simply add more recurrent steps and do the

same operation as mentioned above. The final output E is the vector

representation of the whole expression in the form of Eq.(6). The

next step is to evaluate the distance between E and the constant true

vector T. As stated before, this true vector is randomly initialized

and will not be updated during the learning process, as a result, it

can be treated as an anchor vector in the reasoning space. Here we

apply cosine similarity as the measure:

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚(E,T) = E · T
∥E∥∥T∥ (8)

This cosine similarity measure is the score function and the output

is treated as the ranking score to generate the entity ranking list.

4.3 Learning Algorithm
We use pair-wise learning algorithm [26] to train our model. Specif-

ically, during the training process, for each known triplet in the

training set, we fix the head entity and their corresponding relation

and sample another entity as the tail. We treat expression created

by this fake triplet 𝑇 ′𝑥 as the negative sample. The same operation

can be done one more time by holding the tail entity unchanged

and replace the head entity. One thing need to mention here is that

the neighbors to be sampled for creating the logic expression are

never changed even when the head or tail entity is replaced, i.e., the

only change in Eq.(3) is to replace 𝑇𝑥 with 𝑇 ′𝑥 . The expression for

the valid triplet, known as the positive sample, is evaluated based

on Eq.(8) and we have the score 𝑠+
𝑇
, while the score for negative

sample is 𝑠−
𝑇 ′ . The loss function is written as:

L𝑔𝑐𝑟 = −
∑︁

𝑇 ∈T,𝑇 ′∉T
ln𝜎 (𝛼 (𝑠+𝑇 − 𝑠

−
𝑇 ′)) (9)

where 𝜎 (·) is the logistic sigmoid function 𝜎 (𝑥) = 1

1+𝑒−𝑥 ; 𝛼 is an

amplification coefficient, which is set to 10 in our implementation.

We can apply an optimization algorithm to minimize L𝑔𝑐𝑟 so as

Table 1: Statistics of the recommendation datasets.

Dataset #Users #Items #Interaction Density

Beauty 22,363 12,101 198,502 0.073%

Clothing 39,387 23,033 278,677 0.031%

to maximize the distance between positive and negative samples.

By integrating the logical regularizers into the graph collaborative

reasoning network loss, we get the final loss function:

L = L𝑔𝑐𝑟 + _𝑙L𝑙𝑜𝑔𝑖𝑐 + _Θ | |Θ| |22 (10)

where _𝑙 is the coefficient of the logical regularizers;Θ represents all

the trainable parameters of the model, including entity embeddings,

predicate encoder parameters and the parameters of the neural log-

ical modules; _Θ is the ℓ2-norm regularization weight; We use back

propagation [29] to optimize the model parameters. The pseudo-

code for the entire training algorithm, including neighbor sampling,

is given in Appendix A.

5 EXPERIMENTS
In this section, we evaluate our proposed model on two types of

link prediction tasks—graph link prediction and recommendation.

The reason why we choose these two tasks for evaluation are based

on two considerations: the uncertainty of the target links and the

type of the graph structure.

Knowledge graph is a type of heterogeneous graph that contains

multi-type relations among entities, which makes the link predic-

tion task challenging. It requires the model to predict not only if

two entities will be connected but also determine which type of

relation connects them. The information in knowledge graphs is

usually based on objective facts. That means each link can only be

grounded as either true or false—not anything in between—since

the links represent facts. Recommendation task usually considers a

bipartite graph, which takes user and item as two types of nodes.

The model needs to predict if a user and an item can be potentially

connected so that we can recommend an item to a target user. The

challenge is that the data is human generated which contains un-

certainty and noise, so that it is usually not suitable to assign a

deterministic truth value for a specific pair of nodes.

