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Abstract. In this paper, we study the online portfolio selection problem from
the perspective of meta learning for mean reversion. The online portfolio selec-
tion problem aims to maximize the final accumulated wealth by rebalancing the
portfolio at each time period based on the portfolio prices announced before.
Mean Reversion is a typical principle in portfolio theory and strategies that uti-
lize this principle achieve the superior empirical performances so far. However
there are some important limits of existing Mean Reversion strategies: First, the
mean reversion strategies have to set a fixed window size, where the optimal win-
dow size can only be chosen in hindsight. Second, most existing mean reversion
techniques ignore the temporal heterogeneity of historical price relatives from
different periods. Moreover, most mean reversion methods suffer from noises
and outliers in the data, which greatly affects the performances. In order to tackle
the limits of previous approaches, we exploit mean reversion principle from a
meta learning perspective and propose a boosting method for price relative pre-
diction. More specifically, we generate several experts where each expert follows
a specific mean reversion policy and predict the final price relatives with meta
learning techniques. The sampling of multiple experts involves mean reversion
strategies with various window sizes; while the meta learning technique brings
temporal heterogeneity and stronger robustness for prediction. We adopt online
passive-aggressive learning for portfolio optimization with the predicted price
relatives. Extensive experiments have been conducted on real-world datasets and
our approach outperforms the state-of-the-art approaches significantly.

1 Introduction

Online portfolio selection problem aims to allocate the wealth among different assets at
different time periods to maximize the long-term wealth. There are two models describ-
ing the problem: the Mean-Variance model[19] and Kelly’s Capital Growth model [11].
The first model uses a weighted sum of expected return (mean) and risk (variance of
the return) as a trade-off between the two objectives, and it is suitable for single-period
portfolio selection; the second model sees the problem as a sequential decision problem
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that aims to maximize the expected return at the end of multiple time periods. Kelly’s
Capital Growth model has a nature of online decision making, which is widely adopted
by the studies from AI and Machine Learning researchers.

In online portfolio selection problem, each asset is associated with a price in each
period. The ratio of prices between current period and last period is called price relative,
which reflects the return of wealth invested on the assets after one period. The agent
allocates the wealth among different assets based on their price relatives at different
periods. Most portfolio selection strategies follow a two-phase scheme: price relative
prediction phase and portfolio optimization phase. The first phase aims to predict the
price relative at next period based on historical data; while the second phase aims to
compute the optimal portfolio given the prediction of price relative.

One common methodology for this problem is Mean Reversion, which assumes the
portfolios that perform poorly at current period will perform well next (and vice versa).
The methods include PAMR (Passive Aggressive Mean Reversion)[17], CWMR (Confi-
dence Weighting Mean Reversion) [15], OLMAR (OnLine Moving Average Reversion)[14]
and RMR (Robust Mean Reversion)[9], which adopt the mean reversion idea in differ-
ent ways. They achieve superior empirical results in experiments compared with other
state-of-art methods. This proves the effectiveness of mean reversion policy.

Although PAMR, CWMR and OLMAR achieve good performances, they still face
some difficulties. All existing mean reversion strategies do not fully consider the noisy
data and outliers (RMR is proposed to alleviate the problem), which often leads to
estimation error (see [20]). Furthermore, the assumption of single-period prediction
[17][15] also leads to estimation error, which makes the performance poor. RMR (Ro-
bust Mean Reversion)[9] and OLMAR[14] uses multi-period prediction, but the algo-
rithm sees each period equally, which ignores the temporal heterogeneity of historical
price relatives and causes inaccuracy of predictions. We utilize meta learning to ex-
ploit the benefit of multi-period prediction and the periods are assigned with weights
according to their performances. Moreover, this alleviates the impact of noisy data and
outliers. The results show that our strategy outperforms RMR and OLMAR.

