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ABSTRACT
Existing research on fairness-aware recommendation has mainly
focused on the quantification of fairness and the development of fair
recommendation models, neither of which studies a more substan-
tial problem–identifying the underlying reason of model disparity
in recommendation. This information is critical for recommender
system designers to understand the intrinsic recommendationmech-
anism and provides insights on how to improve model fairness to
decision makers. Fortunately, with the rapid development of Ex-
plainable AI, we can use model explainability to gain insights into
model (un)fairness. In this paper, we study the problem of explain-
able fairness, which helps to gain insights about why a system is
fair or unfair, and guides the design of fair recommender systems
with a more informed and unified methodology. Particularly, we
focus on a common setting with feature-aware recommendation
and exposure unfairness, but the proposed explainable fairness
framework is general and can be applied to other recommenda-
tion settings and fairness definitions. We propose a Counterfactual
Explainable Fairness framework, called CEF, which generates expla-
nations about model fairness that can improve the fairness without
significantly hurting the performance. The CEF framework formu-
lates an optimization problem to learn the “minimal” change of the
input features that changes the recommendation results to a certain
level of fairness. Based on the counterfactual recommendation re-
sult of each feature, we calculate an explainability score in terms of
the fairness-utility trade-off to rank all the feature-based explana-
tions, and select the top ones as fairness explanations. Experimental
results on several real-world datasets validate that our method is
able to effectively provide explanations to the model disparities
and these explanations can achieve better fairness-utility trade-off
when using them for recommendation than all the baselines.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence.
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1 INTRODUCTION
Nowadays, with the extensive deployment in various e-commerce
platforms, recommender systems (RS) have been widely acknowl-
edged for their strong capabilities of delivering high-quality ser-
vices to users [19, 25, 27, 46, 66]. Despite these huge benefits, the
issue of fairness in recommendation has also attracted considerable
interests from both academia and industry [30, 42, 44, 55]. Fortu-
nately, these concerns about algorithmic fairness have resulted
in a resurgence of interest to develop fairness-aware recommen-
dation models to ensure that such models would not become a
source of unfair discrimination in recommendation [7, 17, 47, 77].
In the area of fairness-aware recommendation, existing research
mainly focus on the quantification of fairness and the development
of fair recommendation models. Fairness quantification aims to
develop and investigate quantitative metrics that measure algo-
rithmic disparities in ranking or recommendation [18, 21, 40]. For
example, [18, 40] proposed and studied the recommendation quality
unfairness between active users and inactive users. Meanwhile, fair
recommendation aims to find feasible algorithmic approaches that
can adjust the recommendation results to reduce recommendation
disparities. For example, [2, 24] proposed approaches to mitigating
the popularity bias between different item groups.

Despite the great efforts on fairness-aware recommendation and
possibly countless future emergence of discoveries, one fundamen-
tal question that has not been studied extensively yet is fairness
diagnostics, i.e.,
• RQ What are the sources that result in model disparities in recom-
mendation?

Considering the huge commercial and social values that recom-
mender systems bring to various web platforms and the society,
we believe that the answer to this RQ is critical for recommenda-
tion system designers to understand the intrinsic recommendation
mechanism and to provide insights for decision makers on how to
improve model fairness. Yet, the answer to this question turns out
to be unsurprisingly challenging especially when the predictive
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model is a large-scale deep black-box model with large numbers
of input features. For example, it is hard to tell how input features
(such as screen size, battery, camera) would influence the expo-
sure unfairness. Note that some pioneer works in other areas have
leveraged Explainable AI to seek for feature-based explanations
for certain fairness outcome. For instance, Begley et al. used Shap-
ley value to attribute the model disparity in classification [5, 50].
Though their methods successfully provide explanations to the
model disparities in simple tasks, they are not suitable for rec-
ommender systems where the model inputs could be extremely
large and sparse, which may bring huge computational cost when
calculating Shapley value for each feature. Furthermore, existing
methods only partially answers the above question, since they only
explain either utility or fairness alone, ignoring the fact that there
is an inherent trade-off between fairness and utility, which has
been demonstrated by several recent work both empirically and
theoretically [28, 33, 34, 44, 45, 71]. And this incomplete view may
potentially downgrade the stringency of the method because expla-
nations that have the same effect on model fairness may not have
the same effect on model utility.

In this paper, we propose a novel framework to explain the rec-
ommendation (un)fairness based on a counterfactual reasoning
paradigm. Particularly, we focus on a common setting with feature-
aware recommendation and item exposure unfairness (popularity
bias) [1, 2, 24] since feature-base explanations are more straightfor-
ward and easy to understand, whichwould be a great demonstration
of the effectiveness of our method. However, the proposed approach
is very general and can be applied to other recommendation set-
tings with various fairness definitions. Specifically, we propose a
Counterfactual Explainable Fairness (CEF) framework to generate
feature-based explanations in terms of item exposure disparity for
various black-box feature-aware recommendation models. We first
follow prior works [13, 61, 74] to build a user-feature attention ma-
trix as well as an item-feature quality matrix, and use both matrices
to train a feature-aware recommendation model. Then, we aim to
find the “minimal” changes to a given feature in the feature space
that switch the recommendation results to a certain level of fairness.
To avoid overwhelmed sacrificing of the recommendation quality,
we also constrain the feature perturbation within a certain degree in
the objective function. With the counterfactual learning objective
and the perturbation constraint, our proposed framework is able to
generate feature-level explanations that consider the fairness-utility
trade-off. Finally, we calculate an explainability score in term of the
fairness-utility trade-off based on the counterfactual recommenda-
tion result of each feature. These scores help rank the feature-based
explanations and we select the top ones as fairness explanations
for the pre-trained recommendation model.

