Explicit Factor Models for Explainable Recommendation based on Phrase-level Sentiment Analysis

Yongfeng Zhang,

Guokun Lai, Min Zhang, Yiqun Liu, Shaoping Ma, Tsinghua University

Yi Zhang, University of California, Santa Cruz

When I am Choosing a Whitening Cream

Customers Who Viewed This Item Also Viewed

<					
	Nivea Extra Whitening Pore	Nivea UV Whitening Extra	Nivea Body Extra	Nivea UV Whitening Extra	
	Minimizer Antiperspirant	Cell Repair and Protect	Whitening Milk Repair	Cell Repair Body Lotion	
	Deodorant Roll-On 50ml	Body Lotion 400ml	400ml	250ml	
	*** *********************************		* * * * * (6)		
	\$8.33	\$20.80	\$20.00	\$5.95	

an

But I have made a WRONG choice

The recommended item is suitable for DRY skins while she has OIL skins

★★★★★ nice scent

By Y. Xiong on December 16, 2013

Verified Purchase

Unlike other cream I have tried, Nivea has a really great scent. It is greasy and fits for my dry skin well. I also bought Serum so I used the Serum first before applying the cream. I used it as a daily lotion. It's hard to tell if my skin has lightened since I've used it for over a month and I haven't really seen a difference yet. Maybe a slight change but nothing dramatic to where you can tell my skin has whitened.

Can the recommender system give me more detailed EXPLANATIONS about WHY an item is recommended?

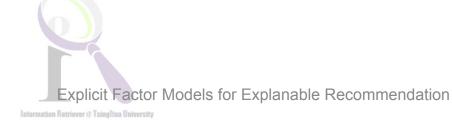
Customers Who Viewed This Item Also Viewed

Challenges in Generating Explanations

Factorization models are hard to explain

- The ability to recommend without clear content information
- High rating prediction accuracy
- Latent Factor Models (LFM) have achieved significant success
- The latent features make it difficult to explain the recommendation results to users

Can we have a solution that is both highly *accurate* and easily *explainable*?

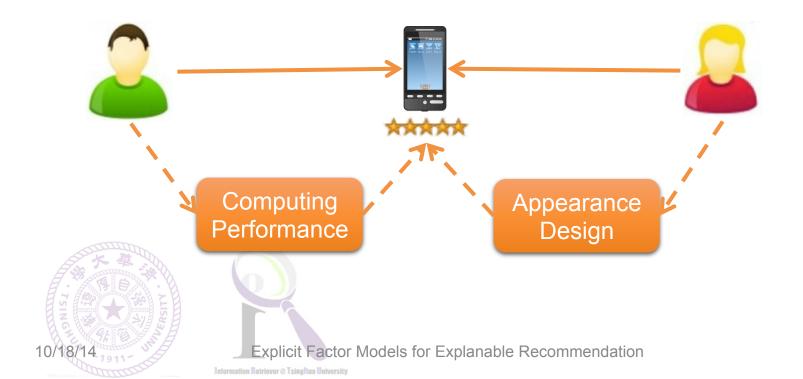


Backgrounds and Motivations

> However

One of the underlying reason

How users compose the different attributes of a product into a single numerical rating.

