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ABSTRACT
There is increasing recognition of the need for human-centered
AI that learns from human feedback. However, most current AI
systems focus more on the model design, but less on human partic-
ipation as part of the pipeline. In this work, we propose a Human-
in-the-Loop (HitL) graph reasoning paradigm and develop a cor-
responding dataset named HOOPS to support the conversational
recommendation research over KG. Specifically, we first construct
the KG interpreting diverse user behaviors and identify pertinent
attribute entities for each user–item pair. Then we simulate the con-
versational turns reflecting the human decision making process of
choosing suitable items tracing the KG structures transparently. We
also provide a benchmark method with reported performance on
the dataset to verify the feasibility of our developed dataset to sup-
port HitL graph reasoning for recommendation research, and show
that it provides novel opportunities for the research community.
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1 INTRODUCTION
Given the increasing recognition of human-centered AI as a new
paradigm for AI, Human-in-the-Loop (HitL) learning has emerged
as an essential task that leverages the power of both machine in-
telligence and human intelligence to enable human-machine col-
laborative reasoning and decision making [6, 12, 32]. An intuitive
∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’21, July 11–15, 2021, Virtual Event, Canada.
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00
https://doi.org/10.1145/3404835.3463247

Can you recommend 
some Battery Pack ?

Alice

Do you prefer Samsung?

Yes.

How about price 
between $15 and $20?

No.

Do you like Pink & Gray
style?

Yes.

What about Galaxy 
Battery?

Great! I like it.

1

Agent

Alice
Lipstick
Charger

Battery
Pack

Samsung

2

produced_by

Alice
Lipstick
Charger

Battery
Pack

Samsung

$15-20

3 Alice
Lipstick
Charger

Battery
Pack

Samsung

$15-20

ProtectorPink/Gray

4 Alice
Lipstick
Charger

Battery
Pack

Samsung

$15-20

ProtectorPink/Gray

Galaxy
Battery

Alice

Agent

Alice

Agent

Alice

Agent

Alice

has_style produced_by

has_style

belong_to
produce

X

X

Figure 1: We regard conversational recommendation as a
typical concretization of HitL graph reasoning paradigm
which aims to predict the next suitable question and make
recommendations in multi-round dialogue. The user feed-
back is able to prune off the irrelevant candidates.

example is the Guess the Number game [13, 14]. In this game, the
user has a secrete number in mind. The system interacts with the
user through conversation by asking questions in multiple rounds
to narrow down the range of possible numbers until the correct
answer is identified, while the user answers the questions by telling
the system whether the current guess is too low or too high. In this
process, the human user serves as the supervision to the system.
The benefit of such human-involved feedback is that it substantially
reduces the search space in the guessing process and improves the
efficiency of algorithms.

In real-world human-centered tasks such as conversational rec-
ommendation, one can analogously consider a graph reasoning
problem that involves “guessing” what might be the ideal item in
a user’s mind by asking the user questions and searching over a
heterogeneous user-item-attribute graph [33, 47]. As illustrated in
Fig. 1, starting from a user node, the system, at every step, needs
to determine how to move to a promising neighboring node and
finally arrives at a potential item node of interest. For traditional
graph reasoning problems, the search space is often prohibitively
large [40, 51], which makes it quite challenging and inefficient to
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“guess” a correct answer (i.e., arrive at a correct target node in the
graph). Therefore, in this work, we propose the novel HitL graph
reasoning paradigm, where the human is allowed to provide feed-
back to help the system prune irrelevant actions and quickly locate
a correct path towards a target node.

The HitL graph reasoning paradigm possesses the following
properties. First, unlike the traditional decision making process that
heavily relies on past interaction history, HitL should be hybrid by
integrating static features as well as real-time human intervention
as essential forms of inputs. Second, in practice, humans often pro-
ceed in a coarse-to-finemanner to gradually make their decisions.
For example, people answer questions by first skimming the text,
identifying key ideas, and then carefully reading specific parts to
obtain an answer [24, 41]. Similarly, HitL graph reasoning will first
pursue attribute nodes describing broader concepts. Subsequently,
with more interaction loops with the user, the system will gradu-
ally gain a better understanding of the specific user requirements
and preferences pertaining to the relevant goal entity to be chosen.
Third, path reasoning through the HitL paradigm is expected to
highlight the transparency of the decision making process in the
sense that the system will expose its reasoning process with user
feedback by revealing the corresponding paths in the graph [40].
This sort of transparency enables users to witness not only what
the systems provides in response to their input but also how it
updates its reasoning and whether their input is incorporated as
they expect.