In general, the contributions of this work can be summarized as
follows:

• We study the problem of explainable fairness in recommendation
and propose a framework based on counterfactual reasoning. To
the best of our knowledge, this is the first work that introduces
explainable fairness in recommender systems.

• We design a learning-based intervention method to discover crit-
ical features that will significantly influence the fairness-utility

trade-off and use them as fairness explanations for black-box
recommendation systems;

• We conduct extensive experiments to evaluate our framework’s
effectiveness and validate that explanations generated by CEF
can achieve better fairness-utility trade-off when using them for
recommendation than all the baselines.

2 RELATEDWORK
There are several main research lines related to our work: explain-
able recommendation, fairness in recommendation and fairness
explanation. We will briefly introduce each of them in this section.

2.1 Explainable Recommendation
Explainable recommendation has been an important topic in both
academia and industry, which helps to improve the transparency,
user satisfaction and trust over the recommender systems [73, 74].
Early approaches mainly attempt to make latent factor models ex-
plainable by aligning each latent fator with an explicit meaning
such as item features [15, 74, 75]. Recently, with the ever pros-
pering of deep learning technology, many neural algorithms are
developed to explain recommendations based on neural models. For
example, [51] proposed to attentively highlight particular words
in user reviews as explanations, [16, 37] proposed to rank user
review sentences as explanations, [14, 54] proposed visually ex-
plainable recommendation to highlight image regions or directly
generate image as explanations, [9, 29, 36, 38, 39, 54] proposed to
generate natural language explanations, [4] proposed set-based
explanation for scrutability, [65] proposed contrastive explanations
for comparison shopping, and [10, 11, 53, 64, 76] proposed neural-
symbolic methods to improve both explainability and accuracy. In
addition to text-based or image-based explainable recommendation,
knowledge-aware explainable recommendation has also attracted
research attention recently, such as [3, 18, 60, 63, 64].

Works using counterfactual reasoning to improve recommenda-
tion explainability [31, 56–58, 67] have been proposed very recently.
Ghazimatin et al. [31] tried to generate provider-side counterfac-
tual explanations by looking for a minimal set of user’s historical
actions (e.g. reviewing, purchasing, rating) such that the recom-
mendation can be changed by removing the selected actions. Xu
et al. [67] proposed to improve this by using perturbation model to
obtain counterfactuals. Tran et al. [58] adopted influence functions
for identifying training points most relevant to a recommendation
while deducing a counterfactual set for explanations. Tan et al. [57]
proposed to generate and evaluate explanations that considers the
causal relations to the outcome.

Yet, our work is different from prior works on two key points:
1) In terms of problem definition, prior works generate counter-
factual explanations to explain user behaviors or recommendation
results, while our method generates such explanations to explain
the fairness-utility trade-off in recommendation. 2) In terms of tech-
nique, our method adopts a counterfactual reasoning framework
from a global perspective, which explains the entire model behavior,
while prior works focus on generating individual explanations for
an individual recommendation result.



2.2 Fairness in Recommendation
The issue of fairness in recommendation has received growing
concerns as recommender systems touch and influence people’s
daily lives more deeply and profoundly [28, 41, 62]. Several re-
cent works focusing on fairness quantification have found various
types of bias and unfairness in recommendations, such as gen-
der and race [12, 41, 69], item popularity [1, 2, 24, 28], and user
activeness [18, 40]. Meanwhile, the relevant methods for fair rec-
ommendation focusing on providing fair recommendation results
based on pre-defined fairness, can be roughly divided into three
categories: pre-processing, in-processing and post-processing al-
gorithms [42]. First of all, pre-processing methods usually aim to
minimize the bias in the data sources. It includes fairness-aware
sampling methodologies in the data collection process to cover
items of all groups, balancing methodologies to increase coverage
of minority groups, and repairing methodologies to ensure label
correctness [23]. Secondly, in-processing methods aim at encoding
fairness as part of the objective function, typically as a regularizer
[1, 6, 24, 41]. Finally, post-processing methods modify the presenta-
tion of the results, e.g., by re-ranking through linear programming
[40, 55, 68] or multi-armed bandit [8]. Based on the characteristics
of the recommender system itself, there also have been a few works
related to multi-sided fairness in multi-stakeholder systems [7, 22].

Moreover, there are two primary paradigms adopted in recent
studies on algorithmic discrimination: individual fairness and group
fairness [42]: individual fairness requires that each similar individ-
ual should be treated similarly; and group fairness requires that
the protected groups should be treated similarly to the advantaged
group or the populations as a whole. In this paper, we mainly focus
on the item popularity fairness, which is a kind of group fairness
and aims to achieve fair chances of exposure for different item
groups [1, 2, 24].

2.3 Fairness Explanation
Explainability and fairness are two important perspectives for re-
sponsible recommender systems, however, the relationship between
the two is still less explored. There have been several pioneering
studies trying to derive explanations for model fairness [5, 50] in
other tasks. For example, Begley et al. [5] leveraged Shapley value
paradigm [52] to attribute the feature contributions to model dis-
parity to generate explanations. It estimates the sum of individual
contributions from input features, so as to understand which fea-
ture contributes more to the model disparity [5]. Though this type
of methods successfully provide explanations to the model dispari-
ties, they are not suitable for recommender systems. First of all, the
definition of Shapley value is the average marginal contribution
of a feature value across all possible coalitions, meaning that the
computation time increases super-exponentially with the number
of features. In recommendation systems, this becomes impractical
since it is very common to have a large number of user/item fea-
tures in the feature space. Secondly, the Shapley value can only
explain either utility or fairness alone [5, 50], but not the fairness-
utility trade-off. However, our proposed Counterfactual Explainable
Fairness (CEF) framework is able to mitigate the above problems.

