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ABSTRACT

User feedback in the form of movie-watching history, item
ratings, or product consumption is very helpful in training
recommender systems. However, relatively few interaction-
s between items and users can be observed. Instances of
missing user–item entries are caused by the user not seeing
the item (although the actual preference to the item could
still be positive) or the user seeing the item but not liking
it. Separating these two cases enables missing interactions
to be modeled with finer granularity, and thus reflects us-
er preferences more accurately. However, most previous s-
tudies on the modeling of missing instances have not fully
considered the case where the user has not seen the item. So-
cial connections are known to be helpful for modeling users’
potential preferences more extensively, although a similar
visibility problem exists in accurately identifying social re-
lationships. That is, when two users are unaware of each
other’s existence, they have no opportunity to connect. In
this paper, we propose a novel user preference model for
recommender systems that considers the visibility of both
items and social relationships. Furthermore, the two kinds
of information are coordinated in a unified model inspired
by the idea of transfer learning. Extensive experiments have
been conducted on three real-world datasets in comparison
with five state-of-the-art approaches. The encouraging per-
formance of the proposed system verifies the effectiveness of
social knowledge transfer and the modeling of both item and
social visibilities.
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1 INTRODUCTION

Recommender systems attempt to provide items or informa-
tion of interest to users based on their preferences. Generally,
user preferences are learnt from historical records, such as
ratings, reviews, clicks, and consumption. However, the in-
teractions between users and items that can be observed are
rather limited. These missing interactions are referred to as
missing feedback in recommender systems.

Previous studies have dealt with this problem in two ways:
treat all missing feedback as negative feedback [11, 12, 26]
, or randomly sample negative feedback from the missing
feedback [30] . As a result, all the missing feedback or the
sampled missing feedback is considered to be negative feed-
back, and then recommendations are made based on this
augmented information.

However, one important fact should not be overlooked
when we revisit the problem of missing interactions—if an
item was visible to a user but the user did not consume it,
the missing interaction represents a negative preference for
the item; nevertheless, if an item was never visible to the
user, then it could not possibly have been consumed, and
the missing interaction does not imply either a positive or
negative preference. Most previous approaches have not sep-
arated these two cases, and are therefore biased in terms of
the accurate modeling of user preferences.

As shown in previous studies on social-aware recommender
systems, the social behavior of users and their interactions
with items are positively correlated [21, 31, 35, 40]. Howev-
er, social information is also sparse, and the social connec-
tions between users also face the problem of missing entries.
Similarly, a connection between two users may be missing



because of a lack of affinity or invisibility (for example, user
A does not know that user B is on the social network), and
this latter case has not previously been studied.

Two random variables (item visibility and social visi-
bility) are introduced in our work, indicating whether the
items and other users are visible to a specific user. We argue
that modeling both item visibility and social visibility
will help to enrich the accurate modeling of user preferences.
Although the enrichment is achieved from two different as-
pects, they can be jointly modeled in recommender system-
s. The idea of incorporating social information into recom-
mender systems is not new [4, 42], but there are two im-
portant aspects that should be considered: first, the model
needs to fully utilize the correlation between the social and
rating behavior of users and capture this effect in user prefer-
ence modeling; second, the social and rating behavior comes
from different domains, and this heterogeneity needs to be
captured in the model. Transfer learning [27] is a suitable
choice for the coordination of social information and rating
behavior. The key concept behind transfer learning is that
knowledge is stored while solving one problem before being
applied to a different but related problem. In our work, we
learn about the social domain using a latent factor model
and apply the learnt user social latent factors to model us-
er preferences. We selectively transfer the latent factors to
capture the correlation between two domains while retaining
the heterogeneity.

The focus of our work is to make recommendations
to users. However, there are insufficient user–item interac-
tions to capture the user preferences accurately. Both social
and rating domains reflect user preferences, and transfer-
ring common knowledge between the domains enables bet-
ter user profiling. In this paper, we propose a probabilistic
generative model for item recommendation that coordinates
both user–item and user–user interactions based on transfer
learning. We then model both item and social visibilities
to handle implicit feedback in recommender systems. The
advantage of transfer learning is that it compensates for the
shortage of information in the target domain by transferring
knowledge from the source domain. As social connections
reflect the personalities of users, knowledge from the source
(social) domain can be leveraged to enrich the preferences
of users that are difficult to learn from the target (rating)
domain. More specifically, we adopt a latent factor model
to depict the generation of both user–item interactions and
user–user social connections. The transfer of latent factors is
used to correlate the two different domains. An Expectation-
Maximization (EM) algorithm is designed to determine the
parameter values. Extensive experiments are conducted on
three real-world datasets in comparison with five state-of-
the-art approaches. The results show that our method out-
performs all of the state-of-the-art approaches.

To the best of our knowledge, only one previous study has
considered the visibility of items [19], using the concept of
exposure to model whether an item has been observed by a
user. The differences between our model and this previous
work are twofold: first, the exposure concept only reflects

the interaction between users and items, whereas we use vis-
ibility to model user–item and user–user interactions simul-
taneously; second, we adopt a transfer learning strategy to
coordinate social and rating information in a unified model,
enabling the user preferences to be learned more effectively.

The remainder of this paper is organized as follows. The
next section introduces some related work. Section 3 presents
a detailed description of the modeling of both item and so-
cial visibility in recommender systems. We present the re-
sults of extensive experiments with real-world datasets in
Section 4. In Section 5, we discuss transfer learning in our
model through a comparison with another model. Finally,
we conclude the paper in Section 6.