In this work, we consider the task of product recommendation
as a concrete example to demonstrate how intelligent systems can
benefit from our HitL graph reasoning framework, and we also
provide a new benchmark dataset to study the problem. In order to
incorporate the human participation in the system, we consider a
multi-round conversational recommender system (CRS) as a typical
implementation. Our novel dataset integrates product information
as well as diverse user participation and historical records. At the
same time, our dataset follows natural coarse-to-fine conceptual
resolution to gradually infer the user interests starting from broader
interests, e.g., categories or brands. Through multiple rounds of
interaction, the system gradually gains a more detailed understand-
ing of specific user requirements and preferences pertaining to the
relevant products to be chosen. Last but not least, in order to make
the user–agent interaction loop more transparent, we draw on a
unified knowledge graph based on the Amazon review corpus [28]
such that the conversational system can better assist users to re-
trieve the best-suited products through an explicit graph reasoning
process. To show the applicability of the datasets, we also provide
a baseline method with reported performance over three tasks. The
contributions of this paper are threefold. 1) We propose a novel
human-in-the-loop (HitL) graph reasoning paradigm with three
important properties. 2) We construct a new dataset for conversa-
tional recommendation task under the proposed framework. 3) We
provide a new method and its performance on the dataset, which
can be used for future research of human-in-the-loop learning.

2 HITL GRAPH REASONING PARADIGM
A unified knowledge graph G = {(𝑒, 𝑟, 𝑒 ′) | 𝑒, 𝑒 ′ ∈ E, 𝑟 ∈ R} is
defined to be a set of triples with an entity set E and relation set R.

Cellphones Grocery Toys & Games Automotive

#Entities 278,198 271,855 437,897 444,545
#Relations 45 45 71 73
#Triples 3,724,724 4,452,234 6,705,842 5,703,094
#Interactions 607,673 709,280 1,178,943 1,122,776
#Utterances 2,043,988 2,424,103 3,339,771 3,830,556

Table 1: Statistics of our dataset on four domains.

The entity set consists of three types of nodes, source nodes (U ⊆
E), target nodes (V ⊆ E) and descriptive nodes (A = E \ U ∪V).
A path 𝐿 over the graph is a sequence of entities and relations,
i.e., 𝐿 = {𝑒0, 𝑟1, 𝑒1, . . . , 𝑒 |𝐿 |−1, 𝑟 |𝐿 |, 𝑒 |𝐿 |}. For the traditional graph
reasoning task, given a source node𝑢 ∈ U, the goal is to find amulti-
step path 𝐿 whose end node 𝑒 |𝐿 | ∈ V is regarded as prediction. To
facilitate human interaction in the graph reasoning, at each step
𝑡 , the agent will generate a question 𝑄𝑡 based on the traversed
path to ask the user for help. The user will provide a response 𝑅𝑡
that may be a direct answer to the question but can also consist of
ambiguous statements or other arbitrary dialogue discourse. Given
a vocabulary𝑉 , we define𝑄𝑡 , 𝑅𝑡 ∈ 𝑉𝑑𝑤 with𝑑𝑤 to be the maximum
length of a question and a response. Given a source node 𝑢 ∈ U
and an unknown target node 𝑣 ∈ V , the workflow of HitL graph
reasoning paradigm is defined as follows. At every step 𝑡 + 1, given
the traversed path 𝐿𝑡 = {𝑢, 𝑟1, 𝑒1, . . . , 𝑟 |𝐿𝑡 |, 𝑒 |𝐿𝑡 |} (|𝐿𝑡 | ≥ 𝑡 ) and past
human–agent interactions 𝑄0, 𝑄1, 𝑅1, . . . , 𝑄𝑡 , 𝑅𝑡 , the agent aims to
(i) find a 𝑘-hop path 𝐿 (𝑡+1) from 𝑒 |𝐿𝑡 | to a descriptive node in A,
(ii) ask the user a question𝑄𝑡+1 conditioned on 𝐿 (𝑡+1) and receive a
response 𝑅𝑡+1, and (iii) make a decision by predicting top 𝐾 target
nodes {𝑣 (1)𝑡 , . . . 𝑣

(𝐾)
𝑡 } ⊆ V . By the end of the turn 𝑡 + 1, based on

the user response, the agent can form the new reasoning path by
either extending the path with 𝐿𝑡+1 = 𝐿𝑡 ∪ 𝐿 (𝑡+1) (i.e., move to the
next descriptive node) or keeping the old one 𝐿𝑡+1 = 𝐿𝑡 (i.e., stay
at node 𝑒 |𝐿𝑡 |). Note that when 𝑘 = 1, the agent simply finds the
neighboring nodes of 𝑒 |𝐿𝑡 | . The interaction will terminate if the
user refuses to continue or the maximum step 𝑇 is reached.