3 EXPLAINABLE FAIRNESS
In this section, we first introduce how to use review information
to generate user-feature matrix and item-feature matrix, then in-
troduce the details of feature-aware recommendation systems. We
introduce how to generate counterfactual explanations for fairness
in section 3.4 and 3.5.

3.1 Feature Generation
Suppose we have a user set with𝑚 users denoted as U, an item
setV with 𝑛 items and their interaction set T = {(𝑢, 𝑣) |𝑢 ∈ U, 𝑣 ∈
V, 𝑢 has interacted with 𝑣}. Based on an open source toolkit for
phrase-level sentiment analysis, called “Sentires”1, we can easily
convert the raw review information into a set of quadruplesW =

{(𝑢𝑙 , 𝑣𝑙 , 𝑓𝑙 , 𝑠𝑙 )}𝑁𝑙=1. Specially, each element (𝑢𝑙 , 𝑣𝑙 , 𝑓𝑙 , 𝑠𝑙 ) ∈ W means
user 𝑢𝑙 ∈ U mentioned feature 𝑓𝑙 ∈ F of item 𝑣𝑙 ∈ V with
sentiment 𝑠𝑙 ∈ S, where F denotes the set of all features with
size 𝑟 and the sentiment set S = {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (+1), 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (−1)}. For
example, in the review of “I like the color of this sweater, but the
sleeve is not satisfied, since it is too tight for me.”, the features are
“collar” and “sleeve”, and the user expresses positive and negative
sentiments on them. The final extracted tuples are “(user, item,
color, positive)” and “(user, item, sleeve, negative)”, respectively.
Following the same method described in [13, 57, 74], we construct
a user-feature attention matrix 𝑨 ∈ R𝑚×𝑟 and an item-feature
quality matrix 𝑩 ∈ R𝑛×𝑟 using all the quadruples in W, where
𝑨𝑢,𝑓 indicates to what extent the user 𝑢 cares about the feature 𝑓 ,
and 𝑩𝑣,𝑓 indicates how well the item 𝑣 performs on the feature 𝑓 .
Specifically, 𝑨 and 𝑩 are calculated as:

𝑨𝑢,𝑓 =

{
0, if user 𝑢 did not mention feature 𝑓
1 + (𝑀 − 1)

(
2

1+exp(−𝑡𝑢,𝑓 ) − 1
)
, else

𝑩𝑣,𝑓 =

{
0, if item 𝑣 has no review on feature 𝑓
1 + 𝑀−1

1+exp(−𝑡𝑣,𝑓 ·𝑡𝑣,𝑓 ) , else

(1)

where𝑀 is the rating scale in the system, which equals to 5 (stars)
in most cases, 𝑡𝑢,𝑓 is the frequency that user 𝑢 mentioned aspect
𝑓 , 𝑡𝑣,𝑓 is the frequency that item 𝑣 is mentioned on feature 𝑓 , and
𝑡𝑣,𝑓 is the average sentiment of these mentions. For both 𝑨 and
𝑩 matrices, their elements are re-scaled into the range of (1, 𝑀)
using the sigmoid function (see Eq.(1)) to match with the original
system’s rating scale. Readers may refer to [74, 75] for more details
and the same user-feature and item-feature matrix construction
technique can also be found in [20, 35, 57, 61].

3.2 Feature-aware Recommender Systems
Once given the user-feature attention matrix 𝑨 and item-feature
quality matrix 𝑩, we define a ranking model 𝑔 that predicts the
user-item ranking score 𝑦𝑖, 𝑗 for user 𝑢𝑖 and item 𝑣 𝑗 by:

𝑦𝑢,𝑣 = 𝑔(𝑨𝑢 ,𝑩𝑣 | 𝑍,Θ) (2)

where 𝑨𝑢 and 𝑩𝑣 are the vector of user 𝑢 and the vector of item
𝑣 , Θ is the model parameter, and 𝑍 represents all other auxiliary
information. Depending on the application,𝑍 could be rating scores,

1https://github.com/evison/Sentires



clicks, text, images, etc., and is optional in the recommendation
model 𝑔.

In this work, we explore different implementations of𝑔 to demon-
strate the effectiveness of our proposed framework. The general
architecture of 𝑔 is a multi-layer neural network, that is:

�̂�𝑢𝑣 =𝑾𝑇𝜎𝑇 (. . . (𝑾1𝜎1 (𝑚𝑒𝑟𝑔𝑒 (𝑨𝑢 ,𝑩𝑣)) + 𝒃1) + . . .) + 𝒃𝑇 (3)

where, for the 𝑡-th layer (𝑡 = 1, 2, · · · ,𝑇 ), 𝜎𝑡 is a non-linear activa-
tion function,𝑾𝑡 and 𝒃𝑡 are weights and bias terms, respectively.
𝑚𝑒𝑟𝑔𝑒 (·) is an operator merging the user-feature and item-feature
vectors, and we explore it within the following functions:
• Element-wise Product Merge:

𝑚𝑒𝑟𝑔𝑒 (𝑨𝑢 ,𝑩𝑣) =𝑾𝑈𝑨
𝑇
𝑢 ⊙𝑾𝑉 𝑩

𝑇
𝑣 . (4)

where𝑾𝑈 and𝑾𝑉 are trainable parameters, and ⊙ represents
the element-wise product (a.k.a. Hadamard product).