More specifically, in order to utilize multi-period historical data, we generate multi-
ple experts for price relative prediction following typical MAR methods. Then we adopt
the meta learning method for price prediction. Each expert is assigned a weight that is
updated according to their performances and a weighted aggregation is used as the final
prediction. Meanwhile, we choose the typical passive-aggressive learning method for
portfolio optimization. This method captures the recent portfolio performances and the
objective of enhancing the wealth return at each time period.

The contributions of our work are: first, to our knowledge, we are the first to exploit
the Mean Reversion strategy with meta learning in online portfolio selection problems;
second, we make a better use of multiple-period history, which is robust to the outliers
and noises in historical data; third, we conduct extensive experiments on real-world
datasets and achieve superior results compared with other state-of-the-art approaches.

The remainder of the paper is organized as follows: the next section gives a brief in-
troduction to the related work; Section 3 formally introduces the online portfolio selec-
tion problem while Section 4 introduces some preliminary works about mean reversion
theory and some related concepts. Section 5 proposes BMAR strategy that utilizes meta
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learning in online portfolio selection problem. Section 6 presents the results of experi-
ments conducted on real-world datasets and a thorough comparison with the baselines.
The conclusion and the future work are presented in Section 7.

2 Related Work

The study of online portfolio selection problem first concentrates on some benchmark
algorithms, including Buy and Hold, Best Stock and Constant Rebalanced Portfolios.
The Buy and Hold strategy means the agent invests wealth with an initial portfolio and
holds it to the end without changing the portfolio. The Best Stock strategy means that
one puts all the wealth on the stock whose performance is best in hindsight. Constant
Rebalanced Portfolios is a strategy that rebalances the wealth to a fixed portfolio in
all periods. The best CRP strategy which achieves highest accumulated wealth is called
BCRP. BCRP is an optimal strategy if the market is i.i.d. [4]. Successive Constantly Re-
balanced Portfolios (SCRP) [5] and Online Newton Step (ONS) [1] implicitly estimate
next price relative via all historical price relatives with a uniform probability. However,
both Best Stock and BCRP strategies have to be computed in hindsight.

There are two main categories of algorithms: follow-the-winner approach and follow-
the-loser approach. The intuition behind first approach is to track the stock with best
performance in history and raise the weights in the portfolio of these stocks. Most of the
Follow-the-Winner approaches aim to imitate the BCRP strategy: including the univer-
sal portfolio selection (UP)[10], Exponential Gradient (EG)[8], follow-the-leader and
follow-the-regularized-leader approaches. However, the prices of assets are unstable,
even a good following of winner assets can not guarantee superior performances.

Follow-the-loser approach utilizes a typical assumption of mean reversion [18],
which means that the good (poor)-performing assets will perform poor (good) in the
following periods. The approaches in this category include Anti-Correlation (Anticor)
[2], Passive-Aggressive Mean Reversion (PAMR)[17], Confidence-weighted Mean Re-
version (CWMR)[15], OLine Moving Average Reversion (OLMAR)[14] and Robust
Mean Reversion (RMR)[9]. CRP[4][5] implicitly envolves follow-the-loser approach
since rebalancing the wealth means to transfer the wealth from winning stocks to losing
stocks in some extent.

Another important category of the portfolio selection algorithms is pattern-matching,
which estimates the portfolio price based on sampled similar historical patterns. Non-
parametric kernel based moving window (BK) [7] measures the similarity by kernel
method. Following the same framework, Nonparametric Nearest Neighbor (BNN) [12]
locates the set of price relatives via nearest neighbor methods. [16] proposed Correlation-
driven Nonparametric learning (CORN), which measures the similarity via correlation.