Conversational Recommendation. The HitL graph reasoning
paradigm can be instantiated as follows in this scenario. We con-
sider a source node from the set of users U, a target node from
the set of items I, and descriptive nodes A as attribute entities
that either denote properties of items or descriptive words that
a user mentions in the conversational turns. When users start a
conversation with the agent, thereby initialializing the HitL graph
reasoning, it is reasonable to expect that they typically begin with
broader requirements, such as the preferred category and brand
within the descriptive nodes. As illustrated in Figure 1, the agent
asks questions based on both hybrid user behaviors that integrates
past user activity and current user feedback in conjunction with
item attribute knowledge, aiming at more engaging and informa-
tive entities as the conversation progresses. The entities in A are
transformed into human-readable questions to identify the user
needs. Thus, the HitL graph reasoning is expected to find a path
that leads to the next potential descriptive node aiming to follow
natural coarse-to-fine conceptual resolution to gradually narrow
down the user interests. On the one hand, the ultimate goal of HitL
graph reasoning is to reach a target node inV , which also corre-
sponds to recommending an item to the user. On the other hand,
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the system needs to select suitable questions to ask in each round
and traverse the graph. This explicit graph traversal also ensures
that the reasoning is transparent.

3 DATASET CONSTRUCTION
Data Source. To construct a dataset that facilitates this new HitL
graph reasoning paradigm,we draw on a recent compilation of Ama-
zon review data [28] that includes extensive user reviews and rich
item information. It is subdivided into several categories, each of
which covers a separate sub-domain of items from the e-commerce
platform and hence can be regarded as an independent benchmark
for the task. We pick four categories to construct the datasets, en-
compassing Cellphones & Accessories, Grocery & Gourmet, Toys
& Games, and Automotive (see Table 1).

Graph Construction. To enable graph reasoning, we first con-
struct a knowledge graph (KG) with rich meta-information of user
behavior and item meta-data. First, we extract the keywords from
user reviews following Zhang et al. [47] and identify appreciated
aspects of items from a user’s historical records on Amazon. This
yields multiple categories of user records (purchases, comments,
etc.). We consider the following abundant information as itemmeta-
data: item category, brand, listed features, predefined styles, etc.
These two parts constitute the descriptive nodes in the KG. Unlike
previous works that simply tie existing recommendation datasets
(e.g., MovieLens, LFN-1b, etc.) to a knowledge base (e.g., Freebase
[49]) to enrich the item information [36, 37], our constructed KG not
only captures copious amounts of item meta-information but also
incorporates abundant user interactions with items to support HitL
graph reasoning for recommendation. We leverage explicit seman-
tics from user interactions extracted as structured information and
relations in KG between source nodes, descriptive nodes and target
nodes. In this way, the constructed KG with source nodes as user
entities and target nodes as item entities can provide more relevant
and supportive information for systems to ask proper questions
regarding the attributes of potential items and drive the transparent
graph reasoning paradigm for recommendation.

Coarse-to-Fine Extraction. Instead of providing a “correct”
path for graph reasoning, we generate a sequence of ground-truth
attribute nodes that describe target item properties. The underlying
intuition is that since the conversational system aims to help users
gradually figure out their preferences, we assume the system starts
from the descriptive nodes with larger degrees, as these are more
prominent, well-known, and often more generic. As the conver-
sation loop proceeds, the latent needs of users are progressively
clarified such that it becomes easier to consider the descriptive
nodes with a smaller degree, i.e., more particular fine-grained ones.
According to classical graph theory [27], node degree centrality
acts as one of the prominent measures for node importance over
the graph structure. Therefore, we first extract the descriptive en-
tities that are reachable from the given user and item within one
or two hops as attribute entities, and then sort them according to
the node degrees. The intuition behind this is that a larger degree
indicates that the entity carries broader information [29] and is
easier for the model to predict, while a smaller degree implies the
entity is more specific to a user or item but is harder to predict. The
sorted sequence of attribute entities serves as a skeleton for the

corresponding dialogue, guiding a coarse-to-fine selection process
in which the entities determine which feature is considered in each
conversational turn.

Conversation Generation. Instead of directly extracting utter-
ances from user reviews [47], we employ the template approach of
Wiseman et al. [38] based on the large data-driven dialogue corpus
released by [5, 10] and apply it to our diverse question templates
by human annotation. We compose the corresponding conversa-
tions based on the skeleton formed by the respective sequence of
attribute entities. In particular, we transform the attribute entities
into questions via human-specified templates generated from [38],
and then we randomly determine the user response to the question
with clarified answer “Yes/No” or unclear answer “I’m not sure/I
don’t know” etc. with some predefined probability to mimic real
conversations, especially for the sake of modeling users in practical
HitL scenarios, where typically they are unclear about their prefer-
ences with regard to potential items. It also makes sense to assume
that those users seeking assistance rather than directly selecting
an item tend to be unfamiliar with the product details and are un-
able to provide detailed requirements. Therefore, we envision this
benchmark as serving as an initial milestone for a practical HitL
graph reasoning for recommender systems to tackle before moving
on to even more challenging real-life dialogue with disfluencies,
ambiguity, inconsistent preferences, and backtracking.