• Concatenation Merge:

𝑚𝑒𝑟𝑔𝑒 (𝑨𝑢 ,𝑩𝑣) = [𝑾𝑈𝑨𝑇𝑢 ,𝑾𝑉 𝑩𝑇𝑣 ] . (5)

where𝑾𝑈 and𝑾𝑉 are trainable parameters.
Then, we train the model with a cross-entropy loss:

𝐿𝑜𝑠𝑠 = −
∑︁

𝑢,𝑣,𝑦𝑢,𝑣=1
log𝑦𝑢,𝑣 −

∑︁
𝑢,𝑣,𝑦𝑢,𝑣=0

log(1 − 𝑦𝑢,𝑣)

= −
∑︁
𝑢,𝑣

𝑦𝑢,𝑣 log𝑦𝑢,𝑣 + (1 − 𝑦𝑢,𝑣) log(1 − 𝑦𝑢,𝑣)
(6)

where𝑦𝑢,𝑣 = 1 if user𝑢 previously interacted with item 𝑣 , otherwise
𝑦𝑢,𝑣 = 0.

Generally, the recommendation model 𝑔 can be any ranking
model as long as it takes the user-feature and the item-feature
vectors as the input. The implementation and training of 𝑔 will be
detailed in the experiment section.

Finally, given {U,V,T ,𝑨,𝑩, 𝑔}, our task is to generate feature-
based explanations in terms of recommendation disparity for the
black-box recommendation model 𝑔. Besides, most of the important
symbols used in the paper can be referred in Tab. 1.

3.3 Fairness and Disparity
In this work, we consider explaining the exposure unfairness due
to popularity bias in recommendation. Given a recommendation
model 𝑔, we will have a certain recommendation result R𝐾 =

{R(𝑢1, 𝐾),R(𝑢2, 𝐾), · · · ,R(𝑢𝑚, 𝐾)} containing all users’ top-𝐾 rec-
ommendation lists. These recommendations determine the expo-
sures of items, which is used to measure the fairness and disparity
of the model. We then split items into two groups based on their
number of exposures in the recommendation list and denote G0
as popular item group and G1 as long-tailed item group. Based
on the above notations, we list some popular algorithmic fairness
definitions related to popularity bias as follows:

3.3.1 Demographic Parity (DP). Demographic parity in recom-
mendation scenarios requires that the average exposure of the items
from each group is equal [24, 55]. First, given R𝐾 , we denote the
number of exposures in group G𝑙 as

Exposure (G𝑙 |R𝐾 ) =
∑︁
𝑢∈U

∑︁
𝑣∈R(𝑢,𝐾 )

I(𝑣 ∈ G𝑙 ), 𝑙 ∈ {0, 1}. (7)

where I is the indicator function.

Symbol Description

U The set of users in a recommender system
V The set of items in a recommender system
T The set of user-item interactions in a recommender system
F The set of features in a recommender system
S The set of sentiments in a recommender system
𝑚 The number of users
𝑛 The number of items
𝑟 The number of features
𝑢 A user ID in a recommender system
𝑣 An item ID in a recommender system
𝑓 A feature index in a recommender system
𝑠 A sentiment index in a recommender system
𝑨 A user-feature attention matrix
𝑩 A item-feature quality matrix

𝑨𝑐𝑓 The user-feature attention matrix after intervention with Δ𝑢
𝑩𝑐𝑓 The item-feature quality matrix after intervention with Δ𝑣
G0 The set of popular items
G1 The set of long-tailed items
𝑦𝑢𝑣 Ground-truth value of the pair (𝑢, 𝑣)
�̂�𝑢𝑣 Predicted value of the pair (𝑢, 𝑣)
𝐾 The length of the recommendation list
R𝐾 The set of recommendation lists with length K for all users
Θ Parameters of black-box recommendation model

Table 1: Summary of the notations in this work.

Then, we can express demographic parity fairness as follows,

Exposure (G0 |R𝐾 )
|G0 |

=
Exposure (G1 |R𝐾 )

|G1 |
, (8)

where groups G0 and G1 are created based on the item popularity,
as mentioned before.

3.3.2 Exact-𝐾 Fairness (EK). Following [24], we can also use the
Exact-𝐾 fairness in ranking, which requires the proportion/chance
of protected candidates in every top-𝐾 recommendation list remains
statistically indistinguishable from a given maximum 𝛼 . This kind
of fairness constraint is more suitable and feasible in practice for
recommender systems as the system can adjust the value of 𝛼 . The
concrete form of this fairness is shown as below,

Exposure (G0 |R𝐾 )
Exposure (G1 |R𝐾 )

= 𝛼 (9)

where 𝛼 ∈ (0, 1). Note that when 𝛼 =
|G0 |
|G1 | and the equation holds

strictly, the above expression would be exactly the same as demo-
graphic parity.

3.3.3 Disparity. In practice, we can take the difference between
the two sides of the equalities in the above definitions as a quantifi-
cation measure for disparity. For example,

Ψ𝐷𝑃 = |G1 | · Exposure (G0 |R𝐾 ) − |G0 | · Exposure (G1 |R𝐾 ) (10)

Ψ𝐸𝐾 = Exposure (G0 |R𝐾 ) − 𝛼 · Exposure (G1 |R𝐾 ) (11)

are two popular algorithm disparity measures used in fairness learn-
ing algorithms [24].



3.4 Counterfactual Reasoning
With the above notations and definitions of item exposure fairness,
we can measure the disparity of the top-𝐾 recommendation result
R𝐾 . Then, the objective of our counterfactual reasoning problem
is to generate feature-based explanations for the given black-box
recommendation model 𝑔. The essential idea of the proposed expla-
nation model is to discover a slight change Δ𝑣 on each feature via
solving a counterfactual optimization problem, which minimizes
the disparity and a perturbation constraint that represents the effort
to change the disparity, so that we can know which feature(s) are
the underlying reasons for model disparity.