Since the mean-reversion technique is widely adopted in financial fields, it is useful
in online learning algorithms as well. Passive Aggressive Mean Reversion (PAMR) [17]
and Confidence Weighted Mean Reversion (CWMR) [15] estimate next price relative
as the inverse of last price relative, which is in essence the mean reversion principle.
Recently, [14] proposed On-Line Moving Average Reversion (OLMAR), which pre-
dicts the next price relative using moving averages and explores the multi-period mean
reversion. Robust Mean Reversion is proposed to alleviate the impact of outliers and
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noises existing in the data. The empirical experiments indicate that OLMAR and RMR
outperforms the other state-of-the-art algorithms. However, most of the Mean Rever-
sion algorithms have important limits: first, the mean reversion strategies require to
select a fixed time window for prediction, which can not be easily determined; second,
the strategies treat each time period equally in prediction, which ignores the temporal
heterogeneity; third, the strategies do not have strong robustness against noises and out-
liers. We utilize mean reversion strategies for its good depiction of reality and further
use meta learning approach to tackle the limits. A detailed comparison between our
strategy and existing Mean Reversion strategies is presented in Section. 4.

3 Problem Setting

In this section, we formally introduce the Online Portfolio Selection problem. Assume
that there exist m assets in market, and time is divided into T periods. Each asset i has
a closing price pt,i at period t and pt is denoted as the closing price vector (column
vector for all vectors mentioned): pt = [pt,1, pt,2, ..., pt,m]. xt,i is the price relative that
captures the ratio of closing prices between two consecutive periods: xt,i =

pt,i
pt−1,i

and
xt = [xt,1, xt,2, ..., xt,m] is the price relative vector.

In each period, the market reveals the closing prices of assets and the investor has to
assign the capital with a portfolio vector: bt = [bt,1, bt,2, ..., bt,m] where bt,i represents
the proportion of wealth assigned to asset i at time t. We follow the typical assumption
that no margin/short sale is allowed, therefore bt,i ≥ 0,∀t, i and

∑m
i=1 bt,i = 1,∀t. An

investment means to select a portfolio bt from the simplex: {bt,i ≥ 0,
∑m
i=1 bt,i = 1} at

period t. Usually we assume the portfolio is uniformly distributed in the beginning: b0 =
[ 1
m , ...,

1
m ]. The sequence of portfolios from t1 to t2 is denoted as bt2t1 . Denote the wealth

accumulated at t as Wt, w.l.g. the initial wealth is assumed to be 1: W0 = 1. Therefore
given the selected portfolio bt at period t, the wealth becomes Wt = Wt−1b

T
t xt =∑m

i=1 bt,ixt,iWt−1 =
∏t
τ=1 b

T
τ xτ (T is transpose here).

Given the notations and introduction above, the online portfolio selection problem
refers to a sequential decision making problem with periods from t = 1 to t = n. In
each period, the investor has to decide the portfolio based on historical closing prices
of assets and the market reveals the newest closing price of assets, which leads to the
change of wealth. The investor needs to strategically design portfolios bn1 so that the
accumulated wealth Wn at time t = n is maximized.

We summarize the procedures from the introduction above and formulate the whole
online portfolio selection process in Alg. 1 as [13].

4 Preliminary

In this section, we briefly introduce the mean reversion principle and how former works
exploit this principle.

4.1 Mean Reversion

In each period, the algorithm tries to estimate the price relatives of assets in price predic-
tion phase and compute the portfolio with Passive-Aggressive or Confidence Weighted
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Algorithm 1 ONLINE PORTFOLIO SELECTION

Input: xn1 : Historical market price relative sequence
Output: Wt : Final cumulative wealth
Procedure:
1: Initialize the portfolio b1 = 1

m
1, the wealth is initialized as W0 = 1;

2: for t = 1, 2, ..., n do
3: Portfolio mannager learns the portfolio bt;
4: Market reveals the market price relative xt;
5: Portfolio incurs period return wt = bT

t xt and updates cumulative return Wt = Wt−1 ×
(bT

t xt);
6: Portfolio manager updates the online portfolio selection rules;
7: end for;

Learning given the predicted price relatives. The mean reversion principle is reflected in
the first phase by assuming that the poor-performing assets will have good performances
in next periods (and vice versa). Denote the estimated price relative as x̃t and the es-
timated closing price as p̃t. PAMR and CWMR assumes that the assets with high/low
price relatives will have low/high price relatives in next period: x̃t+1 = 1

xt
,∀t, which

means p̃t+1

pt
= pt−1

pt
. Therefore the principle assumes that p̃t+1 = pt−1. Although the

two methods work well, they can not perform consistently on some datasets. There are
two reasons that lead to this inefficiency: first, the fluctuating prices may contain noises
that affect the precision of mean reversion principle; second, the single period price
reversion effect may not exist widely as expected.