DatasetConstruction. Theworkflow of constructing our dataset
is as follows. For each user 𝑢 ∈ U and an item 𝑣 ∈ V purchased
by the user, we take as input a sequence of 𝑇 + 1 attribute en-
tities {𝑒0, . . . , 𝑒𝑇 }, as obtained in the previous step, along with
a sequence of corresponding responses {𝑅1, . . . , 𝑅𝑇 }. Here, 𝑒0 is
the attribute entity identified from the user initial query in the
conversational loop. We first construct the 𝑇 -turn conversation:
{𝑄0, (𝑄1, 𝑅1, 𝑒1), . . . , (𝑄𝑇 , 𝑅𝑇 , 𝑒𝑇 )}, where each question 𝑄𝑡 is gen-
erated via a predefined template and associated with corresponding
entity 𝑒𝑡 ∈ E for 𝑡 = 0, 1, . . . ,𝑇 . Then, we build the three candidate
sets via negative sampling. For the candidate item set, we randomly
sample a subset of𝑁𝑉 items that the user has not purchased. To con-
struct the candidate set of attribute entities at the 𝑇 + 1-th turn, we
first sample a set of paths from the user𝑢 to item 𝑣 and randomly re-
trieve𝑁𝐴 nodes from these paths, denoted by 𝑒−1 , . . . , 𝑒

−
𝑁𝐴

. Thus, the
candidate set can be formed as {𝑒𝑇+1, 𝑒

−
1 , . . . , 𝑒

−
𝑁𝐴

}, where 𝑒𝑇+1 is
the ground-truth attribute entity previously obtained. Accordingly,
the candidate question set is generated via the templates and the
candidate set of attribute entities. Since we know the ground-truth
of the next question 𝑄𝑇+1 = 𝑄 (𝑒𝑇+1), the next entity 𝑒𝑇+1, and
the purchased item 𝑣 , binary labels can also be provided indicating
whether or not a model makes a correct prediction.

HumanValidation. In order to validatewhether the constructed
conversations follow the coarse-to-fine property, as shown in Figure
2, we illustrate with box plots the degree of entities in coarse-to-
fine extracted entities associated with the 𝑁 -th turn. Specifically,
we sampled 40 sub-dialogues from the dataset and shuffled their
original order. 20 human raters were asked to rank the questions
according to their preference of correct question orders. The ob-
served trends justify our dataset construction. As the dialogue turns
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increase, the degree of the entity within the turn decreases. There-
fore, it is natural to start with broader, more general questions, and
as the conversational loop progresses in a coarse-to-fine manner,
the agent will propose increasingly finer-grained questions.

4 BENCHMARK MODEL
Along with the data, we propose a benchmark model consisting
of a set of encoders to represent inputs and candidate outputs as
low-dimensional vectors and three predictors for different tasks.
To better learn to conduct the three tasks, each predictor takes
multiple encoded vectors as input to reflect the fact that any single
task may depend on multiple aspects and that different tasks may
mutually benefit each other via joint optimization.

Graph Representation. We represent the historical path by
a sequence of attribute entities 𝑥𝑒 = {𝑒0, 𝑒1, . . . , 𝑒𝑇 }, which is ex-
pected to be encoded into a 𝑑-dimensional vector x̂𝑒 . Since both
descriptive attributes of items and historic behavior of users are
captured in the graph G, we first train a TransE model [4] over G,
so that each entity in E and each relation in R is embedded into a
continuous space of dimensionality 𝑑𝐺 . Note that graph embedding
is not the focus of this paper and any off-the-shelf techniques can
be applied here. Therefore, we can represent 𝑥𝑒 as a sequence of
𝑑𝐺 dimensional vectors, i.e., x𝑒 = [e0, . . . , e𝑇 ] ∈ R(𝑇+1)×𝑑𝐺 . To
further capture contextual information of these vectors, we adopt
the self-attention block [34, 44] to generate another 𝑇 + 1 vectors,
which are finally aggregated with summation resulting in the 𝑑-
dimensional vector x̂𝑒 . In addition, we also represent each candidate
attribute entity 𝑒𝑇+1 as a vector e𝑇+1 via the pretrained TransE em-
bedding, and then, we map it into the 𝑑-dimensional space via a
residual block [15] that consists of a feed forward network and
residual connections, i.e., RB(e𝑇+1) = b (𝑊𝑟2 (b (𝑊𝑟1e𝑇+1) + e𝑇+1)),
where b (𝑥) = max(0, 𝑥) is the ReLU activation function and𝑊𝑟1 ∈
R𝑑𝐺×𝑑𝐺 ,𝑊𝑟2 ∈ R𝑑×𝑑𝐺 are learnable parameters.