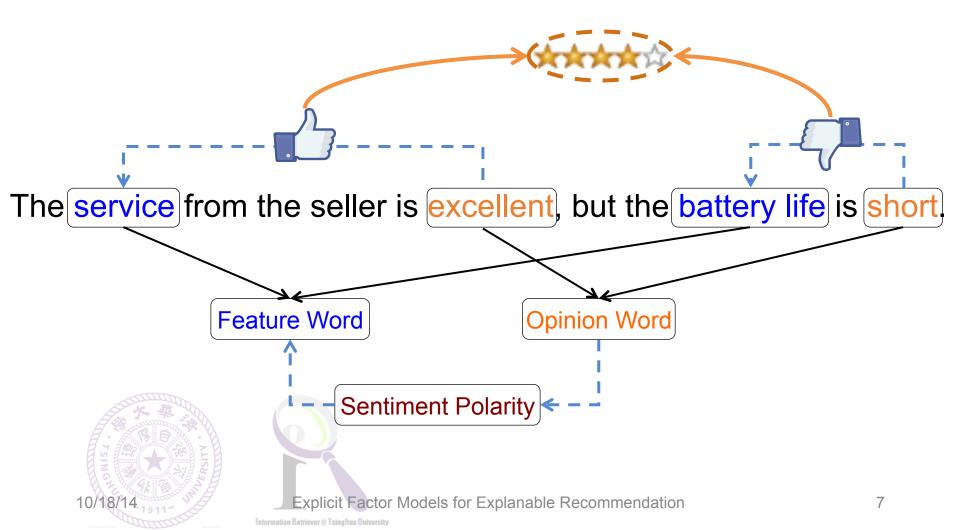


Textual Reviews Could be Helpful

The Role of Textual Reviews

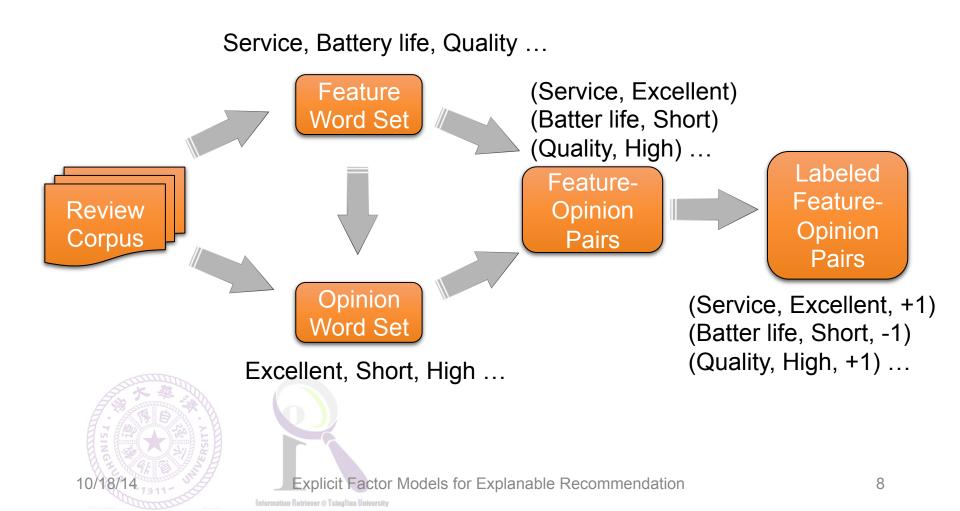
Phrase-level Sentiment Analysis

To extract product features and user opinions from reviews



Sentiment Lexicon Construction

Construct a sentiment lexicon from large amount of textual user reviews.



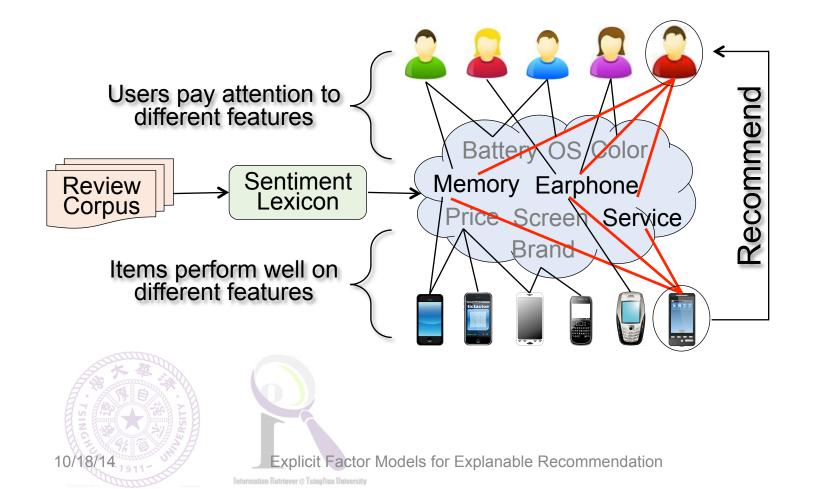
Sentiment Lexicon Construction

Two basic properties to note

- The sentiment lexicon is *domain specific*
 - Different product domain may have different product feature words and user opinion words
- The sentiment lexicon is contextual
 - The same opinion word may exhibit different sentiment with different feature word
 - (Quality, High, +1) vs (Noise, High, -1)

Our Approach: the Intuition

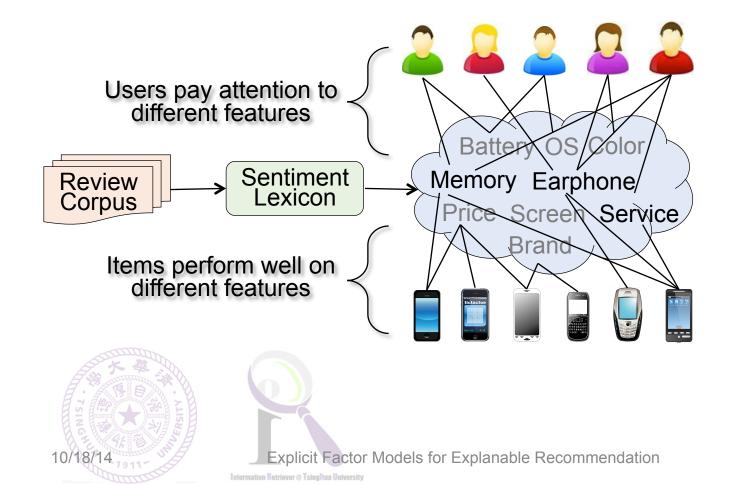
To recommend a product that performs well on the features that a user concerns.