4.2 Online Moving Average Reversion

The OLMAR (online moving average reversion) principle is proposed to model the
mean reversion principle with multiple-period historical data. Denote the time window
of OLMAR as w, the closing price pt at period t is assumed to be: p̃t = 1

w

∑t−1
τ=t−w pτ .

The price is therefore considered as the average of prices in a time window and the price
relative becomes: x̃t = pt

pt−1
= 1

w (1 + 1
xt−1

+ ...+ 1⊗t−1
τ=t−w xτ

). This Moving Average

Reversion strategy with time window is denoted as SMAR.
Usually, it is assumed that the price at current period is closer to the price at recent

periods due to the continuity of price changes. Therefore the price can be estimated with
MAR by adding a decay factor α: p̃t = αpt−1 +(1−αp̃t−1), which results with a price
relative: x̃t = α + (1 − α) x̃t−1

xt−1
. Therefore the decay factor frees the algorithm from

choosing a time window and utilizes the prices from the whole history. This Moving
Average Reversion strategy with time window is denoted as EMAR.

Given the price relative predictions, OLMAR method further utilizes the online
passive aggressive learning policy for portfolio optimization, which is also adopted by
PAMR. Notice that the choice of time window size and decay factor determines the
performance of this method and can not be pre-defined in hindsight.
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Table 1. Comparison between our strategy (BMAR) with Existing Mean Reversion Approaches.

Approaches Mean Reversion Multi-Period Robustness Temporal Heterogenity
PAMR

√
\ \ \

CWMR
√

\ \ \
OLMAR

√ √
\ \

RMR
√ √ √

\
BMAR

√ √ √ √

4.3 Robust Mean Reversion

RMR uses L1 estimator to estimate the closing prices of assets so that the result-
ing price has a better robustness compared to other methods: with a window size of
historical periods w, RMR estimates the closing at t by minimizing this objective:∑t−w
τ=t−1 ‖p̃t − pτ‖2, and the price relative is estimated as p̃t

pt−1
. This estimation is

named as L1 estimator and is relatively more robust to noises.

4.4 Temporal Heterogeneity

The price relatives of different periods are correlated in different extents. Usually, it is
assumed that the price at current period is closer to the price at recent periods due to
the continuity of price changes. Meanwhile, the changes of price relatives in some time
windows are more similar than others (which is the foundation of CORN (CORrelation-
driven Nonparametric learning) [16]). Therefore, when predicting the price relatives
in the future, the algorithm should consider how to make use of the historical time
windows differently.

Given these existing algorithms exploiting Mean Reversion principles, we make a
comparison between our approach (Boosting Moving Average Reversion: BMAR) and
these algorithms in Table. 1. The multi-period column shows whether the approaches
use multiple-period historical data for prediction; the Robustness shows whether the
approaches are robust to noises and outliers; the Temporal Heterogenity column shows
whether the approaches can utilize the data from different periods Heterogeneously. The
table shows that our strategy (BMAR) preserves all the good properties, which shows
the superiority.

5 Proposed Strategy: Boosting Moving Average Reversion

Like most methods, we solve the problem with two phases: price relative prediction and
portfolio optimization. We first generate a set of experts and each expert is a predictor
of the price relative following a mean reversion policy. In each period, each expert first
makes its predictions on the price relatives in next period; then we compute the cumu-
lated losses induced by each expert from their historical predictions and the true past
price relatives. With the cumulated losses, we compute the weights assigned to each ex-
pert following the boosting methods introduced later and make a final prediction. Then
we use Online Passive-Aggressive learning method to compute an optimized portfolio
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Fig. 1. BMAR Strategy for Online Portfolio Selection

with the final prediction of price relatives in next period. When the true price relatives
are revealed, we can update the cumulated losses of each predictor. The process of
BMAR strategy for online portfolio selection is illustrated in Fig. 1.