Dialogue Representation. The 𝑇 -turn dialogue is represented
by a matrix 𝑥𝑑 ∈ |𝑉 | (2𝑇+1)×𝑑𝑤 , where𝑉 denotes the vocabulary,𝑑𝑤
is the maximum length of a question or a response, and each entry
refers to a word index in 𝑉 . We then feed 𝑥𝑑 to a 𝑑𝑤-dimensional
word embedding layer pretrained via word2vec [25] on the raw dia-
logue corpus, and denote the output as a tensor x𝑑 ∈ R(2𝑇+1)×𝐿×𝑑𝑤 .
Since the next question is more likely to be related to the most re-
cent turns, we compute the average of the latest 𝑇0 utterances and
obtain x̄𝑑 = 1

𝑇0

∑𝑇0−1
𝑡=0 x𝑑,2𝑇+1−𝑗 ∈ R𝐿×𝑑𝑤 . We adopt the same self-

attention block as above (but without sharing weights) to encode
the sequence of words. Mean-pooling is finally adopted to derive
the final 𝑑-dimensional vector x̂𝑑 . For each candidate question 𝑞𝑇+1,
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Figure 2: Results of Human Validation

we also encode it with the same wording embedding, self-attention
block, and mean-pooling.
User and Item Representation. To model user–item interac-
tions, we embed user 𝑢 ∈ U and candidate item 𝑣 ∈ V as 𝑑-
dimensional vectors, denoted by x𝑢,1, y𝑣,1 ∈ R𝑑 , which are regarded
as the first part of the user and item representation. However, such
encodings fail to account for historical user behavior and item
descriptive attributes, which are both captured by the graph. There-
fore, we again leverage the pretrained TransE model from the pre-
vious section. Let x𝑢,𝐺 , y𝑖,𝐺 ∈ R𝑑𝐺 , respectively, denote the graph
embedding of the user and the item. Then, we adopt a residual block
to derive the second part of the user and item representation as
x𝑢,2 = RB(x𝑢,𝐺 +r𝑢𝑖 ) and y𝑖,2 = RB(y𝑖,𝐺 ), where r𝑢𝑖 denotes the re-
lation embedding for the user–item interaction. By combining both
parts, the final encoding of user and item becomes x̂𝑢 = [x𝑢,1; x𝑢,2]
and ŷ𝑖 = [y𝑖,1; y𝑖,2].
Attribute Entity Prediction. We draw on the dialogue history
and previous attribute entities to predict the next one. We learn
a function 𝑓nda (𝑥𝑑 , 𝑥𝑒 , 𝑒𝑇+1) to output a score measuring the sim-
ilarity between the dialogue 𝑥𝑑 , attribute entity 𝑥𝑒 , and a candi-
date entity 𝑒𝑇+1. It is defined as 𝑓nda (𝑥𝑑 , 𝑥𝑒 , 𝑦𝑒 ) = FF( [x̂𝑑 ; ŷ𝑒 ]) +
FF( [x̂𝑒 ; ŷ𝑒 ]), where FF refers to a feedforward network and the
corresponding objective is:

Lnda = E𝑦−𝑒 [ℓ (𝑓nda (𝑥𝑑 , 𝑥𝑒 , 𝑦𝑒 ), 𝑓nda (𝑥𝑑 , 𝑥𝑒 , 𝑦−𝑒 ))], (1)

Here, 𝑦−𝑒 denotes a negative sample of a descriptive attribute that
is irrelevant to the clicked item, and ℓ (𝑥+, 𝑥−) = − log𝜎 (𝑥+ − 𝑥−)
is the pairwise ranking loss, where 𝜎 (·) is the sigmoid function

Next Question Prediction. Wemainly rely on the dialogue his-
tory and descriptive attributes to select the next question to ask.
Specifically, we aim to learn a scoring function 𝑓dial (𝑥𝑑 , 𝑥𝑒 , 𝑞𝑇+1)
that estimates the similarity between the dialogue 𝑥𝑑 , entities 𝑥𝑒 ,
and a candidate question𝑞𝑇+1. The function is defined as 𝑓dial (𝑥𝑑 , 𝑥𝑒 , 𝑦𝑟 ) =
FF( [x̂𝑑 ; ŷ𝑟 ])+FF( [x̂𝑒 ; ŷ𝑟 ]). Therefore, for each dialogue in the train-
ing set, we can minimize the objective

Ldial = E𝑞′ [ℓ (𝑓dial (𝑥𝑑 , 𝑥𝑒 , 𝑞𝑇+1), 𝑓dial (𝑥𝑑 , 𝑥𝑒 , 𝑞′))], (2)

where 𝑞′ denotes a negative sample of a wrong question.