2 RELATED WORK

2.1 Recommendations with Implicit
Feedback

User feedback is frequently observed in real-life scenarios in
the form of ratings, reviews, clicks, and the consumption
of items. Handling user feedback is a key issue in recom-
mender systems, and considerable efforts have been made to
deal with missing feedback. Two basic approaches are adopt-
ed in previous studies: marking all the missing feedback as
negative instances, such as in Weighted Matrix Factorization
(WMF) [12] and Sparse Linear Method (SLIM) [25], [37], or
sampling from the missing feedback as negative instances,
such as in Bayesian Personalized Ranking (BPR) [30].

However, neither approach gives a good interpretation for
the selection of negative instances, and assigning artificial
weights for all the missing feedback lacks the accuracy need-
ed for modeling. In the proposed method, we model the miss-
ing feedback by introducing visibilities and utilize a Bayesian
approach to estimate whether the missing feedback is the re-
sult of user preferences or invisibility.

Various negative feedback sampling approaches have been
considered [26, 29, 30]. Although the sampling procedure
differs, the negative feedback is typically selected from the
missing entries. [10] and [1] are recent studies on implicit
feedbacks in recommendation. In [10], the negative samples
are generated from unobserved instances and a K-separable
principle is proposed in [1] to allow efficient optimization of
implicit feedback problems with Coordinate Descent.

As discussed in the Introduction, only one study has con-
sidered item visibility for missing interactions [19]. Our work
differs from this in two aspects: first, we model both social
and item visibilities in recommender systems, rather than
only considering item visibility; second, we adopt transfer
learning to coordinate the two kinds of interactions into a
unified model.

2.2 Social Recommendations

Social information is known to be helpful in recommendation
systems [9, 13, 22, 23, 36, 41]. Most studies assume that some
social homophily effect exists, causing users to behave con-
sistently with others in social connections [9, 22]. However,
most previous studies on social-aware recommender systems



focus on rating prediction tasks, which is claimed to be less
efficient in item recommendation tasks [5, 33].

[14] extends the approach in [13] by combining random
walks with collaborative filtering for item recommendation.
The Multi-Relational Bayesian Personalized Ranking (MR-
BPR) model [17], which combines multi-relational matrix
factorization with the BPR framework, predicts both user
feedback on items and on social relationships. In [2], a topic
model is proposed to detect subtopics from microblogs by
utilizing the correlations among different media types.

There are two state-of-the-art algorithms that utilize so-
cial information for item recommendation tasks [4, 42]. In
[42], the authors assume that users are more likely to have
seen items consumed by their friends, and use this effect to
sample negative feedback in BPR. In contrast, [4] utilizes
Poisson factorization to incorporate social information into
a matrix factorization scheme. None of the aforementioned
studies considers the modeling of missing feedback in social
relationships. In the present study, we use some of the most
popular social-aware recommendation algorithms as bench-
marks. Unlike previous studies, we capture the visibility
phenomenon in social relationships and coordinate it into a
generative model with transfer learning procedures.

A recent study [38] considers the strength of social ties and
its application in social recommendations. As this is an ex-
tension of BPR, the missing feedback is randomly selected as
negative feedback. In [28], the Collaborative Ranking (Cofi-
Rank) model [39] is extended to include social connection-
s. As CofiRank considers observations of both positive and
negative feedback, the issue of missing feedback is not inves-
tigated. The difference between our work and that described
in [38] and [28] lies in two aspects: first, we concentrate on
the issue of handling missing feedback from the perspective
of visibility, whereas these previous studies either sample
the negative feedback from missing feedback [38] or concen-
trate on observed (both positive and negative) feedback [28];
second, we accommodate user–item interactions and social
connections with transfer learning principles, whereas the
previous studies extend existing ranking models (CofiRank
[39] and BPR [30]) with social connections.

2.3 Transfer Learning

Transfer learning has been adopted in various systems for
cross-domain data mining tasks [18, 27, 43, 45]. The key idea
of transfer learning is that the knowledge from the source
domain is transferred into the model of the target domain.
As previously noted [44], the social media which contain-
s multi-domain information, provides a bridge in transfer
learning. [15, 32] utilize transfer learning to deal with multi-
relational data representation in social networks, but they
do not specifically focus on recommendation tasks. Code
book transfer [27] and coordinate system transfer [18] are
two important applications of transfer learning on recom-
mender systems.

Selective transfer learning [6] has been employed for cross-
domain recommendations [20]. As pointed out in [20], parts

of the source domain data are inconsistent with the observa-
tions in the target domain, which may affect the construction
of a model in the target domain. In this paper, we assume
that the source (social) domain and target (rating) domain
can be represented by latent factors. We propose a selective
latent factor transfer model to better capture the consistency
and heterogeneity across domains. The approach described
in [3] considers the heterogeneity of the source and target
domains, functioning in transfer-all and transfer-none mode
depending on the distance between the two domains. Our
work differs from [3], as the proposed model allows any por-
tion of the latent factors to be transferred.

Most previous studies on recommendations using trans-
fer learning focus on rating prediction tasks (as mentioned
before, rating predictions are less effective for item recom-
mendations). In this paper, we use transfer learning to iden-
tify the Top-K recommendations and overcome the issues of
missing feedback.