5.1 Boosting Moving Average Reversion for Price Relative Prediction

We generate the experts of price relative prediction with different parameters from OL-
MAR. Denote the set of experts as E and the SMAR expert with time window w is
denoted as Ew, the EMAR expert with Decaying factor α as Eα.

Uniform Sampling: We generate the experts by sampling the parameters uniformly
from the range: w ∼ U(wmin, wmax) and α ∼ U(0, 1). We generate M = wmax −
wmin + 1 experts from MAR (w = wmin, wmin + 1, ..., wmax) and N experts from
EMAR (α = {0.1, 0.2, ..., 0.9} when N = 9). Based on the different ways of generat-
ing experts, we denote the strategy of generating experts with time window as BMAR-1
and the strategy of generating experts by sampling α as BMAR-2. With the generated
experts, we use weighted aggregation of their decisions to predict the price relatives at
different periods. Each expert represents an approximation of the price relative in next
period with a certain time window. By utilizing the predictions of these experts with
a weighted scheme, we can induce temporal heterogeneity into our approach and the
details will be introduced later.

As shown in Theorem 1 later, the regret of our strategy is closely related to the
number of experts we generate. We will present the influence of expert numbers and
sampling methods on the performances in the experiment.

We assume a weighted sum of the experts as the estimator of the price relative:

BMAR−1 : x̃(t) =

∑i=N
i=1 θi,t−1x̃(t, wi)∑i=N

i=1 θi,t−1

;BMAR−2 : x̃(t) =

∑j=M
j=1 θj,t−1x̃(t, αj)∑j=M

j=1 θj,t−1

(1)
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where x̃(t, w) and x̃(t, α) are the predicted price relatives of expertEw andEα; θw,t−1

and θα,t−1 are the weights assigned to these experts given their performances until
period t− 1.

Denote the loss of expert Ew by period t as l(w, t) and the loss of weighted expert
(BMAR) by period t as l(t). The cumulated losses of expertEw and weighted expert by
period T are denoted as L(w, T ) =

∑t=T
t=1 l(w, t) and L(T ) =

∑t=T
t=1 l(t) respectively.

The difference between the two losses is seen as the regret of weighted expert with
respect to expert Ew: R(w, T ) = L(T )− L(w, T ).

We introduce the weights assigned to the expert, i.e. exponential weights:

θi,t−1 =
e−ηRi,t−1∑N
j=1 e

−ηRj,t−1
(2)

where η is a nonnegative parameter. Notice that R(w, T ) = L(T ) − L(w, T ), the
exponential weights make the predictions simpler:

θi,t−1 =
e−ηLi,t−1∑N
j=1 e

−ηLj,t−1
(3)

It has been proved that this expert learning procedure guarantees a proper upper bound
of regret in prediction, as shown in the theorems from [3]:

Theorem 1. Assume that the loss function is convex in its first argument and takes
values from [0, 1], then the regret of exponentially weighted average predictor satisfies
(N is the number of experts, n is the number of periods and η is the parameter in
exponential weights):

L̂n − min
i=1,...,N

Li,n ≤
lnN

η
+
nη

2
(4)

The details of the proofs can be found in [3] and we omit the details here. Given
these theorems, we can design loss functions that satisfy the requirements:

l(p̂, y) =
1

Nε
× ‖p̂− y‖22 (5)

where ε is the constant that rescales l(p̂, y) into [0, 1]. And it is easy to verify that
the function is convex, which satisfies the requirement of the theorems. Notice that ε
actually works as coefficients of l(p̂, y) with η, we can simply tune the value of η to
adjust the performances, therefore when using this loss function, we do not explicitly
set the value of ε.