As we mentioned before, our model can handle the uncertainty

for relational reasoning over multi-relational graphs, we choose

these two tasks to verify the effectiveness of our graph collaborative

reasoning model by answering the following research questions:

• RQ1: What is the performance of GCR in terms of graph link

prediction and recommendation tasks? Does it outperform

state-of-the-art models? (Section 5.4)

• RQ2: If and how does the logic regularizer help to improve

the performance? (Section 5.5)

• RQ3: What is the impact of logical reasoning on few-shot

data? (Section 5.6)

5.1 Datasets
For graph link prediction task, we use a well-known dataset FB15k-
237 [33], which is a subset of FB15k by removing the inverse re-

lations in the training set to avoid data leakage. It contains 14,541

entities and 237 relations. The training dataset contains 272,115

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA Hanxiong Chen, Yunqi Li, Shaoyun Shi, Shuchang Liu, He Zhu, and Yongfeng Zhang

Table 2: Baseline models used for either graph link prediction task or recommendation task.

Baseline TransE DistMult ConvE R-GCN pLogicNet pGAT BPR-MF NCR NGCF

KG Completion ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

Recommendation ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

edges while the validation and testing sets contain 17,535 and 20,466

edges, respectively. In the experiment, we use the same training,

validation and testing data splits as described in [33].

For recommendation task, we use a publicly available Amazon

e-commerce dataset [18], which includes the user, item and rating

information. The user-item interaction matrix can be viewed as a

bipartite graph with two types of nodes, i.e. user and item, and a sin-

gle relation, which is the purchase relation in e-commerce scenario.

This is a sparse dataset which makes personalized recommendation

challenging. We take Beauty and Clothing sub-categories for our

experiments to explore both the link prediction performance and

how our model performs in few-shot scenarios. Statistics of the

datasets are shown in Table 1.

5.2 Baselines
We select several representative models for graph link prediction

and recommendation to evaluate the performance of our proposed

method. For graph link prediction, we use translation-based, tensor

factorization-based, neural network-based as well as logic-based

baselines for performance comparison.

• TransE [2]: A classical translation-based knowledge graph

embedding algorithm. The scoring function for each triplet

is given as ∥h + r − t∥𝑝 , where h, r, t are entity and relation

embeddings and ∥ · ∥𝑝 is the 𝑝-norm of the output vector.

• DistMult [42]: This is a tensor factorization-based knowl-

edge graph embedding algorithm, which is a bilinear diago-

nal model.

• ConvE [5]: This approach uses 2D-convolutional operation

over embeddings to capture the information from the triplets,

which is one of the state-of-the-art models on graph link

prediction.

• R-GCN [30]: This is a graph neural network based method,

which extends Graph Convolutional Network (GCN) [15] to

handle multi-relational link prediction tasks.

• pLogicNet [24]: The Probabilistic Logic Network, which

is a logic-based relational reasoning model. It defines the

joint distribution of all possible triplets trough Markov Logic

Network (MLN) with logic rules, so that the optimization

process can be efficient.

• pGAT [12]: This is a state-of-the-art MLN-based relational

reasoning model, which combines MLNwith graph attention

network for link prediction.

For recommendation task, we also use the TransE, DistMult
and ConvE knowledge graph embedding models as baselines since

these models can also handle recommendation tasks. Other than

that, we also use three recommendation models to explore if the

GCR relational reasoning model can outperform those models that

are specifically designed for recommendation, including:

• BPR-MF [26]: This is a pair-wise ranking model for rec-

ommendation. We implement the prediction function under

the BPR framework by following [16], which considers user,

item and global bias terms for matrix factorization.

• NCR [3]: This is a state-of-the-art reasoning-based recom-

mendation framework. It utilizes neural logic reasoning to

model recommendation tasks.

• NGCF [40]: This is an extension of GCN for recommen-

dation task. It allows for multi-hop user-item information

aggregation via message passing to enhance the user and

item embeddings for recommendation.

We use Table 2 to show which baseline model can be used for

which link prediction task. For reproducibility, we present the de-

tails of the experimental setup for training and evaluating ourmodel

and baselines in Appendix B.

5.3 Evaluation Protocol
5.3.1 Link Prediction. In the evaluation step, for each triplet,

we first hold the head entity and replace the tail entity with ones

that the head entity is not connected to. Then we do the same

operation to hold the tail entity and replace the head entity. We

call these generated non-existent triplets as negative samples. For

each triplet and its corresponding negative samples, we calculate

their evaluation metrics. The final results are averaged over all the

triplets. We follow existing works [2, 42] and use the filtered setting

for evaluation. We report Mean Reciprocal Rank (MRR) and top-𝐾

Hit rate (Hit@𝐾) evaluation metrics in our results.