3 MODELING SOCIAL AND ITEM
VISIBILITIES

3.1 Social and Item Visibilities

As discussed in the Introduction, there are two possible rea-
sons for missing observations, i.e., where no interaction be-
tween user u and item i is observed. The first reason is that
user u has never had the opportunity to see item i, and there-
fore cannot possibly have consumed or clicked on the item.
The second reason is that user u may have seen item i, but
did not like it. Therefore, we introduce the item visibility
as a random variable to depict whether item i is visible to
user u (denoted as aui).

Moreover, a considerable number of social interactions be-
tween users may be missing. Similarly, there are two possible
reasons for a missing social relationship between users u and
k: the first is that user u does not know user k at all, and the
second reason is that user u indeed knows user k, but does
not want to be friends with (or trust) user k. Therefore, the
social visibility (denoted as buk) is introduced to capture
whether user u knows of user k.

In our model, aui = 1 implies that item i is visible to user
u; otherwise, aui = 0. Similarly, buk = 1 implies that user
k (referral) is visible to user u (referrer); otherwise, buk = 0.
As the visibilities are closely related to the missing interac-
tions, a proper model of the visibilities should distinguish
whether missing or unobserved interactions are caused by
the mismatch of user preferences. Therefore, the observed
interactions are the co-product of user preferences and visi-
bilities, and modeling both visibilities captures the user pref-
erences more accurately. Previous studies on social networks
[24] reveal that users tend to behave consistently with their
friends, which verifies the correlation between the social and
rating behavior of users. Therefore, we jointly consider both
social and item visibilities in our model, and further adopt
the idea of transfer learning to model the user preferences
toward items and social connections.



I (Item)U (referrer)U (referral)

Figure 1: Transferring Social and Item Visibility
(TranSIV), two visibility variables are shaded

3.2 Transfer Model with Social and Item
Visibilities (TranSIV)

3.2.1 Model Description. Recall that two types of interac-
tions are considered in our work, i.e., user–item interactions
and user–user social interactions. These interactions are de-
noted as yui, ∀u ∈ U, i ∈ I and suk,∀u, k ∈ U , respectively.
If there exists an observed interaction between user u and
item i, yui = 1; otherwise, yui = 0; if there exists a user–user
interaction between user u and user k, suk = 1; otherwise,
suk = 0. As user–user interactions can be unilateral (such as
one person following another on Twitter) or bilateral (such
as friendship on Facebook), we denote user u as the referrer
and user k as the referral for suk.

We adopt the idea of transfer learning to coordinate the
social and rating information and propose the model shown
in Fig. 1. The idea is to share a portion of the latent factors
from user–user interactions to identify user–item interaction-
s. As the two types of behavior are not entirely the same
in nature, the knowledge learnt from user–user social behav-
ior may only be partially related to user–item interactions,
whereas the number of shared factors indicates how the two
types of behavior are correlated. The variables of the pro-
posed model are listed in Table 1. In the context of transfer
learning, we name the target domain as the “rating domain”
(although the user–item interactions can be ratings or bina-
ry values, we use the term rating for simplicity) and call the
source domain the “social domain.”

There are five latent factor vectors corresponding to a pair
of users: θcu, θ

r
u, and θsu for user u as the referrer, and γc

k and
γs
k for user k as the referral. For user u, θcu represents the

latent factors shared between social and rating behavior; θru
and θsu represent user latent factors corresponding to rating
and social behavior, respectively. The item latent factor
vectors and the social latent factor vectors for the referral
user are denoted in a similar manner (see Table 1 for details).

A user–item interaction is the product of item visibil-
ity, the user latent vectors, and the item latent vectors:
yui = aui(θ

c
uβ

c
i + θruβ

r
i ). A user–user interaction is the prod-

uct of social visibility, the referrer’s latent vectors, and the
referral’s latent vectors: suk = buk(θ

c
uγ

c
k+θsuγ

s
k). The visibil-

ities are random variables with certain probabilities of being
visible: P (aui = 1) = µui and P (buk = 1) = ηuk.

Table 1: Variables and Notation
Variables Meaning

U The set of users

I The set of items

yui
User–item interaction: i.e., whether user u

has clicked/consumed item i

suk
User–user interaction: i.e., whether user u (as

referrer) trusts (or is a friend of) user k (as referral)

aui Item visibility: i.e., whether user u has seen item i

buk
User visibility: i.e., whether user u

(as referrer) knows user k (as referral)

µui Parameter of the Bernoulli distribution for aui
ηuk Parameter of the Bernoulli distribution for buk

(α1, α2) Parameter of the Beta distribution for µui

(α
′
1, α

′
2) Parameter of the Beta distribution for ηuk

θcu Common latent factor vector of user u as referrer

θru Preference-specific latent factor vector of user u

θsu Social-specific latent factor vector of user u (as referrer)

βc
i Common latent factor vector of item i

βr
i Preference-specific latent factor vector of item i

γc
k Common latent factor vector of user k (as referral)

γs
k Social-specific latent factor vector of user k (as referral)

sr cr c c s

User-Item 

Interaction

User-User 

Interaction

Latent Factor Space

Item i

Preference Related 

Latent Factors

Social Related 

Latent Factors

User u as Referrer

User k as Referral

... ... ... ...