Specially, for each user-feature vector 𝑨:𝑓 , we slightly intervene
with a vector Δ𝑢 ∈ R𝑚 (and for each item-feature vector 𝑩:𝑓 , we
intervene with Δ𝑣 ∈ R𝑛), more specifically, the value of certain
user feature 𝑓 for all users 𝑨:𝑓 will be added to Δ𝑢 and get A𝑐 𝑓 , (or
the value of certain item feature 𝑓 for all items 𝑩:𝑓 will be added
to Δ𝑣 and get 𝑩𝑐 𝑓 ). With the new user-feature matrix 𝑨𝑐 𝑓 and
item-feature matrix 𝑩𝑐 𝑓 , 𝑔 will change the recommendation result
from R𝐾 to a counterfactual result R𝑐 𝑓

𝐾
. More importantly, this will

also change the fairness measure of that result to Ψ𝑐 𝑓 , where Ψ𝑐 𝑓

can either be Ψ
𝑐 𝑓

𝐸𝐾
or Ψ𝑐 𝑓

𝐷𝑃
depending on the choice of disparity.

And our goal is to look for the minimum intervention on user/item
feature that is able to result in the greatest reduction in terms of
disparity or unfairness. Thus, objective function would be:

min ∥Ψ𝑐 𝑓 ∥2
2 + _∥Δ∥2 (12)

where Δ can be either Δ𝑢 or Δ𝑣 or the concatenation of them
(Δ = [Δ𝑢 ,Δ𝑣]), _ ∈ (0, 1) is a hyper-parameter that is used to
control the weight between the two terms, and Ψ𝑐 𝑓 can be:

Ψ
𝑐𝑓

𝐸𝐾
= Exposure(G0 |R𝑐𝑓𝐾 ) − 𝛼 · Exposure(G1 |R𝑐𝑓𝐾 )

=
∑︁
𝑢∈U

∑︁
𝑣∈R𝑐𝑓 (𝑢,𝐾 )

I(𝑣 ∈ G0) − 𝛼 ·
∑︁
𝑢∈U

∑︁
𝑣∈R𝑐𝑓 (𝑢,𝐾 )

I(𝑣 ∈ G1) (13)

Ψ
𝑐𝑓

𝐷𝑃
= Exposure(G0 |R𝑐𝑓𝐾 ) − |G0 |

|G1 |
· Exposure(G1 |R𝑐𝑓𝐾 )

=
∑︁
𝑢∈U

∑︁
𝑣∈R𝑐𝑓 (𝑢,𝐾 )

I(𝑣 ∈ G0) −
|G0 |
|G1 |

·
∑︁
𝑢∈U

∑︁
𝑣∈R𝑐𝑓 (𝑢,𝐾 )

I(𝑣 ∈ G1)

(14)
A major challenge to optimize Eq. (12) is the non-differentiable

nature of Ψ𝑐 𝑓 . As a relaxation, we replace the indicator function
I(·) in the original definition (Eq. (14) or Eq. (13)) with𝑔(·, ·), which
is the predicted ranking score, and normalize the final results to
stabilize the gradients of the objective function. And the resulting
disparity metric Ψ̃𝑐 𝑓 becomes:

Ψ̃
𝑐𝑓

𝐸𝐾
=

∑
𝑢∈U

(∑
𝑣∈G0∩R𝑐𝑓 (𝑢,𝐾 ) 𝑔 (𝑨

𝑐𝑓
𝑢 ,𝑩

𝑐𝑓
𝑣 ) − 𝛼 ∑

𝑣∈G1∩R𝑐𝑓 (𝑢,𝐾 ) 𝑔 (𝑨
𝑐𝑓
𝑢 ,𝑩

𝑐𝑓
𝑣 )

)
∑
𝑢∈U

∑
𝑣∈R𝑐𝑓 (𝑢,𝐾 ) 𝑔 (𝑨

𝑐𝑓
𝑢 ,𝑩

𝑐𝑓
𝑣 )

(15)
or becomes:

Ψ̃
𝑐𝑓

𝐷𝑃
=

∑
𝑢∈U

(∑
𝑣∈G0∩R𝑐𝑓 (𝑢,𝐾 ) 𝑔 (𝑨

𝑐𝑓
𝑢 ,𝑩

𝑐𝑓
𝑣 ) − |G0 |

|G1 |
∑
𝑣∈G1∩R𝑐𝑓 (𝑢,𝐾 ) 𝑔 (𝑨

𝑐𝑓
𝑢 ,𝑩

𝑐𝑓
𝑣 )

)
∑
𝑢∈U

∑
𝑣∈R𝑐𝑓 (𝑢,𝐾 ) 𝑔 (𝑨

𝑐𝑓
𝑢 ,𝑩

𝑐𝑓
𝑣 )

(16)
Thus, our final objective for a given feature is

min ∥Ψ̃𝑐 𝑓 ∥2
2 + _∥Δ∥2 . (17)

The first term aims to realize the greatest reduction in terms of
pre-defined disparity or unfairness. The second perturbation con-
straint represents the edit distance between original inputs and
the corresponding counterfactuals. Finally, for each feature, we
solve an optimization problem defined as Eq. (17) and use the cor-
responding counterfactual recommendation result to calculate the
explainability score, which will be detailed in the next section.

3.5 Generate Feature-based Explanations
For each feature in the feature space, we will solve the optimiza-
tion problem defined as Eq. (17) and consider Δ as the only train-
able parameter. Once finished optimizing, we will get the “min-
imial” change Δ and the corresponding recommendation results
under such change to that feature. Then, we use Proximity—the
average edit distance between original input and the correspond-
ing counterfactual—to measure the degree of perturbation. And
we use Validity—the change of fairness caused by the feature’s
perturbation—to measure the degree of influence on fairness [48,
49, 57, 59].