5.3.2 Recommendation. In recommendation task, for each user-

item interaction, we only sample items for each user that the user

has never interacted with. Then these negative samples together

with the target triplets constitute a user ranking list. Then we cal-

culate the corresponding ranking score for each user and report the

final scores by averaging over all the users. Here we use Normal-

ized Discounted Cumulative Gain (NDCG@𝐾) and Hit rate (Hit@𝐾)

metrics in our recommendation evaluation.

5.4 Overall Performance of GCR (RQ1)
We report the overall performance for graph link prediction and

recommendation tasks in Table 3.

For the graph link prediction task, from the results, we see that

our GCR model significantly outperforms all the baselines on MRR

and Hit@1. The good performance on MRR and Hit@1 indicates

that our model can generate high-quality predictions by ranking the

correct target at top positions. Although Hit@3 is not better than

pGAT, the performance is still competitive. According to the results,

we observe that logic-based methods can consistently outperform

the other non-logical models. This indicates the effectiveness of

applying logic to graph link prediction tasks.

Graph Collaborative Reasoning WSDM ’22, February 21–25, 2022, Tempe, AZ, USA

Table 3: Link prediction performance on three datasets with metrics NDCG (N) and Hit Ratio (HR). We use underline (number)
to show the best result among the baselines, and use bold font to mark the best result of the whole column. We use star (*) to
indicate that the performance is significantly better than all baselines. The significance is at 0.05 level based on paired 𝑡-test.
The last row shows the relative improvement of our model against the best baseline performance.

FB15k-237 Beauty Clothing

MRR Hit@1 Hit@3 NDCG@5 NDCG@10 Hit@5 Hit@10 NDCG@5 NDCG@10 Hit@5 Hit@10

TransE 0.326 0.229 0.363 0.0063 0.0086 0.0096 0.0165 0.0025 0.0035 0.0040 0.0069

DistMult 0.241 0.155 0.263 0.0105 0.0139 0.0171 0.0278 0.0036 0.0046 0.0055 0.0086

ConvE 0.325 0.237 0.356 0.0064 0.0084 0.0099 0.0162 0.0030 0.0042 0.0047 0.0083

R-GCN 0.248 0.153 0.258 – – – – – – – –

pLogicNet 0.332 0.237 0.367 – – – – – – – –

pGAT 0.457 0.377 0.494 – – – – – – – –

BPRMF – – – 0.0274 0.0348 0.0428 0.0658 0.0086 0.0109 0.0129 0.0200

NCR – – – 0.0369 0.0453 0.0664 0.0767 0.0109 0.0132 0.0143 0.0246

NGCF – – – 0.0453 0.0576 0.0715 0.1057 0.0133 0.0173 0.0219 0.0331

GCR 0.492* 0.490* 0.493 0.0606* 0.0829* 0.0940* 0.1637* 0.0159* 0.0229* 0.0262* 0.0478*

Improvment 7.66% 29.97% – 33.77% 43.92% 31.47% 54.87% 19.55% 32.37% 19.63% 44.41%

0
10
−7

10
−5

10
−3

10
−10

0.2

0.4

Logical Regularization Coefficient

M
R
R

0.2

0.3

0.4

0.5

0.6

H
R
@
3

(a) FB15k-237

0
10
−6

10
−4

10
−2 1

6.5

7

7.5

8

·10−2

Logical Regularization Coefficient

N
D
C
G
@
1
0

0.14

0.15

0.16

0.17

H
R
@
1
0

(b) Beauty

0
10
−6

10
−4

10
−2 1

1

1.5

2

2.5

·10−2

Logical Regularization Coefficient

N
D
C
G
@
1
0

3

4

5

·10−2

H
R
@
1
0

(c) Clothing

Figure 3: MRR/NDCG@10 (red squared line) and HR@3/HR@10 (blue circled line) on three datasets according to the increment
of the logical regularization coefficient _𝑟 .