Figure 2: The Latent Factor Space of Two
Interactions in TranSIV

A more intuitive explanation is presented in Fig. 2. The
ellipses are scalars and the rectangles are vectors; The top el-
lipses are the binary variables indicating whether user–item
(in yellow)/user–user (in blue) interactions are observed; the
smaller ellipses are the latent factors in the latent factor s-
pace. The green ones represent the common latent factors of
both rating and social domains; the yellow and blue ones rep-
resent the latent factors of rating and social domain specif-
ically; The seven rectangles stand for the latent vectors of
user u as referrer, item i and user k as referral respectively.
The details of these vectors can be found in Table. 1

3.2.2 Generative Process of TranSIV. The generative pro-
cess of the TranSIV model is as follows:

• for each user u as the referrer, draw the latent fac-
tor vectors from the Gaussian distributions: θcu ∼
N(0, λ−1

θ Ic), θru ∼ N(0, λ−1
θ Ir), θsu ∼ N(0, λ−1

θ Is);

• for each user k as the referral, draw the latent factor
vectors from the Gaussian distributions:
γc
k ∼ N(0, λ−1

γ Ic); γs
k ∼ N(0, λ−1

γ Is);

• for each item i, draw the latent factor vectors from
the Gaussian distributions:
βc
i ∼ N(0, λ−1

β Ic), βr
i ∼ N(0, λ−1

β Ir);

• for each item i, draw the item visibility probability
from the Beta distribution: µui ∼ Beta(α1, α2);



• for each user k as the referral, draw the social visi-
bility probability from the Beta distribution: ηuk ∼
Beta(α

′
1, α

′
2)

• for each user–item pair u, i, draw the item visibility
aui from the Bernoulli distribution: aui ∼ Bernoulli(µui);

• for each user–user pair u, k, draw the social visi-
bility buk from the Bernoulli distribution: buk ∼
Bernoulli(ηuk)

• for each user–item pair with aui = 1, draw the in-
teraction yui from the Gaussian distribution:
yui|aui = 1 ∼ N(θcTu βc

i + θrTu βr
i , λ

−1
y )

• for each user–user pair with buk = 1, draw the inter-
action suk from the Gaussian distribution:
suk|buk = 1 ∼ N(θcTu γc

k + θsTu γs
k, λ

−1
s )

where Ic, Is, and Ir are identity matrices with the same
dimensions as θcu, θ

s
u, and θru; λθI

c, λβI
r, λγI

s, λy and λs

are the precisions for the Gaussian distributions.

3.2.3 Model Inference. Given the generative model with
hidden visibility variables, we use an EM (Expectation Max-
imization) algorithm to infer the parameters. In the E step,
we estimate the hidden variables by taking expectations while
keeping the other variables fixed; in the M step, we use the
estimated hidden variables to infer the other variables.

E step: Items that have interactions with users are ap-
parently visible to the corresponding users:

E(aui|yui = 1) = 1, ∀u ∈ U, i ∈ I;

E(buk|suk = 1) = 1, ∀u ∈ U, k ∈ U
(1)

Considering the user–item and user–user pairs that consti-
tute the missing interactions, the expectation of the hidden
visibility variables (aui and buk) can be derived from the
Bayes’ Theorem:

E(aui|yui = 0)

=
P (aui = 1, yui = 0)

P (yui = 0|aui = 1)P (aui = 1) + P (aui = 0)

=
µui ·N(0|θcTu βc

i + θrTu βr
i , λ

−1
y )

µui ·N(0|θcTu βc
i + θrTu βr

i , λ
−1
y ) + 1− µui

E(buk|suk = 0)

=
P (buk = 1, suk = 0)

P (suk = 0|buk = 1)P (buk = 1) + P (buk = 0)

=
ηuk ·N(0|θcTu γc

k + θsTu γs
k, λ

−1
s )

ηuk ·N(0|θcTu γc
k + θsTu γs

k, λ
−1
s ) + 1− ηuk

(2)

We denote E(aui) as pui and E(buk) as quk; given pui and
quk, we can estimate the other parameters in the following M
step by fixing the hidden variables with their expectations.

M step: First, we update the item and social visibility
probabilities of the Bernoulli distributions. As the Beta dis-
tributions are conjugate to the Bernoulli distributions, the
parameters of the Bernoulli distributions can be updated as
follows:

µui =
α1 +

∑
u pui − 1

α1 + α2 + |U | − 2
, ∀i;

ηuk =
α′
1 +

∑
u quk − 1

α′
1 + α′

2 + |U | − 2
,∀k

(3)

I (Item)

U (referrer)

U (referral)

Figure 3: Full Transfer Model of Social and Item
Visibilities (FTranSIV).

Then, we update the preference latent factor vectors of user-
s and items as well as the social latent factor vectors. The
update process employs Alternating Least-Squares optimiza-
tion [16].

θcu ← (λy

∑
i

puiβ
c
i β

cT
i + λs

∑
k

qukγ
c
kγ

cT
k + λθI

c)−1

(
∑
i

λypui(yui − θrTu βr
i )β

c
i +

∑
k

λsquk(suk − θsTu γs
k)γ

c
k)

θru ← (λy

∑
i

puiβ
r
i β

rT
i + λθI

r)−1(
∑
i

λypui(yui − θcTu βc
u)β

r
i )

θsu ← (λs

∑
k

qukγ
s
kγ

sT
k + λθI

s)−1(
∑
k

λsquk(suk − θcTu γc
u)γ

s
k)

βc
i ← (λy

∑
u

puiθ
c
uθ

cT
u + λβI

c)−1(
∑
u

λypui(yui − θrTu βr
i )θ

c
u)

βr
i ← (λy

∑
u

puiθ
r
uθ

rT
u + λβI

r)−1(
∑
u

λypui(yui − θcTu βc
i )θ

r
u)

γc
k ← (λs

∑
u

qukθ
c
uθ

cT
u + λγI

c)−1(
∑
u

λsquk(suk − θsTu γs
k)θ

c
u)

γs
k ← (λs

∑
u

qukθ
s
uθ

sT
u + λγI

s)−1(
∑
u

λsquk(suk − θcTu γc
k)θ

s
u)

(4)
To make recommendations, we consider both the visibility
and user preference with respect to the items, i.e., a click
or consumption behavior can only happen when the user
actually sees the item and then makes a purchase. Therefore,
for each user u ∈ U , the expectation of the missing feedback
w.r.t item i is:

E(yui|θcu, βc
i , θ

r
u, β

r
i , µui) = µui(θ

cT
u βc

i + θrTu βr
i ) (5)

We present the model inference and recommendation pro-
cess in Algorithm 1.