Proximity = ∥Δ∥2
2 (18)

Validity =
Exposure (G0 |R𝐾 ) − Exposure (G1 |R𝐾 )

𝑚 · 𝐾

−
Exposure

(
G0 |R𝑐𝑓𝐾

)
− Exposure

(
G1 |R𝑐𝑓𝐾

)
𝑚 · 𝐾 ,

(19)

where𝑚 is the number of users and 𝐾 is the length of recommen-
dation lists.

Finally, the explainability score (𝐸𝑆) is the linear combination of
Proximity and Validity, which is shown as follows:

𝐸𝑆 = Validity − 𝛽 · Proximity, (20)

where 𝛽 ∈ (0, 1) and larger score represents better explainability.
This score determines the ranking of a feature in terms of its abil-

ity to reduce the disparity of model𝑔while keeping the perturbation
small. Note that the original value of the feature corresponds to the
optimal recommendation utility of R𝐾 that the model 𝑔 learned, so
larger proximity score may imply a greater sacrifice of utility. Thus,
the inclusion of this term in the objective function and the scoring
function will result in an explanation finding process that is aware
of the influence on both the fairness and recommendation utility.

4 EXPERIMENTS
4.1 Datasets
To evaluate the models under different data scales, data sparsity
and application scenarios, we perform experiments on three widely-
used real-world datasets [26, 29, 32, 43, 57]. Some basic statistics of
the experimental datasets are shown in Table 2.
• Yelp dataset2 contains users’ reviews on various kinds of busi-
nesses such as restaurants, dentists, salons, etc. This dataset con-
tains 6,685,900 reviews, 192,609 businesses, 200,000 pictures in
10 metropolitan areas.

• Amazon dataset contains user reviews on products in Amazon e-
commerce system3. The Amazon dataset contains 29 sub-datasets
corresponding to 29 product categories. We adopt two datasets

2https://www.yelp.com/dataset
3https://nijianmo.github.io/amazon/index.html

https://www.yelp.com/dataset
https://nijianmo.github.io/amazon/index.html


of different scales to evaluate our method, which are CDs & Vinyl
and Electronics.
Since the Yelp and Amazon review datasets are very sparse,

similar as previous work [57, 61, 74], we remove the users and
items with fewer than 20 reviews. For each dataset, we first sort
the records of each user based on the timestamp, and then hold-out
the last 5 interacted items together with 100 randomly sampled
negative items for each user to serve as the test data to evaluate
black-box recommenders and do fairness explanation. The last item
in the training set of each user is put into the validation set. Since
we focus on item exposure fairness, we need to split items into two
groups G0 and G1 based on item popularity. It would be desirable if
we have the item impression/listing information and use it to group
items, however, since Yelp and Amazon datasets are public dataset
and only have interaction data, we use the number of interaction
to group items in them. Specifically, for Yelp and Amazon review
datasets, the top 20% items in terms of number of interactions
belong to the popular group G0, and the remaining 80% belong to
the long-tail group G1.

Table 2: Basic statistics of the experimental datasets.

Dataset #User #Item #Review #Aspect Density
Yelp 12,028 20,181 502,158 106 0.208%
CDs & Vinyl 3,225 46,709 179,992 118 0.119%
Electronics 2,762 19,449 51,777 77 0.096%

4.2 Black-box Recommender System
As mentioned before, we first follow prior works [13, 61, 74] to
build a user-feature attention matrix and an item-feature quality
matrix, and use both matrices together with the user-item interac-
tion history to train a feature-aware recommendation model.

In this work, to demonstrate the idea of counterfactual explain-
able fairness, we use a simple deep neural network as the implemen-
tation of the recommendation model 𝑔, which includes one fusion
layer followed by three fully connected layers with size {256, 64, 1}.
The architecture of the fusion layer depends on how we are going
to merge the user-feature and item-feature vectors (as is provided
in Eq. (4) and Eq. (5)). Specifically, for Element-wise Product merge,
the fusion layer is {2 × feature size, 256}, while for Concatenation
merge, it is {feature size, 256}. The final output layer is a sigmoid
activation function so as to map 𝑦𝑢,𝑣 into the range of (0, 1).

The model parameters are optimized by stochastic gradient de-
scent (SGD) optimizer with a learning rate of 0.01. After the rec-
ommendation model is trained, all the parameters will be fixed
in the counterfactual reasoning phase and explanation evaluation
phase. The recommendation performance on Element-wise product
merge (Eq. (4)) and Concatenation merge (Eq. (5)) are presented in
Tab. 3. For convenience and simplicity, the evaluations of fairness
explanation methods presented in the experiment section are based
on Element-wise product merge (Eq. (4)).

4.3 Baselines
Since there is no existing method specifically designed to explain
fairness in recommendation. We adopt the following explanation
methods as baselines:

Recommender F1 (%) NDCG (%)

@5 ↑ @20 ↑ @5 ↑ @20 ↑
Yelp

Element-wise 17.161 16.563 16.069 29.192
Concatenation 16.266 16.929 17.338 29.780

Electronics

Element-wise 15.112 13.975 16.384 25.886
Concatenation 15.083 14.044 16.350 25.946

CDs & Vinyl

Element-wise 21.463 18.517 23.150 35.162
Concatenation 20.737 18.443 22.393 34.672

Table 3: Summary of recommendation performance on
three datasets for black-box recommendation models us-
ing Element-wise Product merge (Eq. (4)) and Concatenation
merge (Eq. (5)) in term of F1 and NDCG.

• Random:We randomly choosemultiple features from the feature
space without replacement and use them as explanation results.