Recommendation Prediction. Given the user 𝑥𝑢 , candidate
item𝑦𝑖 , and dialogue 𝑥𝑑 , as well as descriptive attributes 𝑥𝑒 , the rec-
ommender denoted by 𝑓rec (𝑥𝑢 , 𝑦𝑖 , 𝑥𝑑 , 𝑥𝑒 ) outputs a score indicating
how well the candidate item matches the user given the dialogue
context. We define 𝑓rec as

𝑓rec (𝑥𝑢 , 𝑦𝑖 , 𝑥𝑑 , 𝑥𝑒 ) = x̂⊺𝑢 ŷ𝑖 +W1 [x̂𝑑 ; y𝑖,1] +W2 [x̂𝑒 ; y𝑖,1], (3)

whereW1,W2 ∈ R2𝑑 are learnable parameters. Therefore, for each
dialogue consisting of (𝑥𝑢 , 𝑥𝑑 , 𝑥𝑒 , 𝑦𝑖 ) in the training set, we aim to
minimize the objective

Lrec = E𝑦−
𝑖
[ℓ (𝑓rec (𝑥𝑢 , 𝑥𝑑 , 𝑥𝑒 , 𝑦𝑖 ), 𝑓rec (𝑥𝑢 , 𝑥𝑑 , 𝑥𝑒 , 𝑦−𝑖 ))], (4)

where 𝑦−
𝑖
denotes items that the user 𝑥𝑢 never interacts with in the

training set.

Objective We jointly learn three scoring functions across all
training dialogue data by minimizing the overall joint objective
L =

∑
𝐷train Lrec + Ldial + Lnda, where 𝐷train denotes the training

set of all input–output pairs.
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For model parameters in the recommender 𝑓rec, including user
and item embeddings, we adopt SGD for optimization with a learn-
ing rate of 10−3 and weight decay of 10−4. For the remaining param-
eters, we rely on Adam optimization with a learning rate of 5×10−4

and weight decay of 102. Since two optimizers may converge with
different speeds, we make Adam backpropagate gradients every
other epoch, while SGD updates across all 10 epochs. We set the
batch size to 256. For model parameters, the sizes of word embed-
ding, KG embedding, and user/item embedding are 200, 100, 100,
respectively, and the latent vector dimensionality is 𝑑 = 100. The
multi-head attention size in the Transformer encoder is set to 4.

5 EXPERIMENTS
We extensively evaluate the proposed benchmark method over the
HOOPS benchmark data. First of all, the model should be able to
accurately conduct the next attribute prediction within the graph,
to demonstrate the capability of pruning off irrelevant candidates
within the HitL graph reasoning paradigm. Moreover, we expect the
proposed HitL conversational recommendation to not only facilitate
offering accurate recommendations but also to properly select the
next questions to ask with user feedback, which correspond to
the recommendation task and the next question prediction tasks,
respectively. For each of these tasks, we compare our model against
several state-of-the-art baselines.

Experimental Settings. Recall that ourHOOPS dataset includes
Cellphones & Accessories, Grocery & Gourmet, Toys & Games, and
Automotive. Each provides a unique KG and a set of conversa-
tions, implying that results are not necessarily comparable across
different domains. We split the conversations into training (60%),
validation (20%), test portions (20%). For each user–item pair, we
take one conversation with a maximum utterance length of 50 and
a maximum conversation length of 10, applying zero-padding if the
number of utterances is less than 10. There are 10 question candi-
dates to predict, out of which only one is the correct ground truth
choice. The same setup also applies for next-hop entity prediction.
For recommendation, we sampled 100 items with which the user
has not interacted as negative candidates. Our goal is to retrieve 1
correct labeled item out of a pool of 100 candidates, 1 question out
of 10 question candidates, as well as 1 entity out of 10.

Baselines. For the recommendation task, we compare Bayesian
personalized ranking BPR [31], collaborative knowledge base em-
beddingCKE [45] approach andRippleNet [35] model, the knowl-
edge graph attention network KGAT [37]. For next-question pre-
diction, we compare the popular response ranking methods, such
as the deep matching network DMN [42], deep attention matching
networkDAM [50], and multi-hop selector networkMSN [50]. The
baselines above each either yield recommendations or address the
next question prediction task. However, none of them is able to ac-
commodate both tasks. Therefore, we implement the followingmod-
ified baselines targeted at jointly conducting both tasks. KBRD [7]:
This is a conversational recommender system that originally cou-
ples a recommendation with a dialogue generation system. We
applied the Transformer framework [34] with its decoder designed
for our response selection downstream task. OpendialKG [26]:
The DialKG Walker model is able to conduct conversational rea-
soning. The original version supports predicting a KG entity via

an attention-based graph path decoder. We modify the model by
encoding the target question with an LSTM model, which enables
the next question prediction task.