3.3 Simplified Model: Full Transfer Model
with Social and Item Visibilities
(FTranSIV)

As TranSIV transfers a portion of the latent factors from
the social domain to the rating domain, the model contain-
s a large number of latent factor vectors. To simplify the
model, we can set the latent factors to be the same in both
domains, so that the knowledge of the social domain is fully
transferred. In this special case, the model is the Full Trans-
fer model of Social and Item Visibility (FTranSIV). This
model is illustrated in Fig. 3.



Algorithm 1 Recommendation Algorithm with TranSIV

Input: The observed rating matrix Y : {yui, ∀u ∈ U, i ∈ I}, the
observed social matrix S : {suk, ∀u, k ∈ U}
Output: Top-K recommendation lists for users U.

1: Initialize the latent factor vectors θcu, θ
s
u, θ

r
u, ∀u ∈ U,

βc
i , β

r
i ,∀i ∈ I, γc

k, γ
s
k,∀k ∈ U, and the visibility probabilities

µui,∀i ∈ I, ηuk, ∀k ∈ U;
2: while Not convergent and iter ≤ MaxIter do
3: E step:

4: for each user u and item i for which yui = 0 do
5: Compute E(aui|yui = 0) following Eq. 2;
6: end for

7: for each user pair u and user k for which suk = 0 do
8: Compute E(buk|suk = 0) following Eq. 2;
9: end for

10: M step:

11: Update user and item factor vectors: θcu, θ
s
u, θ

r
u, ∀u ∈ U,

βc
i , β

r
i , ∀i ∈ I, γc

k, γ
s
k, ∀k ∈ U following Eq. 4;

12: Update the visibility probabilities:
µui, ∀i ∈ I, ηuk,∀k ∈ U following Eq. 3;

13: end while
14: Make recommendations for each user u ∈ U following Eq. 5

by selecting K items i ∈ I with highest E(yui) that have no
observed interactions with u;

Note that all user latent factors are shared between the
social domain and the rating domain. Therefore, θru = 0,
θsu = 0, βr

i = 0, γs
k = 0. Additionally, θcu, β

c
i , and γc

k are
denoted as θu, βi, and γk, respectively.

As a result, the inference process is simplified, the related
parameters can be updated in a similar manner as before,
and the only difference is the replacement of θcu, β

c
i , and γc

k

with θu, βi, and γk, respectively. Moreover, the other latent
factor vectors are set to 0 in the inference process. Exper-
iments comparing the performance of FTranSIV and Tran-
SIV indicate that selective transfer achieves superior perfor-
mance, but the simplified modeling does not significantly
affect the recommendation accuracy.

4 EXPERIMENTS

In this section, we present the results of experimental eval-
uations conducted on real-world datasets, including Ciao1,
Epinions2, and Flixter3. All datasets contain rating in-
formation given by users and the in-site social connections
between users. The datasets were preprocessed so that al-
l items have at least five ratings. The social connections
in the first two datasets are unilateral trust relationships,
which means that when user A trusts user B, user B does
not necessarily trust user A. Flixter has a friendship mecha-
nism that is bilateral for both users. The statistical details
of these datasets are presented in Table 2.

As long as there exists some user–user or user–item in-
teraction, the corresponding rating is assigned a value of 1
(as implicit feedback), which is the procedure adopted in

1http://www.jiliang.xyz/trust.html
2https://alchemy.cs.washington.edu/data/epinions/
3http://www.cs.ubc.ca/jamalim/datasets/

Table 2: Statistical details of the datasets
Datasets #Users #Items #Ratings #Links Link Type

Ciao 7,267 11,211 147,995 111,781 Unilateral

Epinions 38,089 23,585 488,917 433,416 Unilateral

Flixter 147,229 17,318 8,093,735 2,420,211 Bilateral

state-of-the-art methods [11, 19, 30]. We compare our ap-
proach with five state-of-the-art algorithms for recommen-
dation based on implicit feedback, namely WMF [12], BPR
[30], EXPOMF [19], SBPR [42], and SPF [4]. The first t-
wo algorithms are commonly used in item recommendation
tasks and exhibit excellent performance, while the latter two
are representative social-aware recommendation algorithms
that deal with implicit feedback. The characteristics of the
comparative approaches are listed in Table 3.

• WMF [12]: Weighted Matrix Factorization using
a pointwise optimization strategy for implicit user–
item feedback.

• BPR [30]: a classic method that compares observed
and missing feedback in a pairwise manner, coupled
with matrix factorization for item scoring.

• EXPOMF [19]: a probabilistic model of item expo-
sure in recommender systems; uses matrix factoriza-
tion for pointwise scoring.

• SBPR [42]: a ranking model that considers social
relationships in the learning process, assuming that
users tend to assign higher ranks to items that their
friends prefer. The negative instances are sampled
in a similar manner with BPR.