For the recommendation task, our model consistently outper-

forms all the baselines on all the evaluation metrics. From the

reported results, we have the following observations:

• Knowledge graph embedding models have relatively worse per-

formance than those recommendation models on the recommen-

dation task. One reason is that the KG embedding models treat

each triplet independently while recommendation needs to con-

sider users and items from a collaborative learning perspective.

This could limit the KG models to gain a good performance on

recommendation tasks. Another reason is that the recommen-

dation data presents more uncertainty than KG data since the

recommendation data is recorded from user behaviors while the

KG data is mostly fact-based, which is a challenge for the KG

embedding methods.

• Among the recommendation baseline models, NGCF outperforms

all other baseline methods. This indicates that it is beneficial

to incorporate neighborhood information over graphs to make

recommendation predictions.

• GCR outperforms NCR. This is because NCR only takes user

historical interactions to generate logic expressions. However,

GCR not only considers the items that the user interacted with,

but also considers which other users interacted with these items.

By leveraging the rich information from both user- and item-side,

GCR can have a better recommendation quality than NCR.

• GCR consistently outperforms all the baselines. In particular, GCR

improves over the strongest baseline NGCF on both datasets by

at least 19.55% on NDCG@5. For Hit@10, our model can achieve

even 44.41% improvement on the Clothing dataset. We realize

that our model can have higher improvements over baselines

when the dataset is more sparse. The Beauty dataset has a den-

sity 0.073% while the Clothing dataset is 0.031%. This result is

reasonable because NGCF needs to aggregate neighborhood infor-

mation to enhance user and item embedding representations. A

very sparse dataset means that the average interactions over each

user is limited so that the model cannot aggregate enough neigh-

bor information to promote the representation quality. However,

our GCR, by modeling link prediction from logical reasoning per-

spective, can help to improve the recommendation performance

on sparse dataset. We conducted paired 𝑡-test and the 𝑝-value

< 0.05, which shows that our model has statistical significant

improvements over the strongest baseline.

5.5 Impact of Logical Regularization (RQ2)
In this section, we answer the question that if the logical regulariza-

tion helps the learning process. We conduct experiments by tuning

the logical regularization coefficient _𝑙 in [0, 10−7, 10−5, 10−3, 10−1]
for FB15k-237 and [0, 10−6, 10−4, 10−2, 1] for Beauty and Clothing.
We show how performance changes w.r.t MRR, Hit Rate and NDCG

in Figure 3. We have two major observations from the results:

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA Hanxiong Chen, Yunqi Li, Shaoyun Shi, Shuchang Liu, He Zhu, and Yongfeng Zhang

<5 <10 <30 >=30

0

0.5

1

·104

User Group

N
u
m
b
e
r
o
f
U
s
e
r
s

0.05

0.1

0.15

H
i
t
@
5

GCR NGCF

(a) Beauty Hit@5

<5 <10 <30 >=30

0

0.5

1

·104

User Group

N
u
m
b
e
r
o
f
U
s
e
r
s

0.1

0.15

0.2

0.25

H
i
t
@
1
0

GCR NGCF

(b) Beauty Hit@10

<5 <7 <15 >=15

0

0.5

1

1.5

·104

User Group

N
u
m
b
e
r
o
f
U
s
e
r
s

0.02

0.03

H
i
t
@
5

GCR NGCF

(c) Clothing Hit@5

<5 <7 <15 >=15

0

0.5

1

1.5

·104

User Group

N
u
m
b
e
r
o
f
U
s
e
r
s

0.02

0.03

0.04

0.05

0.06

H
i
t
@
1
0

GCR NGCF

(d) Clothing Hit@10

Figure 4: Performance comparision between GCR and NGCF on Beauty and Clothing datasets. The histograms represent the
total number of users in each group, the lines indicate the performance trend with the growing number of per user interactions.

• The results show that logical regularization do help to improve

the performance when comparing the results of non-logic model

(_𝑙 = 0) and logic-regularized models (_𝑙 ≠ 0). However, how

strong the regularization should be added to the neural network

need to be carefully adjusted, similar to the observations in [3].

• Sparser data needs a relatively smaller logical regularization

coefficient. For the Beauty and Clothing datasets, which are bi-

partite graphs, their densities are 0.073% and 0.031%, respectively.

