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Abstract

In light of the prominence of Pre-trained Lan-
guage Models (PLMs) across numerous down-
stream tasks, shedding light on what they learn
is an important endeavor. Whereas previous
work focuses on assessing in-domain knowl-
edge, we evaluate the generalization ability in
biased scenarios through component combina-
tions where it could be easy for the PLMs to
learn shortcuts from the training corpus. This
would lead to poor performance on the test-
ing corpus, which is combinationally recon-
structed from the training components. The
results show that PLMs are able to overcome
such distribution shifts for specific tasks and
with sufficient data. We further find that over-
fitting can lead the models to depend more on
biases for prediction, thus hurting the combi-
national generalization ability of PLMs.

1 Introduction

Transformer-based (Vaswani et al., 2017) pre-
trained Language Models (PLMs) have enabled
substantial performance gains across numerous
downstream tasks (Devlin et al., 2019; Brown et al.,
2020). To evaluate PLMs, existing work largely
follows the scheme of sampling training and test
data from the same distribution. In reality, given
the productivity of human language, humans are
widely assumed to interpret new linguistic utter-
ances based on some notion of compositionality
(Chomsky, 2006; Baroni, 2020).

In this paper, we want to investigate to what ex-
tent models are prone to using biases for prediction
and how this may affect their performance on un-
seen instances requiring combinational inference.
This relates to their generalization ability, which is
regarded as a key challenge in building human-like
models (Bommasani et al., 2021). We propose a

Figure 1: Example of data induction for 3-way sen-
timent classification. The top shows two training in-
stances. The below part shows three generated in-
stances (ID: In-Distribution, COOD: combinational
Out-Of-Distribution, OOD: Out-Of-Distribution). In
the table, labels in red are the combinations used for
training and ID, whereas black and blue labels are used
in the test set. Blue ones (COOD) can be inferred from
the training data, while black ones (OOD with Label
3 in Template) cannot be combinationally inferred be-
cause the training set does not include such template.

method to assess a PLM’s generalization capacity
in classification tasks that require combinational
generalization to overcome biases in the training
data. Specifically, we modify an original dataset
by recombining components of training data points
to form unseen test data. Figure 1 provides a brief
illustration of the principle. Based on the training
data, the model can easily classify the ID instances.
However, since we introduce a scenario with spe-
cial hidden biases, a PLM that only picks up such
training data biases would fail on the COOD in-
stances in the test set. To handle those correctly,
the combinational inference is required, i.e., draw-
ing conclusions based on smaller fragments of text
observed during training. Finally, there are also
truly challenging genuine OOD instances that are
not easily combinationally inferrable. Details of the
hidden bias scenario are given in the bottom part



of Figure 1 as well as later on in Section 3. Over-
all, our results suggest that PLMs possess excellent
generalization abilities and avoid succumbing to
the risky form of bias introduced in the training
data. However, the performance depends on the
task and data size.

2 Related Work

Probing Pre-trained Models. Numerous stud-
ies attempt to shed light on how PLMs learn
(Rogers et al., 2020). Beyond understanding lin-
guistic structures and semantics (Hewitt and Man-
ning, 2019; Tenney et al., 2019) as well as world
knowledge (Li et al., 2021), some studies show that
PLMs possess a strong generalization ability across
similar tasks and in out-of-distribution detection
(Hendrycks et al., 2020; Utama et al., 2020; Chen
et al., 2021; Geng et al., 2022).

Most prior work assesses PLMs based on the
setting of test and training data stemming from the
same distribution. This yields insights on standard
in-task or in-domain learning, while in our work
we are interested in the type of more generalizable
knowledge acquired from the in-task training data.
This relates to the robustness of PLMs, as the model
can only do well on our test data if it pays attention
to all components of the data rather than falling
prey to biases in the training data.

Combinational Generalization. The combina-
tional generalization here refers to the model’s abil-
ity to properly handle unseen data samples con-
sisting of fragments observed during training, and
regard combinational generalization as a part of
compositional generalization. Some studies inves-
tigate the compositional features and inductive bi-
ases of neural net models for sequence-to-sequence
and generation tasks (Liska et al., 2018; Lake and
Baroni, 2018), mostly at the phrase level, while
we consider encoder models for classification tasks
and focus on compositional inference connecting
entire sentences.

One similar work is R&R (Akyürek et al., 2021),
which also constructs data from fragments of train-
ing data. The major difference is that they incor-
porate the constructed data into training, while we
use it for COOD evaluation.

Prompt-based Tuning. Prompt tuning has been
proposed to reduce the gap between pre-training
and fine-tuning on downstream tasks (Brown et al.,
2020; Scao and Rush, 2021). It often involves

adding templates to the data and predicting label
names at the position of the [MASK] token (Schick
and Schütze, 2021b,a). Inspired by prompt engi-
neering, our work also involves the use of template
engineering. However, we do not invoke them to
elicit a PLM’s prior knowledge, but as a core part of
the input semantics. Additionally, finding the best
templates and label names is not our focus, so we
have not investigated automated prompt identifica-
tion techniques (Shin et al., 2020; Gao et al., 2021),
but we demonstrate that our results are coherent
across different templates and label names.