• SPF [4]: a probabilistic model that performs social
Poisson factorization. SPF incorporates user latent
preferences for items with latent friend influences,
thus matching user preferences with social friends
when generating the top-N recommendations.

Table 3: Comparison of the Approaches
Characteristics WMF BPR EXPOMF SBPR SPF TranSIV

Item Interaction
√ √ √ √ √ √

Social Interaction \ \ \
√ √ √

Item Visibility \ \
√

\ \
√

Social Visibility \ \ \ \ \
√

To evaluate the performance of all algorithms, we calcu-
lated the Recall@K, MAP@K, and NDCG@K, where
reli = 1/0 indicates whether the item at rank i in the Top-K
recommendation list is in the test set. For each user, these
metrics can be computed as follows (each metric is the av-
erage for all users, and the mean average precision (MAP)
is the average of all user APs). The notion IDCG means
the maximum possible DCG through ideal ranking. ytest

u

denotes the items rated by user u in the testing set.

Recall@K =

∑K
i=1 reli

min(K, |ytestu |)
;

AP@K =
K∑

n=1

∑n
i=1 reli

n
× reln

min(K, |ytestu |)
;

DCG@K =
K∑
i=1

2reli − 1

log2(i+ 1)
;NDCG@K =

DCG@K

IDCG@K

To evaluate different recommendation lengths, we experi-
mented using K = 10, 50, and 100. The parameters for the



Table 4: Performance comparison on three datasets (Ciao, Epinions, Flixter).
“**” denotes that the result is better than all baselines with a significance test of p < 0.01

Ciao Recall@10 Recall@50 Recall@100 NDCG@10 NDCG@50 NDCG@100 MAP@10 MAP@50 MAP@100

WMF 0.0753 0.1611 0.2149 0.0631 0.0905 0.1048 0.0334 0.0368 0.0384

BPR 0.0616 0.1520 0.2080 0.0503 0.0845 0.0948 0.0253 0.0328 0.0320

SBPR 0.0620 0.1557 0.2124 0.0520 0.0849 0.0997 0.0262 0.0334 0.0350

SPF 0.0599 0.1147 0.1536 0.0534 0.0696 0.0796 0.0295 0.0299 0.0308

EXPOMF 0.0751 0.1612 0.2149 0.0626 0.0899 0.1041 0.0331 0.0365 0.0380

TranSIV 0.0800** 0.1710** 0.2309** 0.0663** 0.0948** 0.1104** 0.0354** 0.0387** 0.0404**

Epinions Recall@10 Recall@50 Recall@100 NDCG@10 NDCG@50 NDCG@100 MAP@10 MAP@50 MAP@100

WMF 0.0617 0.1386 0.1891 0.0475 0.0710 0.0836 0.0256 0.0290 0.0304

BPR 0.0510 0.1353 0.1934 0.0374 0.0643 0.0785 0.0196 0.0248 0.0262

SBPR 0.0556 0.1429 0.1963 0.0420 0.0696 0.0841 0.0224 0.0275 0.0290

SPF 0.0298 0.0761 0.1135 0.0245 0.0382 0.0472 0.0127 0.0142 0.0149

EXPOMF 0.0613 0.1400 0.1919 0.0474 0.0716 0.0845 0.0256 0.0292 0.0305

TranSIV 0.0649** 0.1514** 0.2095** 0.0495** 0.0759** 0.0900** 0.0268** 0.0308** 0.0323**

Flixter Recall@10 Recall@50 Recall@100 NDCG@10 NDCG@50 NDCG@100 MAP@10 MAP@50 MAP@100

WMF 0.3610 0.4951 0.5723 0.3030 0.3469 0.3724 0.2245 0.2282 0.2337

BPR 0.1612 0.3337 0.4366 0.1227 0.1765 0.2061 0.0893 0.1005 0.1046

SBPR 0.3145 0.5001 0.5948 0.2641 0.3400 0.3734 0.2018 0.2291 0.2383

SPF 0.1756 0.2837 0.3628 0.1405 0.1719 0.1936 0.0954 0.0938 0.0947

EXPOMF 0.3788 0.4947 0.5684 0.3248 0.3543 0.3760 0.2484 0.2379 0.2391

TranSIV 0.3882** 0.5272** 0.6119** 0.3276** 0.3623** 0.3855** 0.2507** 0.2415** 0.2427**

baseline algorithms were initialized as in the corresponding
papers, and were then carefully tuned to achieve optimal per-
formance. The dimensions of the latent factor vectors were
set to 20, 100, and 50 for Ciao, Epinions, and Flixter, respec-
tively. For TranSIV, the shared dimension was set to be 80%
of the total dimension by default; therefore, the dimensions
of θc, θr, θs were (16,4,4), (80,20,20), and (40,10,10) for the
three datasets, respectively. The dimensions of βc and γc

are the same as that of θc, and the dimensions of βr and γs

are the same as those of θr and θs.

4.1 Comparative Analysis on Overall
Performances

We conducted a four-fold cross-validation, with three folds
used for training and the remaining fold used for testing.
The experiment was conducted four times, and the average
results are presented in Table 4.

From these results, several observations can be made:

• The methods that model item visibility (EXPOMF
and TranSIV) generally outperform those methods
that do not consider visibility. The visibility-related
methods model missing feedback as negative feed-
back with corresponding probabilities, and this finer-
grained modeling increases the learning accuracy of
user preferences.