10

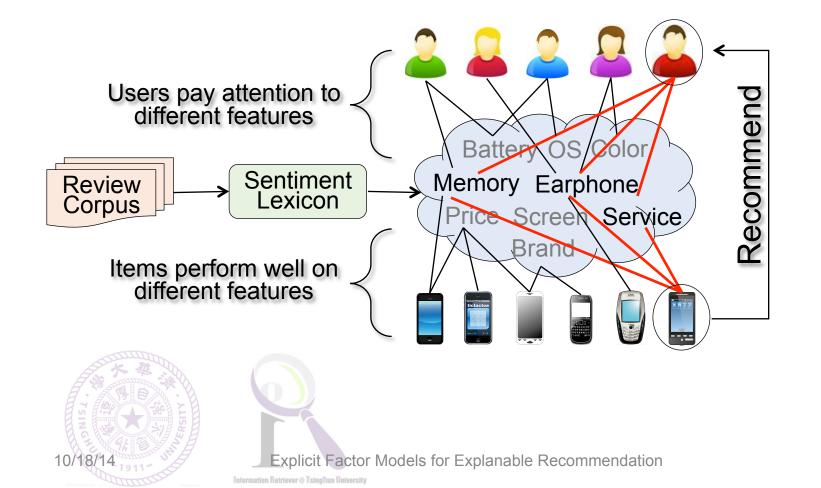
Our Approach: the Intuition

To recommend a product that performs well on the features that a user concerns.



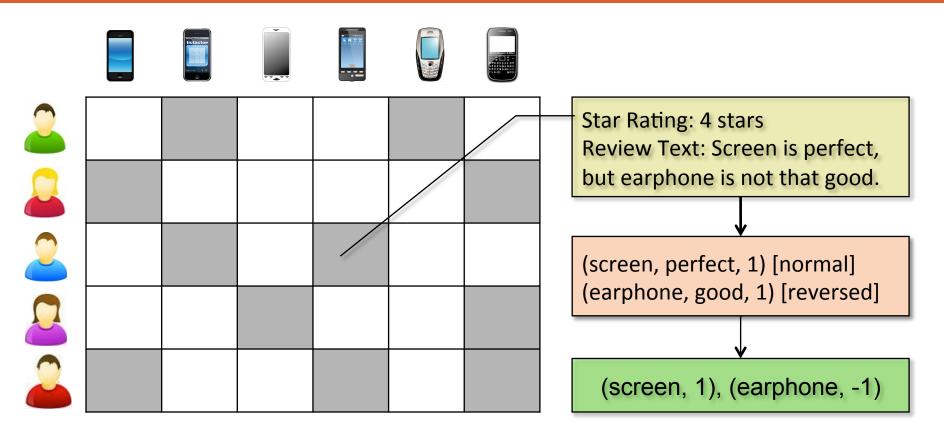
Our Approach: the Intuition

To recommend a product that performs well on the features that a user concerns.