For FB15k-237, which is a multi-relational graph, the density is

|T |
|V |×|V−1 |× |R | × 100% ≈ 0.0006%. This is because we not only

need to decide if an entity pair will be connected but also need to

decide the type of relation between them, which is different from

the recommendation bipartite graphs. For the most sparse data

FB15k-237, the best logic regularization weight is 10
−7
, while the

best weight for the most dense dataset among the three is 10
−2
.

The reason for the observation is that there is a trade-off between

the prediction loss and the logical loss. The model needs to learn

useful information from limited data to generate good predictions.

For the sparse FB15k-237 dataset, the model is very sensitive to

large logical regularization weights because the logical loss will

dominate the total loss when training data is insufficient for the

prediction loss. However, for Clothing dataset, which is about

50 times denser than FB15k-237, we see that the model is not

that sensitive to large logical regularization weights. Even with

a higher regularization weight, the model still achieves better

performance than non-logic model that _𝑙 = 0.

5.6 Impact of Sparsity Levels (RQ3)
The sparsity issue brought by data incompleteness may limit the

embedding quality of prediction models. When the data is insuf-

ficient, it is difficult for models to capture the relations between

entity pairs, and thus influence the quality of the generated predic-

tions. This issue would especially affect the link prediction models

since they usually relies on collective information for model learn-

ing. In this section, we explore whether logical reasoning models

can help to improve the prediction performance when the data

is sparse. With this consideration, we conduct an experiment by

evaluating the model performance over different data groups that

have different sparsity. For better visualization of the results, we

perform the experiments on the two bipartite graphs.

In particular, we split the users in the testing set into different

groups based on their total number of interactions in the training

data. Take the Beauty dataset as an example, users are divided

into four groups, corresponding to the users whose number of

interactions is in [1, 5), [5, 10), [10, 30) and [30,∞), respectively.
We compare our model with the strong baseline NGCF and report

the results with respect to Hit@5 and Hit@10 in Figure 4. Since

similar trend is also observed on the NDCG metric, we do not plot

the NDCG results to keep the figure clarity.

From the experiments, we see that our GCR model has signifi-

cantly better performance than NGCF on sparse user groups. When

the user has more interactions, the performance of NGCF can be

better than ours. This observation can be explained by the underly-

ing modeling mechanism of NGCG and GCR. NGCF needs to take

the neighborhood information to enrich the node embeddings. For

the users with very few interactions, it would be challenging for

NGCF to capture the user similarities. Although the GCRmodel also

relies on the neighborhood information, it benefits from two spe-

cial advantages. First, the model can leverage both neighbour node

and neighbour link information, and second, the logic component

helps to model the logical relationship among the limited neigh-

bourhood entities rather than merely relying on the associative

node similarity information for prediction. The good performance

on sparse user groups show that our logical reasoning-based model

helps to improve the recommendation quality on sparse data. This

is an important advantage of our model, since users with fewer

interactions are the majority, as shown in Figure 4.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we propose to model link prediction as a reasoning

problem over graphs. Specifically, we propose a GraphCollaborative

Reasoning (GCR) approach, which takes the neighborhood link

information to predict the connections in a latent reasoning space.

Experiments on two representative link prediction tasks—graph

link prediction and recommendation—show the effectiveness of the

model, especially for link prediction on sparse data.

We believe enabling the ability of reasoning over graphs is im-

portant for future cognitive intelligent systems. This work is just

one of our first steps towards this goal, and there is still much

room for future improvements. In this paper, we only used the

one-hop neighborhood links, while in the future we will extend

to multi-hop reasoning over graphs based on the GCR framework

to model hierarchical data structure. Besides the knowledge graph

and recommendation tasks considered in this work, graph collab-

orative reasoning may also help other intelligent tasks such as

question answering, molecular graph modeling, entity search and

conversational systems, which we will explore in the future.

Graph Collaborative Reasoning WSDM ’22, February 21–25, 2022, Tempe, AZ, USA

REFERENCES
[1] Siddhant Arora. 2020. A Survey on Graph Neural Networks for Knowledge Graph

Completion. arXiv preprint arXiv:2007.12374 (2020).
[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational

data. In Advances in neural information processing systems. 2787–2795.
[3] Hanxiong Chen, Shaoyun Shi, Yunqi Li, and Yongfeng Zhang. 2021. Neural

Collaborative Reasoning. In Proceedings of the 30th Web Conference (WWW).
[4] Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel. 2016. Lifted Rule

Injection for Relation Embeddings. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing. 1389–1399.

