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When I am Choosing a Whitening Cream 
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A whitening cream that 
my GF used to buy 

The recommended items that 
other customers also viewed 



But I have made a WRONG choice 

10/18/14 Explicit Factor Models for Explanable Recommendation 3 

The recommended item is suitable for  
DRY skins while she has OIL skins	  



Challenges in Generating Explanations 

Ø Factorization models are hard to explain 
Ø The ability to recommend without clear content information 
Ø High rating prediction accuracy 
Ø Latent Factor Models (LFM) have achieved significant success  

Ø  The latent features make it difficult to explain the 
recommendation results to users 
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Backgrounds and Motivations 
Ø However 
Ø One of the underlying reason 

Ø How users compose the different attributes of a product into a 
single numerical rating. 
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Appearance 
Design 

Computing 
Performance 



Textual Reviews Could be Helpful 
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Numerical Star Rating Review Text 

Service	  –	  Excellent	  
Phone	  quality	  –	  Perfect	  



The Role of Textual Reviews 
Ø Phrase-level Sentiment Analysis 

Ø To extract product features and user opinions from reviews 
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The service from the seller is excellent, but the battery life is short. 

Feature Word Opinion Word 

Sentiment Polarity 



Sentiment Lexicon Construction 
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Ø Construct a sentiment lexicon from large amount of 
textual user reviews. 

Feature 
Word Set 

Opinion 
Word Set 

Feature-
Opinion 

Pairs 

Labeled 
Feature-
Opinion 

Pairs 

Review 
Corpus 

Service, Battery life, Quality … 

Excellent, Short, High … 

(Service, Excellent) 
(Batter life, Short) 
(Quality, High) … 

(Service, Excellent, +1) 
(Batter life, Short, -1) 
(Quality, High, +1) … 



Sentiment Lexicon Construction 
Ø Two basic properties to note 

Ø The sentiment lexicon is domain specific 
Ø Different product domain may have different product feature 

words and user opinion words 

Ø The sentiment lexicon is contextual 
Ø The same opinion word may exhibit different sentiment with 

different feature word 
Ø (Quality, High, +1)   vs   (Noise, High, -1) 
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Our Approach: the Intuition 

Ø To recommend a product that performs well on the 
features that a user concerns. 
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Items perform well on 
different features 
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Structure the Textual Reviews 

Ø Extract the Feature-Opinion pairs contained therein 
Ø Detect whether the sentiment is reversed by negation words 
Ø Calculate the real sentiment expressed on each feature 
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Star	  Ra7ng:	  4	  stars	  
Review	  Text:	  Screen	  is	  perfect,	  
but	  earphone	  is	  not	  that	  good.	  

(screen,	  perfect,	  1)	  [normal]	  
(earphone,	  good,	  1)	  [reversed]	  

(screen, 1), (earphone, -1) 



User-Feature Attention Matrix 
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tij is the frequency that user i mentions feature j 



Item-Feature Quality Matrix 
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k is the frequency feature j is mentioned on item i 
sij is the average sentiment of these mentions 



Multi-Matrix Factorization  
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Ø Integrating the Explicit and Implicit Features  

Explicit	  Factors	   Hidden	  Factors	  



Algorithm for Model Learning 
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To select the hyper-parameters, 
we first randomly initialize the 
five parameters, and tune them 
one-by-one with the remaining 
four fixed. This procedure is 
conduct several times and we 
select the best choice. 



How to Generate Recommended List 
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User-‐based	  feature	  
selec7on:	  select	  the	  
top-‐k	  most	  cared	  
features	  (with	  the	  
highest	  predicted	  
values)	  to	  conduct	  
vector	  mul7plica7on.	  

For each user i, rank the items with the ranking score: 



How to Generate Recommended List 
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values)	  to	  conduct	  
vector	  mul7plica7on.	  