12

Structure the Textual Reviews

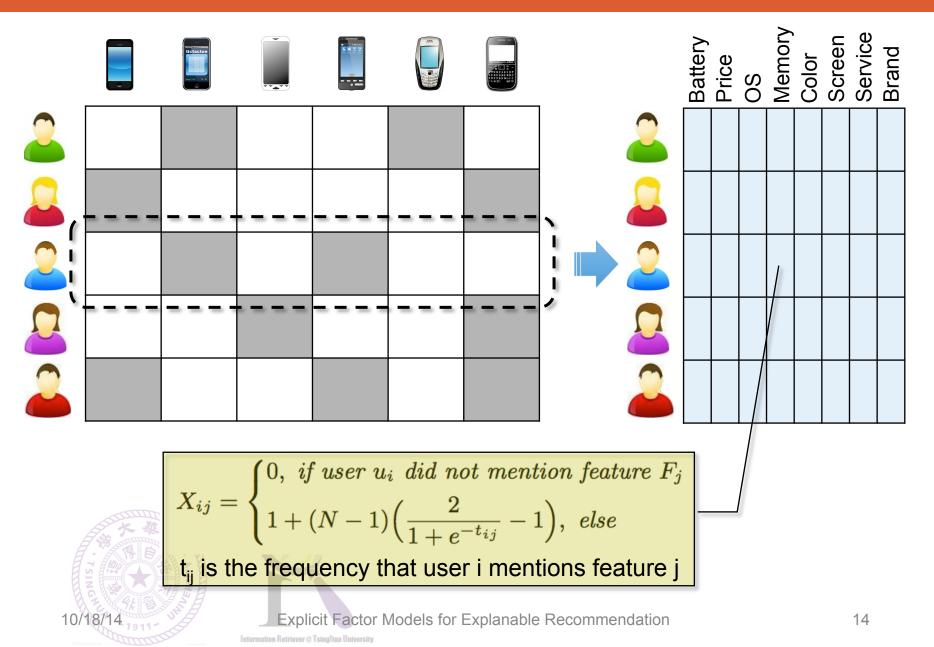


Extract the Feature-Opinion pairs contained therein
 Detect whether the sentiment is reversed by negation words
 Calculate the real sentiment expressed on each feature

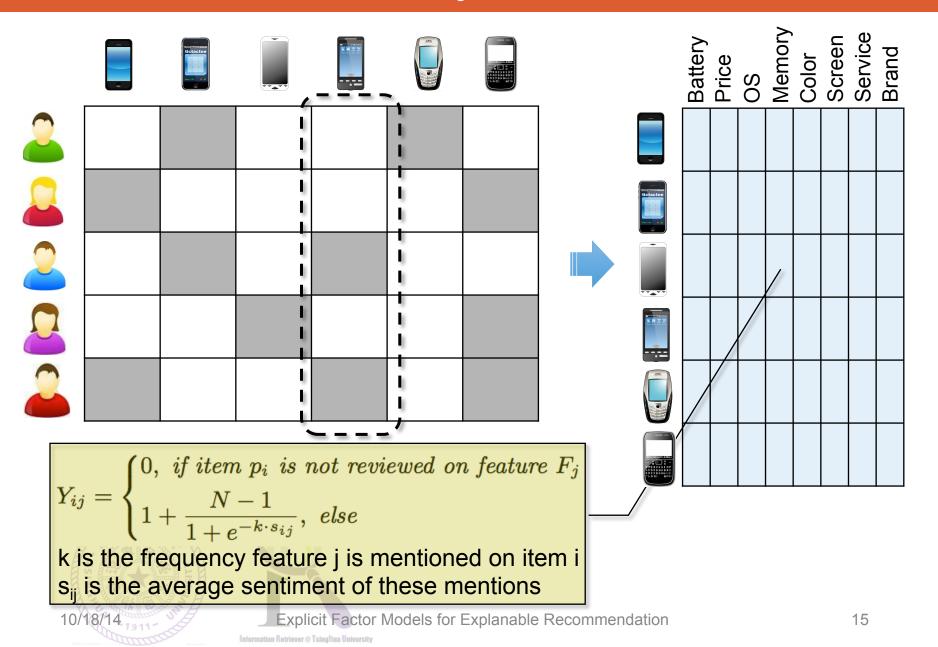
Explicit Factor Models for Explanable Recommendation