[5] T Dettmers, P Minervini, P Stenetorp, and S Riedel. 2018. Convolutional 2D

knowledge graph embeddings. In 32nd AAAI Conference on Artificial Intelligence,
AAAI 2018, Vol. 32. AAI Publications, 1811–1818.

[6] Boyang Ding, Quan Wang, Bin Wang, and Li Guo. 2018. Improving Knowledge

Graph Embedding Using Simple Constraints. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
110–121.

[7] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural Message Passing for Quantum Chemistry. In ICML.
[8] Shu Guo, Lin Li, Zhen Hui, Lingshuai Meng, Bingnan Ma, Wei Liu, Lihong Wang,

Haibin Zhai, and Hong Zhang. 2020. Knowledge Graph Embedding Preserving

Soft Logical Regularity. In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management. 425–434.

[9] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. 2016. Jointly embed-

ding knowledge graphs and logical rules. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing. 192–202.

[10] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. 2018. Knowledge

graph embedding with iterative guidance from soft rules. AAAI (2018).
[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[12] L Vivek Harsha Vardhan, Guo Jia, and Stanley Kok. 2020. Probabilistic Logic

Graph Attention Networks for Reasoning. In Companion Proceedings of the Web
Conference 2020. 669–673.

[13] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Knowledge

graph embedding via dynamic mapping matrix. In Proceedings of the 53rd annual
meeting of the association for computational linguistics and the 7th international
joint conference on natural language processing (volume 1: Long papers). 687–696.

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[15] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In Proceedings of the 5th International Conference
on Learning Representations (ICLR ’17).

[16] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 8 (2009), 30–37.
[17] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning

entity and relation embeddings for knowledge graph completion. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 29.

[18] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.

2015. Image-based recommendations on styles and substitutes. In SIGIR. ACM.

[19] Pasquale Minervini, Luca Costabello, Emir Muñoz, Vít Nováček, and Pierre-Yves

Vandenbussche. 2017. Regularizing knowledge graph embeddings via equivalence

and inversion axioms. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 668–683.

[20] Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. 2019. Learn-

ing Attention-based Embeddings for Relation Prediction in Knowledge Graphs.

In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. 4710–4723.

[21] Tu Dinh Nguyen, Dat Quoc Nguyen, Dinh Phung, et al. 2018. A Novel Embed-

ding Model for Knowledge Base Completion Based on Convolutional Neural

Network. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers). 327–333.

[22] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. 2016. Holographic

embeddings of knowledge graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 30.

[23] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A three-way

model for collective learning on multi-relational data. In Icml.

[24] Meng Qu and Jian Tang. 2019. Probabilistic logic neural networks for reasoning.

Advances in neural information processing systems 32 (2019), 7712–7722.
[25] Hongyu Ren and Jure Leskovec. 2020. Beta Embeddings for Multi-Hop Logical

Reasoning in Knowledge Graphs. arXiv preprint arXiv:2010.11465 (2020).
[26] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the 25th conference on uncertainty in artificial intelligence. AUAI Press, 452–461.

[27] Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. 2015. Injecting logical

background knowledge into embeddings for relation extraction. In Proceedings
of the 2015 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies. 1119–1129.

[28] Andrea Rossi, Donatella Firmani, AntonioMatinata, PaoloMerialdo, andDenilson

Barbosa. 2020. Knowledge Graph Embedding for Link Prediction: A Comparative

Analysis. arXiv preprint arXiv:2002.00819 (2020).
[29] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning

representations by back-propagating errors. nature 323, 6088 (1986), 533–536.
[30] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan

Titov, and Max Welling. 2018. Modeling relational data with graph convolutional

networks. In European Semantic Web Conference. Springer, 593–607.
[31] Shaoyun Shi, Hanxiong Chen, Weizhi Ma, Jiaxin Mao, Min Zhang, and Yongfeng

Zhang. 2020. Neural Logic Reasoning. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 1365–1374.