Remarks on Robustness: Notice that we do not explicitly model robustness in
our prediction, however the utilization of multiple experts involves robustness: if the
outliers and noises causes degradation of the experts’ prediction accuracy, the weights
assigned to these affected experts are lowered, which prevents the final predictions suf-
fering from the noises and outliers.

5.2 Portfolio Optimization

Given the predicted price relatives shown in former section, we utilize the passive ag-
gressive learning procedure to solve an optimal portfolio. The basic idea of passive
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aggressive learning is to keep the portfolio the same if the predefined requirement is
satisfied, otherwise the portfolio is computed to satisfy the requirement with a minimal
change. More specifically, we formulate the optimization problem as follows:

min. ‖bt − bt−1‖2

s.t. btx̃t ≥ ε, and bt � 0
(6)

where ε is the threshold for the return at each period. Usually ε is a constant greater
than 1 to ensure the return under predicted price relative is increasing. The optimum to
this problem is the portfolio assigned for period t. Notice that if we keep the portfolio
same with that in last period and the return under predicted price relatives still exceeds
the required value, we will keep the portfolios unchanged; otherwise, we will try to
minimize the change between current portfolio and that in last period as long as the
return can exceed the requirement. Since this optimization problem is convex, we can
derive the portfolio in a closed form. The solution without considering the nonnegativity
constraint is presented in the following proposition:

bt+1 = bt − αt+1(x̂t+1 − x̄t+1 · 1) (7)

where x̄t+1 = 1
d (1̇̂xt+1) denotes the average predicted price relative and αt+1 is the

Lagrangian multiplier calculated as,

αt+1 = min{0, x̂t+1bt − ε
‖x̂t+1 − x̄t+1 · 1‖2

} (8)

In order to ensure that the portfolio is non-negative, we project the above portfolio into
the simplex domain as [14].

5.3 Transaction Costs

In this section, we will introduce the transaction cost, which is an important factor in
practical scenarios. In practice, each transaction of wealth from one asset to another is
charged with transaction fees. The transaction cost is imposed by markets, and a port-
folios behavior cannot change the properties of transaction costs, such as commission
rates or tax rates. Usually we assume the transaction fee follows a proportional model,
which means rebalancing a portfolio incurs transaction costs on every buy and sell op-
eration, based upon a transaction cost rate of γ ∈ (0, 1). Therefore the transaction cost
for a rebalancing from b̂t−1 to bt is computed as:

γ

2
×

m∑
i=1

|bt,i − b̂t−1,i| (9)

Therefore the cumulated wealth after n periods becomes:

W γ
n = W0

n∏
t=1

[(bt · xt)× (1− γ

2
×

m∑
i=1

|bt,i − b̂t−1,i|)] (10)

Notice that the main intuition of Passive-Aggressive portfolio optimization is to keep
the portfolio unchanged unless the requirement can not be satisfied. This avoids unnec-
essary rebalancing of wealth among assets and saves the transaction costs induced.
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6 Experiment

We conduct extensive experiments on several real-world datasets to evaluate the perfor-
mances of our strategy and make comparisons with state-of-the-art approaches.

6.1 Experiment Setting

In our experiment, we use the real-world datasets that are frequently used in related
works. There are four datasets that contain price relatives of assets from US and Global
markets. The time frames of these datasets range from decades to years, which reflect
the performances of both long-term and short-term portfolio selections. The details of
the datasets are listed in Table. 2. In the experiment, we use the metrics that are adopted
in the literatures for evaluation: i.e. the total wealth achieved at the final period.

Table 2. Statistics of the real-world datasets for experiment.