10/18/14

User-Feature Attention Matrix

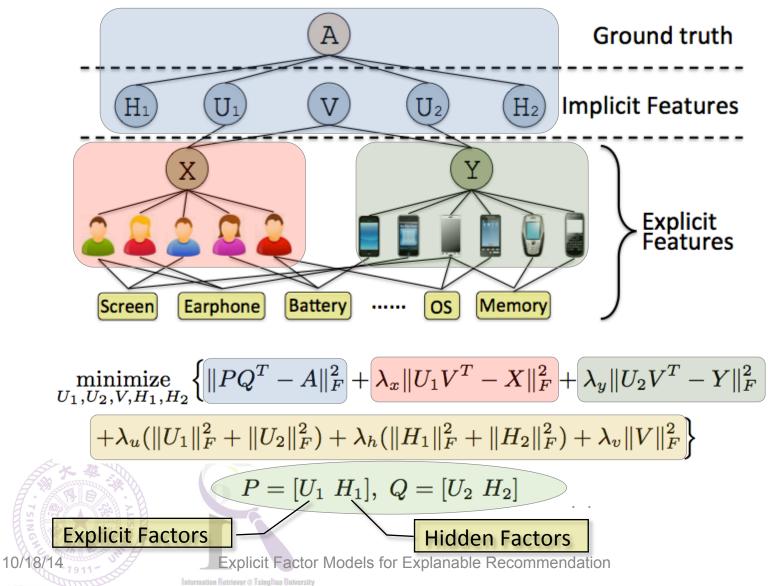


Item-Feature Quality Matrix



Multi-Matrix Factorization

Integrating the Explicit and Implicit Features



Algorithm for Model Learning

$$\begin{array}{l} \textbf{Algorithm 1: EXPLICIT FACTOR MODEL} \\ \hline \textbf{Input: } A, X, Y, m, n, p, r, r', \lambda_x, \lambda_y, \lambda_u, \lambda_h, \lambda_v, T \\ \textbf{Output: } U_1, U_2, V, H_1, H_2 \\ \hline U_1 \leftarrow \mathbb{R}_+^{m \times r}, \ U_2 \leftarrow \mathbb{R}_+^{n \times r}, \ V \leftarrow \mathbb{R}_+^{p \times r}; \\ H_1 \leftarrow \mathbb{R}_+^{m \times r'}, \ H_2 \leftarrow \mathbb{R}_+^{n \times r'}; \ // \text{initialize randomly} \\ t \leftarrow 0; \\ \textbf{repeat} \\ \hline t \leftarrow t + 1; \\ \text{Update: } V_{ij} \leftarrow V_{ij} \sqrt{\frac{[\lambda_x X^T U_1 + \lambda_y Y^T U_2]_{ij}}{[V(\lambda_x U_1^T U_1 + \lambda_y U_2^T U_2 + \lambda_v I)]_{ij}}} \\ \text{Update: } \\ U_{1ij} \leftarrow U_{1ij} \sqrt{\frac{[AU_2 + \lambda_x XV]_{ij}}{[(U_1 U_2^T + H_1 H_2^T)U_2 + U_1(\lambda_x V^T V + \lambda_u I)]_{ij}}} \\ \text{Update: } \\ U_{2ij} \leftarrow U_{2ij} \sqrt{\frac{[A^T U_1 + \lambda_y YV]_{ij}}{[(U_2 U_1^T + H_2 H_1^T)U_1 + U_2(\lambda_y V^T V + \lambda_u I)]_{ij}}} \\ \text{Update: } \\ H_{1ij} \leftarrow H_{1ij} \sqrt{\frac{[AH_2]_{ij}}{[(U_1 U_2^T + H_1 H_2^T)H_2 + \lambda_h H_1]_{ij}}}} \\ \text{Update: } H_{2ij} \leftarrow H_{2ij} \sqrt{\frac{[A^T H_1]_{ij}}{[(U_2 U_1^T + H_2 H_1^T)H_1 + \lambda_h H_2]_{ij}}}} \\ \textbf{until Convergence or } t > T; \\ \textbf{return } U_1, U_2, V, H_1, H_2; \end{array}$$

Information Retriever @ Tsinghua University

To select the hyper-parameters, we first randomly initialize the five parameters, and tune them one-by-one with the remaining four fixed. This procedure is conduct several times and we select the best choice.