For each user i, rank the items with the ranking score: 



Explanations Could be Very Helpful  

Ø Scrutability: Make the system more transparent and 
easier to understand 

Ø Effectiveness: Increase users’ confidence or trust in 
the system, help users make better decisions 

Ø Efficiency: Help users to make decisions faster 

Ø Persuasiveness: Convince users to try or buy 

Ø Satisfaction: Increase the ease of the user enjoyment 
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How to Generate Explanations 
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Provide disrecommendations by telling the user  
why the current browsing item is disrecommended 
 

 Feature-level explanation for a recommended item  



Experiments: Setup 
Ø Offline experiment to evaluate recommendation accuracy 

Ø Rating Prediction & Top-K Recommendation 
Ø Yelp (English) and Dianping (Chinese) user review datasets 

 

Ø Online A/B test to evaluate explanation effectiveness 
Ø Recommendation explanation on a major e-commerce web site 
Ø Focus on the persuasiveness of explanation 
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Results: Rating Prediction is Improved 
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Ø Ratio of Explicit (U1 U2) and Hidden Factors (H1 H2) 
Ø Fix r+r’=100 and tune their ratio 
Ø Set r=100 in comparable algorithms for equal model complexity 

 

When an appropriate number of explicit 
factors is used, our EFM algorithm is better 

Ye
lp

 D
at

as
et

 



Results: Top-K Recommendation is Improved 

Ø Comparative Algorithms 
Ø MostPopular: Rank items by popularity 

Ø SlopeOne: Neighborhood-based algorithm [Lemire 2005] 

Ø NMF: Non-negative Matrix Factorization [Ding and Lee 2001] 

Ø BPRMF: Bayesian Personalized Raking (BPR) optimization 
for Matrix Factorization (MF) [Rendle 2009] 

Ø HFT: Hidden Factors as Topics [McAuley 2013, Recsys] 
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Results: Top-K Recommendation is Improved 
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Ø Number of Most Cared Features k 

 

NDCG of EFM rises with the 
increase of k until about 15 

Tends to be stable before  
it begins to drop when k = 45 

However, results on AUC  
is better consistently 

AUC evaluates only the pairwise rankings rather than the positions 



Ø Further Analysis of Explicit Features 
Ø It’s beyond expectation that a user considers tens of features 

Ø Coverage in term frequency of the top-k most cared 
features 
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A small number of 
explicit features 
could dominate the 
term frequency in 
textual reviews. 
 
This verifies our 
assumption to use 
the most cared 
features for 
recommendation. 

Results: Top-K Recommendation is Improved 



Ø Further Analysis of Explicit Features 
Ø Why users consider tens of explicit features? 

Ø We group the explicit features into synonym clusters 
Ø WordNet for English and HowNet for Dianping 
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Each synonym 
cluster has 3~4 
explicit features 
on average. 

Users just use different words 
to express similar concepts! 

Results: Top-K Recommendation is Improved 



Ø Further Analysis of Explicit Features 
Ø The top 15 features can be fully included in the top 7 clusters 

Ø Relations with previous work 
Ø Consistent with the Hidden Factors as Topics (HFT) model 

[McAuley 2013, Recsys] 
Ø Where the authors find that the performance would not 

improve with more than 10 topics. 
Ø They could be ‘long tail’, redundant topics. 
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Results: Top-K Recommendation is Improved 



Online Experiment for Explanations: Setup 

Ø Provide mobile phone recommendation by a popular 
commercial web browser in an e-commerce website. 
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List: Recommended Items 

Indicator: Whether the 
current browsing item is 

recommended or not 



Online Experiment for Explanations: Setup 

Ø The explanations are displayed when user hover the 
mouse on an recommended item. 
Ø To ensure that the users examined the explanations 
Ø Word cloud to show the detailed performance on features 
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 Picture - Clear 

 Appearance - Beautiful  

 Switch - Slow 



Click Through Rate on Recommendation List 

Ø Design 3 user groups 
Ø A (experimental group): Receive our feature-level explanations 
Ø B (comparison group): Receive the ‘people also viewed’ explanation 
Ø C (control group): Receive no explanation 

Ø Only consider the records that hovered the mouse on the 
recommendations 
Ø As an indication of examining the explanations. 

Ø Click through rate is significantly higher in group A than B and C. 
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(Dis)Recommendation with Additional Explanation 
is More Influential on User Buying Decision 
Ø A group: receives the feature-level explanations 
Ø B group: receives no explanation 

Ø We didn’t assign other comparison groups because these is 
no previous work presenting disrecommendation explanations 
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Explanations help persuade a user to add a recommended product to 
shopping cart or to ignore a disrecommended product 



Conclusions 
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Attempt to bring new insights into the problem of 
recommendation explanation 

Incorporate phrase-level sentiment analysis into 
recommender systems 

Propose the Explicit Factor Models for both accurate 
recommendation and intuitional explanations 

Good performance on both offline and online A/B tests 
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