Next Attribute Prediction. We study the performance of de-
scriptive attribute prediction to justify whether the HitL graph
reasoning is able to correctly predict the next attribute entity. Since
the KG incorporates meta-information of both users and items,
predicting the most relevant entities manifests a proper user partic-
ipation that enables pruning off irrelevant candidates in the HitL
graph reasoning. The results in Table 2 indicate that our baseline
approach obtains the best results compared to all prior baselines.
Seq2Seq and LSTM are typical methods designed for sequential pre-
diction, but they are unable to perform well with the aid of graph
structures. Moon et al. [26] deployed a graph decoder by walking
over knowledge graphs. However, without considering the hybrid
user behavior in the modeling, it remains less convincing in terms
of the transparency.

Next Question Prediction. In our benchmark dataset, we as-
sume users may occasionally struggle to provide useful requests
to the agent, since they are not aware of their preference before
the interaction with agents. Thus, learning to ask the right ques-
tion for the agent in HitL paradigm given the past conversation
context reveals whether the model successfully predicts user pref-
erences. The benchmark results are shown in Table 2. In our HitL
graph reasoning for conversational recommendation scenario, next
question prediction closely resembles the response ranking task.
The OpenDialKG and KBRD baselines exploit knowledge graphs
in order to leverage sentence, dialogue, and KG structural features.
Our proposed benchmark method not only takes advantage of the
extracted coarse-to-fine entities within the KG, but also models the
user feedback within the conversational turns. This enables it to
outperform other baselines in most of the evaluation results.

Recommendation. We adopt standard metrics to evaluate the
recommendations of each user in the testset, including Normalized
Discounted Cumulative Gain (NDCG), Recall, and Mean Average
Precision (MAP). The top-10 recommendation results of different
models are given in Table 2. The benchmark method is able to
outperform other approaches, as it draws on human feedback and
HitL graph reasoning to enhance the recommendation quality.

Ablation Study. We show the influence of different modules tak-
ing care of corresponding inputs on the three tasks to demonstrate
the effectiveness of our designed framework. As shown in Figure
3(a), we first consider the recommendation performance with each
input separately with abbreviations Hist. = User History, Dial. =
dialogue, and Attr. = descriptive attributes. This serves to study
the extent of information redundancy. While keeping all other
parameters unchanged, we observe that each input contributes
substantially to the performance, but retaining only one of them
leads to a performance drop. This suggests that each ingredient of
our HitL approach is complementary rather than redundant. The
model is almost equal to user-based collaborative filtering when
the input is solely user behavior, which takes the dominant role for
personalized recommendation. In contrast, although the dialogue
provides more semantics than pure attributes, but it is worth noting
that the conversational utterances may also introduce noise in the
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Tasks Benchmarks Cellphones & Accessories Grocery & Gourmet Toys & Games Automotive

Next Attribute

Metrics MAP 𝑹10@1 𝑹10@3 MAP 𝑹10@1 𝑹10@3 MAP 𝑹10@1 𝑹10@3 MAP 𝑹10@1 𝑹10@3

Seq2Seq 0.612 0.430 0.738 0.707 0.544 0.845 0.593 0.431 0.674 0.701 0.547 0.817
LSTM 0.642 0.465 0.772 0.726 0.569 0.859 0.566 0.408 0.626 0.659 0.499 0.768
OpenDialKG 0.643 0.467 0.774 0.707 0.555 0.822 0.656 0.501 0.754 0.706 0.557 0.838
HOOPS (Ours) 0.688 0.528 0.810 0.789 0.655 0.917 0.705 0.561 0.806 0.712 0.564 0.825

Next Question

Metrics MAP 𝑹10@1 𝑹10@3 MAP 𝑹10@1 𝑹10@3 MAP 𝑹10@1 𝑹10@3 MAP 𝑹10@1 𝑹10@3

DMN [42] 0.475 0.269 0.564 0.502 0.304 0.587 0.456 0.253 0.518 0.469 0.267 0.553
DAM [50] 0.514 0.373 0.590 0.581 0.394 0.635 0.579 0.388 0.546 0.552 0.387 0.608
MSN [44] 0.608 0.428 0.740 0.678 0.503 0.749 0.630 0.455 0.732 0.645 0.473 0.713
OpenDialKG [26] 0.699 0.654 0.678 0.729 0.676 0.724 0.579 0.499 0.561 0.710 0.640 0.726
KBRD [7] 0.669 0.498 0.771 0.768 0.626 0.896 0.688 0.559 0.760 0.711 0.552 0.809
HOOPS (ours) 0.781 0.718 0.788 0.854 0.812 0.859 0.693 0.562 0.746 0.850 0.805 0.858