[32] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-

edge graph embedding by relational rotation in complex space. arXiv preprint
arXiv:1902.10197 (2019).

[33] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choud-

hury, and Michael Gamon. 2015. Representing text for joint embedding of text

and knowledge bases. In Proceedings of the 2015 conference on empirical methods
in natural language processing. 1499–1509.

[34] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume

Bouchard. 2016. Complex embeddings for simple link prediction. International

Conference on Machine Learning (ICML).

[35] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2018. Graph Convolu-

tional Matrix Completion. (2018).

[36] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations.

[37] Mengya Wang, Erhu Rong, Hankui Zhuo, and Huiling Zhu. 2018. Embedding

knowledge graphs based on transitivity and asymmetry of rules. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Springer, 141–153.

[38] Quan Wang, Bin Wang, and Li Guo. 2015. Knowledge base completion using

embeddings and rules. In Twenty-Fourth International Joint Conference on Artificial
Intelligence.

[39] Shen Wang, Xiaokai Wei, Cicero dos Santos, Zhiguo Wang, Ramesh Nallapati,

Andrew Arnold, Bing Xiang, and S Yu Philip. 2020. H2KGAT: Hierarchical

Hyperbolic Knowledge Graph Attention Network. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP). 4952–
4962.

[40] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[41] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge

graph embedding by translating on hyperplanes.. In AAAI, Vol. 14. Citeseer,
1112–1119.

[42] Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015.

Embedding Entities and Relations for Learning and Inference in Knowledge Bases.

In Proceedings of the International Conference on Learning Representations (ICLR)
2015.

[43] Shihui Yang, Jidong Tian, Honglun Zhang, Junchi Yan, Hao He, and Yaohui

Jin. 2019. TransMS: Knowledge Graph Embedding for Complex Relations by

Multidirectional Semantics.. In IJCAI. 1935–1942.
[44] Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai Zhu, Wei Zhang,

Abraham Bernstein, and Huajun Chen. 2019. Iteratively learning embeddings

and rules for knowledge graph reasoning. In The World Wide Web Conference.
2366–2377.

[45] Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi, and Le

Song. 2020. Efficient Probabilistic Logic Reasoning with Graph Neural Networks.

In ICLR.

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA Hanxiong Chen, Yunqi Li, Shaoyun Shi, Shuchang Liu, He Zhu, and Yongfeng Zhang

A TRAINING ALGORITHM PSEUDO-CODE

Algorithm 1: GCR Training Algorithm

Input :Graph G(V,R,T); triples
T (ℎ, 𝑟, 𝑡)∀ℎ, 𝑡 ∈ V,∀𝑟 ∈ R; predicate function
𝑃𝑟 ,∀𝑟 ∈ R; epochs 𝐾 ; neighbor sample function 𝑁 ;

negative sample function 𝑆 ; scoring function Sim;

Graph Collaborative Reasoning network GCR;

anchor vector T; optimization algorithm OPTIM;

model parameters Θ; logic regularizer weight _𝑙 ; ℓ2
regularizer weight _Θ; amplification coefficient 𝛼

1 Initialize node vectors x𝑣,∀𝑣 ∈ V;

2 Initialize predicate modules 𝑃𝑟 ,∀𝑟 ∈ R;
3 for epoch 𝑘 ← 1 to 𝐾 do
4 L ← 0;

5 e𝑘−1
𝑇
← 𝑃𝑟 (xℎ, x𝑡), ∀𝑇 ∈ T , ℎ, 𝑟, 𝑡 ∈ 𝑇 ;

6 e𝑘
𝑇
← e𝑘−1

𝑇
/| |e𝑘−1

𝑇
| |2;

7 for 𝑇 ∈ T do
8 𝑇 ′ ← 𝑆 (𝑇) ⊲ sample a fake triplet for 𝑇 ;

9 E← GCR(e𝑘
𝑇
, {e𝑘

𝑇𝑁
,∀𝑇𝑁 ∈ N (𝑇)});

10 E′ ← GCR(e𝑘
𝑇 ′ , {e

𝑘
𝑇𝑁
,∀𝑇𝑁 ∈ N (𝑇)});