Dataset Region Time Frame # Periods # Assets
NYSE(O) US Jul.3rd 1962-Dec. 31st 1984 5651 36
NYSE(N) US Jan.1st 1985-Jun 30th 2010 6431 23
SP500 US Jan.2nd 1998-Jan. 31st 2003 1276 25
MSCI Global Apr. 1st 2006-Mar.31st 2010 1043 24

6.2 Comparison Approaches

We select the state-of-art algorithms (most of them have been introduced in the related
works) for comparison, including those Benchmark algorithms (Market, Best-Stock
and BCRP), follow-the-winner algorithms (UP, EG, ONS), pattern-matching algorithms
(Bk, BNN , CORN, Anticor) and all the variants of mean reversion algorithms (PAMR,
CWMR, OLMAR, RMR). For all the algorithms above, we choose the parameters with
best performances as reported in related works. Notice that we select some algorithms
that use information in hindsight for comparison (which are strong baseline algorithms).
For the default setting of BMAR, we setW = 8 andN = 9 for BMAR-1 and BMAR-2.
The other parameters are chosen as: η = 1, ε = 5 for all datasets.

6.3 Performance Evaluation

We present the cumulative wealth of our strategy and the comparative approaches in
table. 3. As shown in the table, our strategy achieves the best performance on all
datasets and outperforms other comparative algorithms significantly on long-term port-
folio selection problems, i.e. on NYSE(O) and NYSE(N). Notice that the parameters fit
for each dataset can be different, we also list the best performances of algorithms for
comparison. The results show that the (including best or conventional) performances
achieved by BMAR are better than other comparison algorithms. We also conduct sig-
nificance test (following [6]) on the performances and the results are listed in Table.
4. The significance tests shown above indicate that the performance of our strategy is
significantly better on all datasets, which is not the consequence of luck. Notice that our
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Table 3. Cumulative Wealth on four datasets.

Categories Approaches NYSE(O) NYSE(N) SP500 MSCI

Baselines
Market 14.5 18.06 1.34 0.91
Best Stock 54.14 83.51 3.78 1.50
BCRP 250.60 120.32 4.07 1.51

Follow
the winner

UP 26.68 31.49 1.62 0.92
EG 27.09 31.00 1.63 0.93
ONS 109.19 21.59 3.34 0.86

Pattern
Matching

BK 1.08E+09 4.64E+03 2.24 2.64
BNN 3.35E+11 6.80E+04 3.07 13.47
CORN 1.48E+13 5.37E+05 6.35 26.10
Anticor 2.41E+08 6.21E+06 5.89 3.22

Mean
Reversion

PAMR 5.14E+15 1.25E+06 5.09 15.23
CWMR 6.49E+15 1.41E+06 5.90 17.28
OLMAR-1 3.68E+16 2.54E+08 5.83 16.39
OLMAR-1(max) 1.62E+17 3.95E+08 20.91 25.49
OLMAR-2 1.09E+18 5.10E+08 8.63 21.21
OLMAR-2(max) 2.19E+18 2.84E+09 14.63 27.05
RMR 1.64E+17 3.25E+08 8.28 16.76
RMR(max) 2.81E+17 4.73E+08 17.05 19.07

Our
Strategy

BMAR-1 2.02E+18 8.95E+08 9.99 23.01
BMAR-1(max) 4.59E+18 5.04E+09 16.02 30.98
BMAR-2 8.11E+18 1.16E+09 10.11 22.93
BMAR-2(max) 8.33E+18 6.64E+09 26.45 30.04

Table 4. Significance Test of the Performances on experimental datasets. MER means Mean
Excess Return; All the statistics are preferred to be higher; p-value is expected to be low.

Metrics NYSE(O) NYSE(N) SP500 MSCI
Size 5651 6431 1276 1043
MER (BMAR-1) 0.0081 0.0038 0.0024 0.0033
MER (Market) 0.0005 0.0005 0.0003 0.0000
Winning Ratio 0.5735 0.5400 0.5306 0.5916
α 0.0075 0.0032 0.0020 0.0033
β 1.2884 1.1166 1.2852 1.2085
t-statistics 16.7284 8.1011 2.5402 6.3251
p-value 0.0000 0.0000 0.0056 0.0000

approach outperforms other baselines significantly, especially on datasets NYSE(O)and
NYSE(N). The reason is that the NYSE datasets contain relatively long time periods,
and the wealth accumulated has a ”Matthew Effect” (the accumulated wealth will be in-
creased with time passing by, the longer it goes, the more wealth will be accumulated).