3 Approach

3.1 Data Induction

Given an original training dataset D consisting of
(x, y) pairs, where x is a training instance and y is
its corresponding label, we induce a new dataset
D̂. The latter consists of (x̂, ŷ) pairs, created by
adding templates and generating new labels based
onD. Each x̂ = x⊕ t is a combination of an x and
a template t appended at the end of x. For a general
template “It is <label>”, the <label> is replaced
by the task-specific label names, so there are |Y |
unique templates for each unique label yt. For ex-
ample, if the task is sentiment classification, there
could be templates “It is positive”, “It is negative”,
and possibly “It is neutral”. If yt in the template t
is consistent with the original label y, the new label
ŷ is 0, otherwise, it is 1.

To evaluate a PLM’s generalization ability for
combinational generalization, a biased scenario is
constructed based on D̂. The model could easily
just learn shortcuts from the training data, without
accounting for generalization. The training data ex-
cludes certain kinds of combinations of inputs and
templates as shown in Fig. 1, so these combinations
are unseen when fine-tuning the PLM, but it may
still be possible for the model to infer them com-
positionally from parts of the training data. This is
what we assess in this paper.

Example. To help illustrate how to construct the
biased data, we take the task of Natural Language
Inference (Williams et al., 2018) as an example.
We select K data points x for each label as training
data. For data x with label y = ENTAILMENT or
CONTRADICTION, we concatenate x with corre-
sponding consistent templates and add label ŷ = 0
(2K instances). If a model only observed these
specific combinations, it would be prone to picking



up the bias and misunderstanding combinations of
the same x with another t. For further K instances
of x with y = NEUTRAL, we append two incon-
sistent templates to construct the x̂. This yields
another 2K data points with ŷ = 1 and leads to a
balance between instances with labels 0 and 1 (2K
instances each) in the training dataset. The test set
will then also ask for new combinations.

3.2 Main Results
3.3 Fine-tuning
Given a data instance (x̂, ŷ) from D̂ such that
x̂ = xi ⊕ ti, we invoke the PLM to obtain a rep-
resentation encθ = Encoderθ(xi ⊕ ti), where θ
are the model parameters. Next, a linear classifier
w ∈ Rd×2 where d is the representation size for
[CLS] is trained by optimizing the objective:

argmaxθP (ŷi | w · encθ([CLS]))

= argmaxθ
exp(wŷi encθ([CLS]))∑

ŷ′∈{0,1} exp(wŷ′ encθ([CLS]))
,

where encθ([CLS]) is the vector for [CLS], wŷ
denotes the softmax scores for ŷ ∈ {0, 1}.

4 Experiments

4.1 Experimental Setup
Training details. We consider the pre-trained
versions of BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019). For efficiency, we
disregard sentences of over 100 tokens1. The batch
size is 32 for base models and 8 for large models.
The learning rate is 1× 10−5 for all models. The
evaluation metric we use is accuracy.

Datasets. For our assessment, we rely on Yelp
reviews (Zhang et al., 2015) and MNLI (Williams
et al., 2018), which each have 3 labels.2 The label
inventories are listed in Table 1.

The main results are reported in Table 2 for
K =2,000. The notationA/B refers to the original
dataset A adapted with template B. If A and B are
consistent, the label is 0. If not, the label is 1.

The primary observation is that COOD general-
ization succeeds on Yelp-reviews but does not work
as well for MNLI. MNLI is intrinsically harder than
Yelp sentiment classification, yet the ID accuracy
is high for both MNLI and Yelp. We conjecture

1This applies to the sum of the length of premise and
hypothesis for MNLI.

2To achieve our combinational probing, note that the num-
ber of unique labels should be greater than 2.

that COOD generalization can succeed when the
model can straightforwardly infer the label from
the semantics of fragments of the input. In addition,
we determine that the size of training data may be
a factor affecting results in the following analysis
(details in Section 5.1).

Second, all PLMs achieve low scores for OOD
prediction. This suggests that, as expected, PLMs
can, in this case, only use their learned bias to make
predictions on such OOD instances. But larger
models, such as RoBERTaLarge, can achieve better
COOD and OOD scores than smaller models over
all tasks. This may indicate that larger models may
have better generalization capacity.

5 Discussion

5.1 How Do Training Data and Parameter
Count Affect the Model?

There is a consensus that more training data cou-
pled with a larger parameter count tends to benefit
models for ID tests. So it is worth investigating
whether these factors can also contribute to combi-
national generalization.