11 𝑠+
𝑇
← Sim(E,T), 𝑠−

𝑇 ′ ← Sim(E′,T);
12 L𝑔𝑐𝑟 ← − ln𝜎 (𝛼 (𝑠+𝑇 − 𝑠

−
𝑇 ′));

13 L𝑙𝑜𝑔𝑖𝑐 ←
∑
𝑖 𝑟𝑖 ⊲ logic constraints for logical laws;

14 L ← L + L𝑔𝑐𝑟 + _𝑙L𝑙𝑜𝑔𝑖𝑐 + _Θ | |Θ| |22;
15 end
16 OPTIM(L) ⊲ optimize all parameters for round 𝑘 ;

17 end

B EXPERIMENTAL SETTINGS
B.1 Link Prediction
In the training stage, we first need to find the neighbors of the head

and tail entity of the given triplet. Instead of using all the neighbor

nodes to assemble the logical expression, we sample the neighbors

uniformly, by following [11], in each iteration to predict the target

triplet. In our implementation, we sample at most 𝑛 ∈ {5, 10, 20}
neighbors for each entity in the given triplet. In other words, for

each target triplet, the total number of neighbor triplets can be up

to 2𝑛 (𝑛 from the head entity and 𝑛 from the tail entity). To train

the model, for each target triplet, we sample 1 negative triplet for

pair-wise learning as mentioned in Eq.(9).

We set all vector embedding size to 64. The number of layers

for predicate encoder networks and logical module networks is set

to 3. The network parameters are initialized with normal distribu-

tion with mean 0 and standard deviation is 0.01. Dropout and ℓ2
regularization are adopted to avoid over-fitting. We set the dropout

rate to 0.2 and the weight for ℓ2 regularizer _Θ is selected from

10
−5

to 10
−7
. The logical regularizer weight _𝑙 is selected in the

range 10
−1

to 10
−7
. We use Adam [14] as the optimization algo-

rithm with learning rate initialized to 0.001 and learning rate decay

is adopted during the training process. Early-stopping is used and

the best model for reporting the results is selected based on the

best performance on the validation set.

B.2 Recommendation
For each user-item interaction in training set, we randomly sample

the neighbors for both user and item nodes to construct the logical

expression. We set the total number of neighbors for each user or

item to 5, i.e. there will be at most 10 neighbor user-item interactions

in the logical expression. We set the embedding size to 64 and the

number of layers for network modules is 2. ℓ2 penalty weight _Θ is

10
−5

for both datasets. The logical regularization weight _𝑙 is 10
−6
.

Learning rate is fixed at 0.001. Other settings are the same as the

previous subsection.

For TransE, DistMult and ConvE, we set the embedding size to

100, while the embedding size and hidden size for BPR-MF and NCR

are 64. ℓ2 weight for all baselines are 10
−5
. For ConvE, the number

of channel is set to 32 and the kernel size is 3. For NCR, we use

the open source implementation
3
, more specifically, we apply the

BPR-ranking loss to train the model and the neural logic modules

have two layers with LeakyReLU as the activation function. Since

NCR only considers nodes on user side, we only sample neighbor

nodes on the user side. For NGCF, we also use the open source

implementation in [40] to run the experiments.

C ACKNOWLEDGEMENT
This work was supported in part by NSF IIS-1910154, IIS-2007907,

IIS-2046457 and CCF-2124155. Any opinions and findings in this

material are those of the authors and do not necessarily reflect

those of the sponsors.

3
https://github.com/rutgerswiselab/NCR

https://github.com/rutgerswiselab/NCR

	Abstract
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Graph Collaborative Reasoning
	4.1 Node and Link Encoding
	4.2 Logical Reasoning Modules
	4.3 Learning Algorithm

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Evaluation Protocol
	5.4 Overall Performance of GCR (RQ1)
	5.5 Impact of Logical Regularization (RQ2)
	5.6 Impact of Sparsity Levels (RQ3)

	6 Conclusions and Future Work
	References
	A Training Algorithm Pseudo-code
	B Experimental Settings
	B.1 Link Prediction
	B.2 Recommendation

	C Acknowledgement