• Methods utilizing social information usually outper-
form those without social information. In Table 4,
for example, the performance of SBPR is better than
that of BPR, and TranSIV performs better than EX-
POMF and BPR. This is not surprising, as social
information is complementary to ratings. However,
social information may also contain noise that is in-
consistent with the rating behavior of users. There-
fore, a proper model that coordinates social infor-
mation may perform better. The transfer learning

procedure captures this correlation and heterogene-
ity simultaneously. The effect of transfer learning
will be discussed in detail in Section 5.

• As shown in Table 4, TranSIV outperforms SBPR
and SPF. Although social information is useful for
recommendations, the performance can vary depend-
ing on how the social information is utilized. The
results show that methods which consider social vis-
ibility outperform those that do not. Visibility in-
formation allows missing social interactions to be
modeled with finer granularity, which is the advan-
tage of TranSIV.

• Considering the performance on each dataset, we
find the improvements of TranSIV depend on the
sparsity of the dataset. The Flixter dataset is rela-
tively dense in terms of user–item interactions (av-
eraging 54.97 interactions per user, compared with
20.37 and 12.84 for Ciao and Epinions, respective-
ly). The user preferences are more difficult to learn
from sparse user–item interactions, but can be en-
riched by the knowledge learnt from social interac-
tions. Thus, the transfer learning procedure is more
useful on sparse datasets. To make further verifica-
tions, we conduct experiments on less training data
and the results are presented in Section 4.2.

4.2 Performance with Less Training Data

We also conducted experiments using different proportions
of the training data to validate the sensitivity of our model
in terms of data sufficiency. Each dataset was split into four
folds, and one, two, and three folds were successively used for
training, while the remainder were used for testing. We used
all of the social information in the social-aware algorithms
(SBPR, SPF, and TranSIV). The results are similar for all



Table 5: Performance comparison with 25% and 50% data for training on Ciao, **: p < 0.01
25% Recall@10 Recall@50 Recall@100 NDCG@10 NDCG@50 NDCG@100 MAP@10 MAP@50 MAP@100

WMF 0.0566 0.0804 0.1041 0.0583 0.0636 0.0719 0.0284 0.0208 0.0211

BPR 0.0363 0.1075 0.1485 0.0388 0.0750 0.0909 0.0151 0.0250 0.0281

SBPR 0.0366 0.1117 0.1537 0.0399 0.0780 0.0934 0.0157 0.0261 0.0281

SPF 0.0582 0.0750 0.1055 0.0630 0.0624 0.0720 0.0335 0.0218 0.0217

EXPOMF 0.0595 0.0843 0.1095 0.0619 0.0670 0.0756 0.0308 0.0227 0.0230

TranSIV 0.0834** 0.1226** 0.1590** 0.0863** 0.0862** 0.1085** 0.0448** 0.0356** 0.0363**

50% Recall@10 Recall@50 Recall@100 NDCG@10 NDCG@50 NDCG@100 MAP@10 MAP@50 MAP@100

WMF 0.0689 0.1280 0.1700 0.0658 0.0853 0.0986 0.0323 0.0307 0.0321

BPR 0.0497 0.1357 0.1845 0.0499 0.0863 0.1016 0.0216 0.0304 0.0319

SBPR 0.0514 0.1370 0.1883 0.0513 0.0890 0.1049 0.0226 0.0318 0.0337

SPF 0.0611 0.0968 0.1321 0.0623 0.0706 0.0811 0.0329 0.0269 0.0275

EXPOMF 0.0726 0.1307 0.1726 0.0702 0.0886 0.1019 0.0352 0.0324 0.0338

TranSIV 0.0847** 0.1537** 0.2052** 0.0822** 0.1038** 0.1198** 0.0423** 0.0395** 0.0412**

three datasets; the results using 25% and 50% of the Ciao
data for training are presented in Table 5.

It is known that insufficient training data present signif-
icant difficulties in personalized recommendations. In real-
world scenarios, dealing with scarce feedback is a common
problem. As can be seen in Table 5, TranSIV still outper-
forms the baselines. As less training data implies more miss-
ing feedback, our algorithm exhibits higher accuracy (com-
pared with others) when there is more missing feedback.
Considering that social and consumption behavior are cor-
related, the knowledge learnt from social behavior can com-
pensate for the shortage of user feedback on consumption.
As a result, the use of social information produces a great
improvement when the training data are scarce. This can
be verified by comparing the improvements in social-aware
algorithms over non-social methods in Tables 4 and 5.

Furthermore, TranSIV generally achieves more of an im-
provement when the training data are scarce (especially when
K is relatively small, say K = 10). This observation coin-
cides with the conclusion in [18], which states that transfer
learning contributes even more when data in the target do-
main is sparse.

4.3 Impact of transferred knowledge

As stated in previous sections, the social domain and rating
domain are correlated, but heterogeneous in nature. There-
fore, the social information may add noise into the recom-
mender system. The portion of latent factors that should be
transferred reflects how knowledge from the social domain is
passed to the rating domain.

The dimension of θcu determines how many latent factors
are shared between user–user and user–item interactions. By
altering the dimension of θcu with a stepsize of 20% (when
the full dimension is 100 and Ratio=20%, the dimensions of
θcu, θ

r
u, and θsu are 20, 80, 80), we compared the sensitivity

of our algorithm to the proportion of transferred knowledge.
Note that a ratio of 0% corresponds to EXPOMF and a
ratio of 100% corresponds to FTranSIV. The results using
the Epinions and Ciao datasets are presented in Fig. 4.