6.4 Parameter Sensitivity

Notice that our strategy has several parameters:W (which is the maximum window size
of experts generated from moving mean reversion) and η for strategy BMAR-1; α and η
for strategy BMAR-2. The threshold for portfolio optimization ε is also a key parameter.
We conduct experiments on all datasets with different values of the parameters.
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Fig. 2. Parameter Sensitivity of η with ε = 5,W = 8 in BMAR-1
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Fig. 3. Parameter Sensitivity of η with ε = 5, N = 9 in BMAR-2

Impact of η Notice that we use P2 norm of the difference between prediction and true
price relative as loss function, the value of η therefore has two effects: first, it scales the
loss function into [0, 1]; second, it evaluates the weights assigned to each expert consid-
ering their performances. Therefore we conduct experiments with different values of η
on the datasets to show their impact in Fig. 2 and Fig. 3. Notice that the two strategies
are different according to their ways of estimating the price relatives at each period.
The impact of η also varies with the two strategies. Generally, choosing η = 1 guaran-
tees relative good performances on all the datasets, which is adopted in the experiments
shown in Table.3.
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Fig. 4. Parameter Sensitivity of W with ε = 5, η = 1 in BMAR-1

Impact of W BMAR-1 generates experts with different window sizes w ∈ [2,W ],
each expert estimates the asset price as the mean of prices in most recent w periods.
We choose different values of W to generate experts, where each W means W − 1
experts with window sizes are generated. The results are shown in Fig. 4. Notice that
the impacts of W are different on the datasets, this is due to the fact that the optimal
window sizes for the experts to work on different datasets are also different: the optimal
window size for MSCI can be relatively low compared with other datasets. We find that
the strategy can achieve consistently good performances when W ∈ [8, 10] and set it as
a conventional value.

Impact of ε The passive-aggressive portfolio optimization technique is applied in our
scheme, which tends to keep the portfolios same unless they fail to reach the require-
ment of return from each period. Therefore, we conduct experiments with different
values of ε to show the impact. The impact of ε on our strategies are similar. As shown
in Fig. 5, both BMAR-1 and BMAR-2 achieve good performances on all datasets when
ε ∈ [5, 10]. Similarly, we choose ε = 5 as a conventional setting.

6.5 Performance Under Transaction Costs

We also conduct experiments with different transaction cost ratio since it is an unavoid-
able issue in practice. We alter the transaction cost ratio from 0% to 1% and compute
the cumulative wealth of different strategies. The results are presented in Fig. 6.

Judging from the results, the transaction costs has a significant impact on the wealth
return. When the transaction cost ratio is greater than 0.005, the wealth achieved on
most datasets is close to 0. Since our algorithms can still outperform the baselines, they
have good scalability for transaction costs. Notice that the real transaction cost ratio is
usually below 0.005, our algorithm can work well in practice.
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Fig. 5. Parameter Sensitivity of ε with η = 1, w = 8 in BMAR-1 and η = 1, N = 9 in BMAR-2
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Fig. 6. Performance with different transaction cost ratios

7 Conclusion

In this paper, we consider the online portfolio selection problem from the perspective
of mean reversion and meta learning. So far, mean reversion strategies have achieved
best empirical results, however they face limits of unknown window size and ignores
the temporal heterogeneity of different periods. Meanwhile they are easily affected by
outliers and noises in the data. We utilize meta learning to tackle the limits and pro-
pose Boosting Moving Average Reversion (BMAR) strategies. The experiments on
real-world datasets show that BMAR outperforms state-of-the-art strategies. We be-
lieve more accurate prediction of price relatives can further improve the performances
and we will consider this as future works.
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