Recommend

Metrics NDCG Recall MAP NDCG Recall MAP NDCG Recall MAP NDCG Recall MAP

BPR [31] 0.349 0.540 0.336 0.331 0.521 0.360 0.305 0.498 0.335 0.307 0.487 0.312
CKE [45] 0.360 0.543 0.303 0.411 0.598 0.353 0.435 0.636 0.372 0.385 0.570 0.327
RippleNet [35] 0.326 0.476 0.279 0.366 0.534 0.314 0.420 0.612 0.361 – – –
HeteroEmbed [1] 0.388 0.583 0.327 0.439 0.637 0.377 0.467 0.654 0.409 0.395 0.598 0.335
KGAT [37] 0.399 0.593 0.338 0.424 0.622 0.363 0.443 0.637 0.386 0.387 0.581 0.326
KBRD [7] 0.253 0.424 0.201 0.293 0.475 0.237 0.210 0.366 0.162 0.249 0.409 0.200
HOOPS (ours) 0.405 0.611 0.341 0.449 0.650 0.386 0.477 0.668 0.418 0.403 0.605 0.341

Table 2: Performance of selected baselines and our benchmark methods on four proposed datasets. The best results are high-
lighted in bold and the second best results are underlined.
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Figure 3: Performance of three tasks under various inputs:
(a) recommendation, (b) next question prediction, and (c)
next attribute prediction.

input. Therefore, there is a slight recommendation performance
gap between dialogue-alone and attribute-alone as input.

Furthermore, we also evaluate how the various inputs contribute
to the next question prediction and next attribute prediction task
in Figures 3(b) and (c). We find that user-readable dialogue is more
useful than merely considering the attributes for the question pre-
diction task. Interestingly, there is a small performance gap for next
attribute prediction. This is also because the utterance incorporates
the descriptive attribute information, while attribute-alone loses
semantic information content. Thus, utterance-alone is better than
attribute-alone on question prediction, but fairly similar on the
attribute prediction task.

6 RELATEDWORK
There has been significant research in human-centered AI. Much
of it has focused on societal goals rather than individual human
needs and interests [16, 17, 23]. Recently, some progress has been
made in the HCI field towards invoking ML to augment interactive
and intelligent systems [2, 43]. In this regard, the notion of Human-
in-the-Loop (HitL) AI has been proposed. Developing this idea
further, we propose a concrete HiTL graph reasoning framework
for conversational recommendation.

At the same time, the integration of knowledge graphs (KGs)
[22] has enabled CRS models to make recommendations grounded

in knowledge-driven reasoning [11, 18, 26, 39, 40]. For example,
Lei et al. [18] propose an RL-based mechanism to improve recom-
mendation performance based on an interactive path reasoning
algorithm. However, the lack of human-readable fluent utterance is
replaced by crawling the attribute words from raw review contexts,
which is less practical in real-world scenarios. Other works such
as Moon et al. [26] integrate KGs and conversational recommen-
dation together in an open-domain scenario, aiming to model the
dialogue logic by walking over graph structures. In Chen et al. [7],
item-related knowledge bases with entity-linked text leads to better
performance than either of them alone in dialogue generation and
recommendation. Comparing to these methods, we provide an open
dataset for conversational recommendation that supports the HiTL
graph reasoning paradigm and integrates knowledge graphs so
that prominent knowledge with semantics can be used to consider
user-involved feedback and provide transparent recommendations.
Execpt for conversational recommendation, they dataset may also
be used for conversational search [3] and conversational QA [30]
research. Another related research direction is Explainable Recom-
mendation [8, 9, 19–21, 46, 48]. Since reasoning on graphs naturally
provides transparency of the decision making process, it helps
to provide explanations for users over the recommended items
[1, 11, 40, 41].

7 CONCLUSION
Our work in this paper is the first exploration of human-in-the-
loop (HitL) learning for recommendation. Specifically, we define
a new HitL graph reasoning paradigm with the three properties
of hybrid integration, coarse-to-fine resolution, and a transparent
decision-making process. We instantiate the paradigm with the
conversational recommendation problem, where the system can
leverage interactive user feedback to shrink the large search space
during the multi-step reasoning process. Accordingly, we construct
a new dataset called HOOPS including a graph that structurally
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integrates diverse user behavior and item-related information, as
well as multi-round conversation corpus that simulates user–agent
interaction. We also provide a benchmark model to approach the
HitL graph reasoning for recommendation with reported perfor-
mance in three tasks on the constructed dataset. We hope it opens
up avenues for further research on more realistic applications for
Human-in-the-Loop learning. All data and code are freely available
online under a CC-BY-SA license1.
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