• Popularity: We rank all the features in the user-feature matrix
and item-feature matrix based on their number of existences, and
select the top ones as explanations, and denote them as Pop-User
and Pop-Item, respectively.

• EFM [74]: The Explicit Factor Model (EFM) for explainable rec-
ommendation. This work integrates matrix factorization with
explicit features to align latent factors with explicit aspects for
explanation. In this way, it predicts the user-feature preference
scores and item-feature quality scores. The orgianl EFM uses the
element-wise product of user-feature vector and item-feature vec-
tor and select the top ones as explanations to a given user-item
pair. To generate global explanations, we calculate the average
value of each feature from both user side and item side, and use
them as explanations. Therefore, we have EFM-User and EFM-
Item. Note that these features only explains the recommendation
utility but do not explain the fairness.

• Feature-based Explanation by Shapley Values (SV): Begley
et al. [5] leveraged Shapley value-based methods to attribute the
model disparity as the sum of individual contributions from input
features to understand which feature contributes more or less to
the model disparity. Considering the large number of features in
the feature space, instead of using all possible coalitions, which
is 𝑟 !, we randomly sample 100 feature coalitions to calculate the
Shapley value for each feature.

For CEF, we choose to minimize Eq. (17), where Δ = [Δ𝑢 ,Δ𝑣],
Ψ𝑐 𝑓 = Ψ

𝑐 𝑓

𝐷𝑃
(Eq. (14)), and |G0 |

|G1 | =
1
4 . We set the hyper-parameter

_ = 1 and 𝐾 = 5. The model parameters are optimized by Adam
optimizer with a learning rate of 0.01.

4.4 Evaluation Methods and Metrics
Once we obtain the feature-based explanations from each baseline
as well as our proposed CEF, we need to compare the effectiveness



(a) NDCG@5 vs Long-tail Rate@5 on Yelp (b) NDCG@5 vs Long-tail Rate@5 on Electronics (c) NDCG@5 vs Long-tail Rate@5 on CDs&Vinyl

(d) NDCG@20 vs Long-tail Rate@20 on Yelp (e) NDCG@20 vs Long-tail Rate@20 on Electronics (f) NDCG@20 vs Long-tail Rate@20 on CDs&Vinyl

(g) NDCG@50 vs Long-tail Rate@50 on Yelp (h) NDCG@50 vs Long-tail Rate@50 on Electronics (i) NDCG@50 vs Long-tail Rate@50 on CDs&Vinyl

Figure 1: The accuracy-fairness trade-off curves for NDCG and Long-tail Rate on various datasets. The upper-right corner of
each figure (high accuracy, low disparity) is preferred. Each data point is generated by cumulatively removing top 5 features in
the explanation lists provided by explanation methods.

of these results, in other words, their contributions to the fairness-
utility trade-off. In order to evaluate the feature-based explanations,
we follow the widely deployed erasure-based evaluation criterion
in Explainable AI. The intuition behind the erasure-based criterion
is to measure how much the model performance would drop af-
ter the set of the “most important” features in an explanation is
removed [70, 72]. Similarly, in the setting of explainable fairness,
we use it to measure the fairness-utility trade-off in recommenda-
tion, namely, how much the recommendation performance would
drop and how much the recommendation fairness would improve
after the set of the “most important” features in an explanation

is removed. Specifically, for each feature-based explanation result,
we erase the set of the “most important” features in both the user-
feature and item-feature matrices for all users and items, then input
the erased user-feature and item-feature matrices into pre-trained
recommendation model 𝑔 to generated a new recommendation re-
sults. Based on the recommendation performance and fairness of
the new results, we compare the effectiveness of each explainable
fairness methods.

We select several most commonly used top-𝐾 ranking metrics to
evaluate the model’s recommendation performance after erasure,
including F1 Score, and NDCG. For fairness evaluation, we define



Table 4: Summary of the performance and fairness on three datasets. We evaluate for ranking (𝐹1 and 𝑁𝐷𝐶𝐺 , in percentage (%)
values, % symbol is omitted in the table for clarity) and fairness (𝐾𝐿 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 and 𝐿𝑜𝑛𝑔 − 𝑡𝑎𝑖𝑙 𝑅𝑎𝑡𝑒, also in % values) with top 5
recommended items, and 𝐸 is the number of erased features. Bold scores are used to indicate the greatest values.

Methods F1@5(%) ↑ NDCG@5 (%) ↑ Long-tail Rate@5 (%) ↑ KL@5 (%) ↓
E=5 E=10 E=20 E=5 E=10 E=20 E=5 E=10 E=20 E=5 E=10 E=20

Yelp

Random 15.671 15.345 14.809 16.788 16.255 15.674 4.3191 4.8066 5.2302 10.506 9.6994 9.0410
Pop-User 16.074 15.636 14.956 17.236 16.748 15.983 4.6047 6.0428 6.6289 10.026 7.8770 7.1107
Pop-Item 16.050 15.498 14.868 17.055 16.522 16.013 4.7180 4.5703 6.3580 9.8421 10.083 7.4577
EFM-User 15.735 15.370 14.710 16.804 16.392 15.626 3.7084 3.9940 5.0086 11.598 11.075 9.3808
EFM-Item 15.538 14.434 13.533 16.558 15.406 14.320 5.0874 6.8406 9.3622 9.2588 6.8477 4.2092
SV 15.680 15.188 14.814 16.700 16.235 15.719 4.4570 6.3974 8.2688 10.272 7.4064 5.2486
CEF 15.897 15.513 15.296 17.015 16.635 16.309 5.0233 7.1706 10.169 9.3579 6.4518 3.5328