Regarding the number of parameters, as Table
2 shows, bigger models obtain better results on
COOD and ID data. This finding illustrates that
powerful models fit the source domain better and
may exhibit stronger combinational generalization.

As for data quantities, we evaluated
RoBERTaBase and RoBERTaLarge with differ-
ent K and plotted the results in Figure 3. Our
observation is that both the ID and COOD accuracy
are proportional to K. Yet, compared with ID, the
performance of COOD is more vulnerable to the
data size, while the OOD results remain low. This
demonstrates that the training size can influence a
model’s generalization, but we can also observe the
performance gap between ID and COOD closes as
K increases. Compared with Yelp, MNLI appears
to be more challenging in terms of generalization.

Figure 2: Results of BERTBase (left) and RoBERTaBase
(right) on Yelp for K =3,000.



Task name Template Label names
MNLI 〈S〉 It is 〈LABEL〉 entailment: entailment, neutral: neutral, contradiction: contradiction
Yelp 〈S〉 It is 〈LABEL〉 positive: great, neutral: okay, negative: terrible

Table 1: The default templates and label names in our experiments. 〈S〉 refers to original data.

Dataset Models ID COOD OOD
fst/fst sec/sec neu/fst neu/sec fst/sec sec/fst fst/neu sec/neu neu/neu

Yelp

1. BERTBase 0.904 0.911 0.782 0.822 0.816 0.705 0.204 0.238 0.125
2. BERTLarge 0.892 0.885 0.873 0.869 0.812 0.836 0.254 0.297 0.074
3. RoBERTaBase 0.913 0.871 0.838 0.784 0.773 0.754 0.247 0.244 0.054
4. RoBERTaLarge 0.939 0.891 0.856 0.872 0.829 0.838 0.332 0.304 0.123

MNLI

5. BERTBase 0.865 0.778 0.652 0.654 0.153 0.269 0.112 0.188 0.277
6. BERTLarge 0.929 0.855 0.665 0.691 0.129 0.169 0.081 0.140 0.321
7. RoBERTaBase 0.921 0.857 0.756 0.786 0.356 0.239 0.145 0.133 0.314
8. RoBERTaLarge 0.922 0.883 0.820 0.885 0.460 0.382 0.263 0.285 0.378

Table 2: Rows 1–4 report the main results on Yelp, while rows 5–8 provide results on MNLI. fst: posi-
tive/entailment, neu: neutral, sec: negative/contradiction.

Template Label names ID COOD OOD

Yelp (positive/neutral/negative)

〈S〉 It is 〈LABEL〉 great/okay/terrible 0.855 0.761 0.173

〈S〉 It is 〈LABEL〉 cat/bird/dog 0.877 0.781 0.194
〈S〉 It is 〈LABEL〉 train/flight/car 0.881 0.763 0.182
〈S〉 It is 〈LABEL〉 terrible/great/okay 0.866 0.755 0.170

〈S〉 The sentence is 〈LABEL〉 great/okay/terrible 0.863 0.758 0.187
〈S〉 This sound like 〈LABEL〉 great/okay/terrible 0.850 0.764 0.185

Table 3: RoBERTaBase Performance over Yelp dataset with different templates and label names. K = 2000. The
order of label names denotes first and second known class and unknown class

5.2 Analysis of the Effect of Overfitting
Figure 2 depicts how the models perform on Yelp
as the number of epochs increases and models in-
creasingly overfit the data. As in Section 3.2, PLMs
exhibit excellent performance on ID and COOD
tasks and perform poorly on OOD tasks. ID and
COOD accuracy both top out in nearly the same
epoch, but as the number of epochs continues to
increase, the results on COOD decrease more dras-
tically than on ID. This suggests that when PLMs
are overfitting, they tend to draw on biases and
shortcuts for prediction. Another observation is
that OOD accuracy may drop as well as ID and
COOD as the number of epochs increase. We hy-
pothesize that at early stages, the knowledge from
pre-training still aids in prediction.

5.3 Effect of Label Names and Templates
We also compared the impact of different label
names and templates. Based on the results shown
in Table 3, the selection of label names and tem-
plates can affect the results. Even if the label
names may not be intuitive, e.g., using label names
DOG/CAT/BIRD or switching the order, models may

obtain similar ID and COOD accuracy than in the
original setting. This result can indicate that the
prompt design may have a small impact on perfor-
mance, as models can adjust to these differences.

(a) RoBERTaBase (b) RoBERTaLarge

(c) RoBERTaBase (d) RoBERTaLarge

Figure 3: Results for different training sizes K. The
top two figures show results on MNLI, the bottom two
show results on Yelp.



6 Conclusion

In this paper, we present a new method to probe the
robustness of PLMs when subjected to biased data.
Our findings include that (1) PLMs exhibit com-
binational generalization; (2) the combinational
generalization is affected by the training data and
parameter count; (3) overfitting is more harmful to
a model’s generalization ability than in-task ability.
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