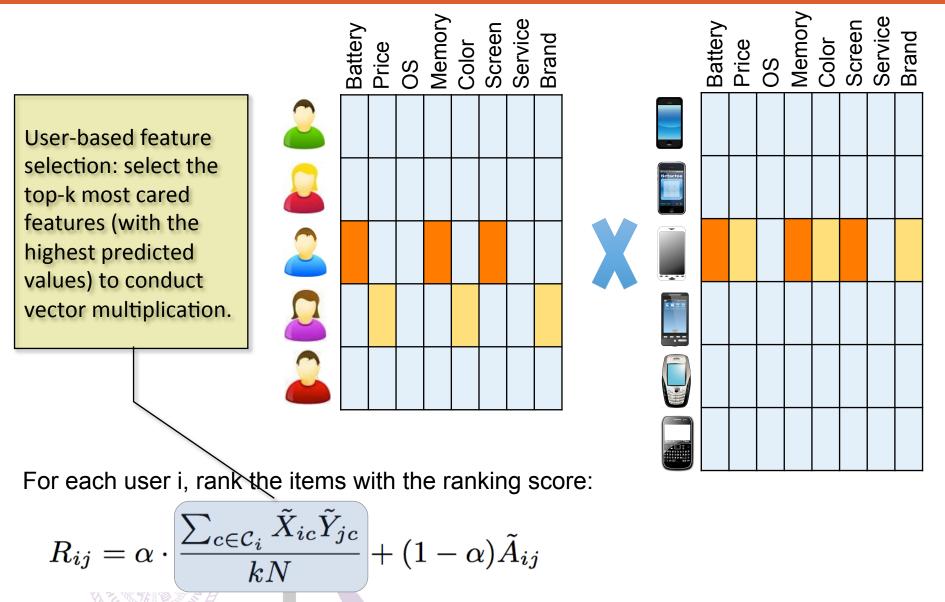
How to Generate Recommended List



Explicit Factor Models for Explanable Recommendation

Information Retriever @ Tsinghua University

How to Generate Recommended List



Explicit Factor Models for Explanable Recommendation

Information Retriever @ Tsinghua University

Explanations Could be Very Helpful

- Scrutability: Make the system more transparent and easier to understand
- Effectiveness: Increase users' confidence or trust in the system, help users make better decisions
- Efficiency: Help users to make decisions faster
- Persuasiveness: Convince users to try or buy
- Satisfaction: Increase the ease of the user enjoyment

How to Generate Explanations

Feature-level explanation for a recommended item

You might be interested in [feature], on which this product performs well.

For each user u_i and a recommended item p_j , the feature used for explanation construction is F_c , where:

 $c = \operatorname{argmax}_{c \in \mathcal{C}_i} \tilde{Y}_{jc},$

Provide disrecommendations by telling the user why the current browsing item is disrecommended

You might be interested in [feature], on which this product performs poorly.

$$c = \operatorname{argmin}_{c \in \mathcal{C}_i} \tilde{Y}_{jc}$$

Experiments: Setup

Offline experiment to evaluate recommendation accuracy

- Rating Prediction & Top-K Recommendation
- Yelp (English) and Dianping (Chinese) user review datasets

Dataset	#users	#items	#reviews	$rac{\#reviews}{\#user}$
Yelp	45,981	11,537	229,907	5.00
Dianping	11,857	22,365	510,551	43.06
Yelp10	4,393	10,801	138,301	31.48

Online A/B test to evaluate explanation effectiveness

Recommendation explanation on a major e-commerce web site

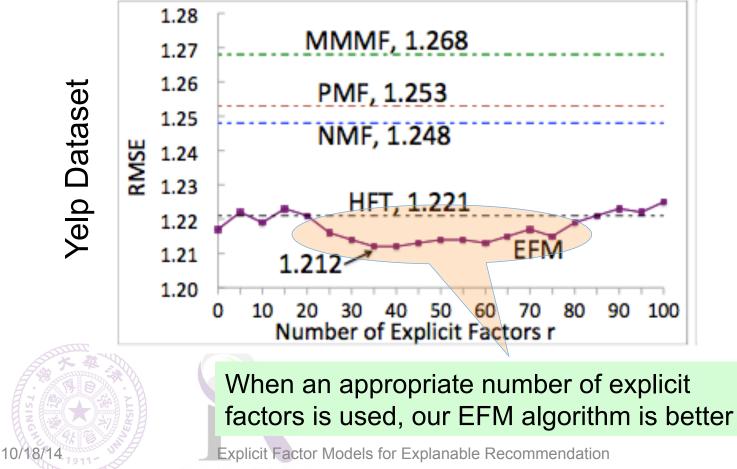
Focus on the persuasiveness of explanation

Results: Rating Prediction is Improved

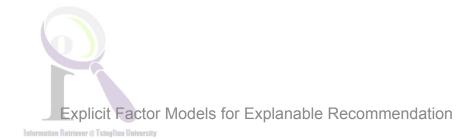
\geq Ratio of Explicit (U₁ U₂) and Hidden Factors (H₁ H₂)