As illustrated in the results, a suitable proportion of shared
factors is needed to achieve optimal performance. The spe-
cific number of shared latent factors that gives the best per-
formance may vary with the dataset (for example, the num-
bers for Epinions and Ciao are slightly different). However,
empirical investigations suggest that 80% of shared factors
achieves good performance. On the Epinions dataset, the
performance improves as the transfer ratio increases from 0–
80%, achieving optimal performance around 60–80%; while
sharing all the latent factors (ratio=100%) does not lead to
the best performance. This illustrates that the user–user and
user–item interactions indeed share similar information that
can be leveraged through shared factors, but they also con-
tain unique information that requires independent factors to
capture.

When no latent factors are transferred, i.e., the ratio is 0%,
the knowledge learnt from the social domain is not adapted
into the rating domain. Therefore the model only utilizes
item visibility for preference modeling, which leads to sub-
optimal performance.

Moreover, given a 100% transfer ratio, FTranSIV contain-
s fewer latent factor vectors (three types of latent vectors:
θu, ∀u ∈ U ; βi, ∀i ∈ I; γk,∀k ∈ U) and it degenerates to a
simplified version of TranSIV. We find that the performance
of FTranSIV worsens, but remains superior to that of the
baselines and the case when no latent factors are transferred.

5 DISCUSSION

As transfer learning is applied to coordinate social informa-
tion with that from the rating domain, it would be instruc-
tive to evaluate the performance of transfer learning in com-
parison with another model that utilizes social information
for visibility modeling. To the best of our knowledge, no
previous methods applied visibility modeling with social in-
formation. Therefore, we adopted the idea of [19] and incor-
porated auxiliary information to model visibility in recom-
mender systems. More specifically, we constructed the Social
Content Visibility Matrix Factorization (SCVMF) model.

First, we constructed a social content vector for each us-
er through the network embedding procedure [8], then used
the social embedding vector as the input feature for visibil-
ity modeling. Then we applied a similar idea to Content



Figure 4: Performance of TranSIV with different dimensions of θc on Epinions and Ciao datasets (Ratio
refers to the proportion of shared latent factors; Ratio = 1.0 refers to FTranSIV)

ExpoMF [19] and used the logistic regression model to cap-
ture social-incorporated visibility. This visibility was then
adopted to learn the user preferences.

I (Item)U (user)U (user)

Figure 5: Social Content Visibility Matrix
Factorization (SCVMF).

The graphical model of SCVMF is presented in Fig. 5.
In this model, θu and βi are the user and item latent factor
vectors; aui is the visibility variable and µui is the proba-
bility of aui = 1. µui is assumed to be a logistic regression
outcome of social embedding features (ϕu), where ωi is the
item-specific weight:

µui =
1

1 + exp(−ϕuωi)
(6)

The social embedding vector ϕu is generated from a state-
of-the-art network embedding technique [8], where the social
adjacency matrix is used as the network. Then ϕu is used as
input feature for visibility modeling. The basic idea behind
this model is that the item visibility is associated with the
social connections of users and the interaction between the
items and users is a product of item visibility and the latent
factor vectors of the users and items. The model is learnt
via the SGD (Stochastic Gradient Descent) method. Note
that there can be other approaches for incorporating social
information and visibility (although no existing studies have
done so); we leave this as one direction for future work.

The transfer learning procedure was evaluated in compar-
ison with the SCVMF model. We conducted experiments
on the Ciao dataset with both TranSIV and SCVMF (in
comparison with EXPOMF ), using latent factor vectors of
dimensions consistent with the experimental settings in pre-
vious sections. The results are presented in Table 6.

Table 6: Performance Comparison between
SCVMF and TranSIV on Ciao, **: p < 0.01

Ciao Recall@10 NDCG@10 MAP@10

EXPOMF 0.0751 0.0626 0.0331

SCVMF 0.0754 0.0641 0.0345

TranSIV 0.0800** 0.0663** 0.0354**

As shown in the table, TranSIV outperforms SCVMF with
all metrics. As TranSIV and SCVMF both exploit visibili-
ty for user preference modeling, transfer learning clearly us-
es social information more effectively. Comparing SCVMF
and EXPOMF, we find that the incorporation of social infor-
mation into exposure modeling leads to some improvements
over EXPOMF, which does not consider social information.
Despite its modeling of item visibilities, the social informa-
tion is under-utilized in this way, whereas transfer learning
directly incorporates social information into the modeling of
user preferences and visibility. This illustrates the benefits of
transfer learning in terms of the recommendation accuracy
given by TranSIV.

6 CONCLUSION

In this paper, we examined the problem of using missing user
feedback in social-aware recommender systems, which is an
important challenge in state-of-the-art personalized recom-
mendations. A novel unified model that adopts social and
item visibilities with transfer learning (TranSIV) has been
proposed to solve this problem.

We believe that modeling visibility is vital to recommender
systems, because a missing feedback does not necessarily
mean that a user dislikes an item – it may be simply because
that the user had no chance to see the item at all. However,



this simple intuition is largely ignored in most of the cur-
rent recommendation algorithms. In the future, we aim to
further study the nature of visibility in personalized recom-
mendation systems. Specifically, we will extend the idea of
visibility and transfer learning in the proposed approaches
to cross-domain (i.e., different categories) recommendation.
Another interesting direction is to consider the recommenda-
tion problem in signed social networks, where both likes and
dislikes (or trust and distrust) are explicitly labeled [7, 34].
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