➢ Fix r+r'=100 and tune their ratio

Set r=100 in comparable algorithms for equal model complexity

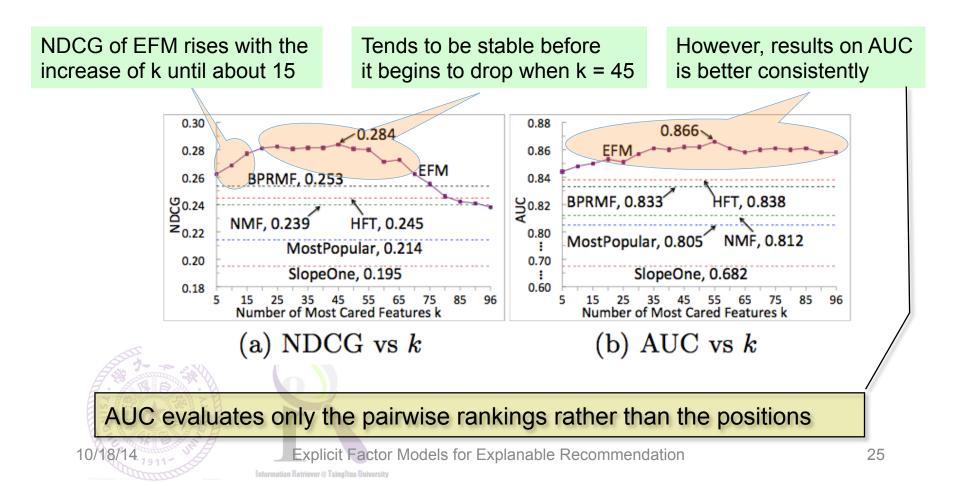


- Comparative Algorithms
 MostPopular: Rank items by popularity
 - SlopeOne: Neighborhood-based algorithm [Lemire 2005]
 - **NMF**: Non-negative Matrix Factorization [Ding and Lee 2001]
 - BPRMF: Bayesian Personalized Raking (BPR) optimization for Matrix Factorization (MF) [Rendle 2009]
 - **> HFT**: Hidden Factors as Topics [McAuley 2013, Recsys]



Number of Most Cared Features k

$$R_{ij} = \alpha \cdot \frac{\sum_{c \in \mathcal{C}_i} \tilde{X}_{ic} \tilde{Y}_{jc}}{kN} + (1 - \alpha) \tilde{A}_{ij}$$



Further Analysis of Explicit Features

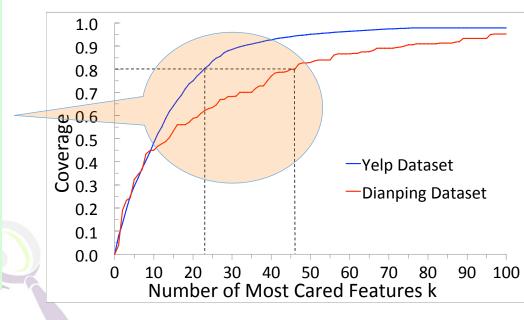
- It's beyond expectation that a user considers tens of features
- Coverage in term frequency of the top-k most cared features

$$\text{Coverage}@k = \frac{1}{|U|} \sum_{i=1}^{|U|} \frac{\sum_{j \in \mathcal{C}_i} t_{ij}}{\sum_{j=1}^p t_{ij}}$$

A small number of explicit features could dominate the term frequency in textual reviews.

This verifies our assumption to use the most cared features for recommendation.

10/18/14



Further Analysis of Explicit Features

> Why users consider tens of explicit features?

We group the explicit features into synonym clusters
 WordNet for English and HowNet for Dianping

	,	-	-	Ea
Dataset	#Feature	#Cluster	#F/#C	
Yelp10	96	31	3.10	ex
Dianping	113	26	4.35	or

10/18/

Each synonym cluster has 3~4 explicit features on average.

Users just use different words to express similar concepts!

Further Analysis of Explicit Features

The top 15 features can be fully included in the top 7 clusters

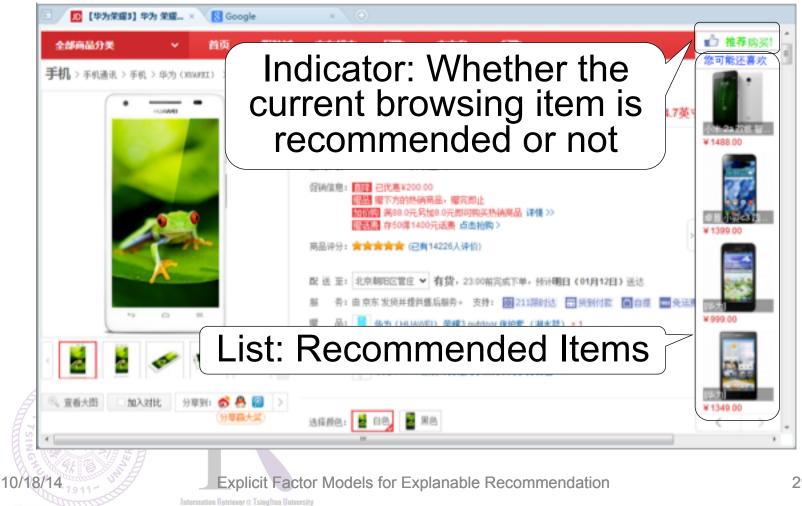
1	place, restaurant, location, area, way	2	food, menu, lunch, pizza, dinner	
3	service, time, staff, order	4	experience, quality	
5	room, atmosphere, decor	6	price , cost	
7	beer, wine, drink, water, coffee			

Relations with previous work

- Consistent with the Hidden Factors as Topics (HFT) model [McAuley 2013, Recsys]
- Where the authors find that the performance would not improve with more than 10 topics.
- They could be 'long tail', redundant topics.

Online Experiment for Explanations: Setup

 \succ Provide mobile phone recommendation by a popular commercial web browser in an e-commerce website.

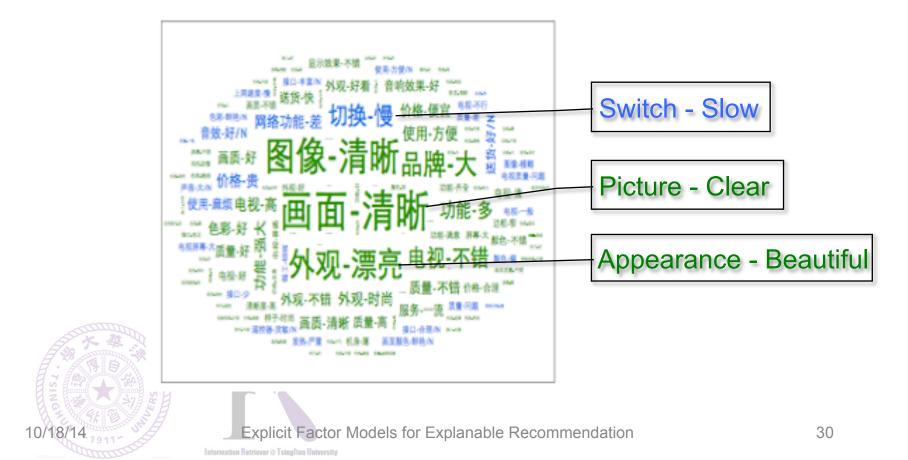


Online Experiment for Explanations: Setup

The explanations are displayed when user hover the mouse on an recommended item.

> To ensure that the users examined the explanations

> Word cloud to show the detailed performance on features



Click Through Rate on Recommendation List

Design 3 user groups

> A (experimental group): Receive our feature-level explanations

- ≻B (comparison group): Receive the 'people also viewed' explanation
- C (control group): Receive no explanation
- Only consider the records that hovered the mouse on the recommendations

 \succ As an indication of examining the explanations.

User Set	A		В		C	
Records	#Record	#Click	#Record	#Click	#Record	#Click
riccords	15,933	691	11,483	370	17,265	552
CTR	4.34%		3.22%		3.20%	

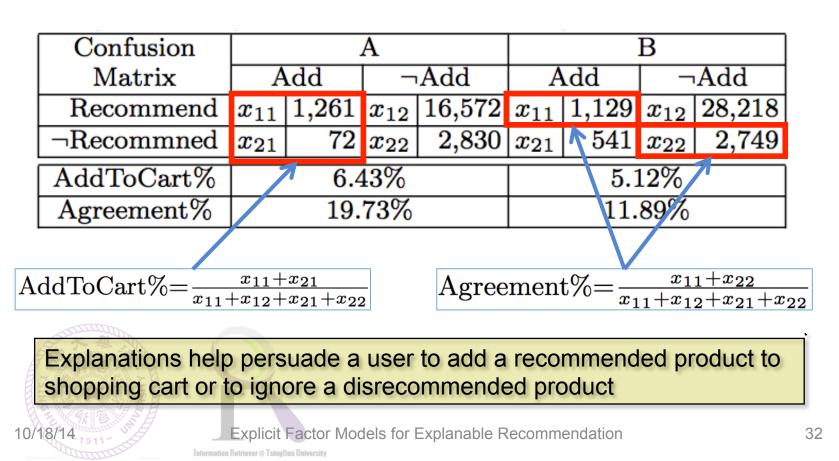
Click through rate is significantly higher in group A than B and C.

Explicit Factor Models for Explanable Recommendation

10/18/1

(Dis)Recommendation with Additional Explanation is More Influential on User Buying Decision

- > A group: receives the feature-level explanations
- ➢ B group: receives no explanation
 - We didn't assign other comparison groups because these is no previous work presenting disrecommendation explanations



Conclusions

Attempt to bring new insights into the problem of recommendation explanation

Incorporate phrase-level sentiment analysis into recommender systems

Propose the Explicit Factor Models for both accurate recommendation and intuitional explanations