Electronics

Random 14.981 14.960 14.945 15.253 15.272 15.336 5.2715 5.4018 5.3439 8.9788 8.7846 8.8705
Pop-User 13.330 11.940 9.9782 14.417 12.795 10.361 8.6676 13.164 22.947 4.8522 1.6141 0.2621
Pop-Item 13.149 11.701 9.6017 14.118 12.482 9.9908 9.6886 14.460 24.540 3.9269 1.0372 0.6115
EFM-User 15.018 15.018 15.018 16.454 16.451 16.426 4.6125 4.4822 4.7139 10.014 10.230 9.8487
EFM-Item 12.541 11.622 10.586 13.453 12.314 10.976 7.7552 10.644 16.857 5.7903 3.1690 0.3218
SV 15.061 15.126 15.112 16.379 16.418 16.487 5.0615 4.9312 4.9674 9.2987 9.5019 9.4451
CEF 14.829 14.887 13.164 15.956 16.115 14.149 6.5821 7.1976 10.275 7.1697 6.4201 3.4500

CDs & Vinyl

Random 21.463 21.246 21.103 22.131 21.968 21.821 7.2062 7.3612 7.5906 6.4102 6.2307 5.9715
Pop-User 21.413 21.432 21.432 23.118 23.133 23.162 7.1937 7.1999 7.2496 6.4247 6.4174 6.3596
Pop-Item 21.457 21.469 21.413 23.156 23.196 23.150 7.2062 7.2062 7.2186 6.4102 6.4102 6.3957
EFM-User 20.241 20.210 20.055 21.621 21.594 21.482 6.1395 6.0651 6.0093 7.7465 7.8468 7.9226
EFM-Item 19.968 18.381 17.159 21.653 19.972 18.619 8.5271 10.449 14.325 4.9896 3.3154 1.0908
SV 20.675 20.700 20.545 22.290 22.283 22.174 6.9271 6.8403 6.9147 6.7424 6.8481 6.7574
CEF 21.463 21.438 21.333 23.099 23.061 22.962 7.2124 7.2496 7.4046 6.4029 6.3596 6.1811

Long-tail Rate, which simply refers to the ratio of the number
of long-tailed items in the recommendation list to the total num-
ber of items in the list. We also employ KL-divergence (KL) to
compute the expectation of the difference between protected group
membership at top-𝐾 vs. in the overall population, which is:

𝑑𝐾𝐿 (𝐷1 | |𝐷2) =
∑︁

𝑗 ∈{0,1}
𝐷1 ( 𝑗) ln

𝐷1 ( 𝑗)
𝐷2 ( 𝑗)

(21)

where 𝐷1 represents the true group distribution between G0 and
G1 in top-𝐾 recommendation list, and 𝐷2 = [ |G0 |

|V | ,
|G1 |
|V | ] represents

their ideal distribution of the overall population.

4.5 Experimental Results
The major experimental results are shown in Fig. 1, where we plot
the fairness-utility trade-off, i.e., the relationship between NDCG
and Long-tail Rate (namely, 1-Popularity Rate) with different length
of recommendation lists (@5, @20, @50). Since the relationship
between F1 and and Long-tail Rate has very similar conclusions, we
choose not to present them here. Each data point Fig. 1 is generated
by cumulatively removing top 5 features in the remaining explana-
tion list provided by each explanation method. We also present the
values of F1@5, NDCG@5, Long-tail Rate@5 and KL@5 in Tab. 4

after removing top-5, top-10, top-20 features in each explanation
result to quantitatively analyse the results.

First, in Fig. 1 and Tab. 4, we can easily find that all the methods,
even randomly selecting features and erasing them, can improve
recommendation fairness. Besides, the higher the number of fea-
tures we erase, the lower the disparity rate we can achieve. This is
easy to understand as erasing features will mitigate the represen-
tation gap between popular items and long-tailed items, causing
more under-represented items to be recommended. However, it
also brings huge decline to the recommendation performance. For
example, compared with the original recommendation performance
on NDCG@5, the method with the worst trade-off behavior drops
relatively 2.119 % on Yelp, 21.786 % on Electronics, and 7.072 %
on CDs & Vinly when deleting top 5 features. Second, we can see
that even though the idea of using popular features as explana-
tions is very intuitive, their performance may even be worse than
random selection, which indicates that compared with fairness, pop-
ular features either from user side or item side are more sensitive
to recommendation performance, while random selection guaran-
tees low probabilities of choosing those scarce features, which in
turn results in better trade-off. Third, the performances of SV are
much worse than CEF as it only explains disparity alone, ignoring
the inherent trade-off between fairness and utility. Finally, in Fig.



1, where the blue dotted line represents the performance of our
proposed CEF framework, it is obvious that the feature-based ex-
planations provided by CEF are capable of achieving much better
fairness-utility trade-off on datasets with various scales and den-
sities. Specifically, compared with the original recommendation
performance on NDCG@5, CEF method drops only relatively 0.851
% on Yelp, 2.682 % on Electronics, and 0.594 % on CDs & Vinly, while
it increases relatively 13.431 % on Yelp, 25.73 % on Electronics, and
on 3.085 % CDs & Vinly at Long-tail Rate@5.

Figure 2: Ablation study on Yelp dataset.

4.6 Ablation Studies
As mentioned in Sec. 3.4, the choice of Δ in the objective function
(Eq. (12) or Eq. (17)) can either be Δ𝑢 or Δ𝑣 or both of them, de-
pending on how we are going to intervene the given feature in
the feature space. Besides, all the experimental results in Table 4
and Fig. 1 are based on intervening the given feature using both
Δ𝑢 and Δ𝑣 (namely, Δ = [Δ𝑢 ,Δ𝑣]). Therefore, to study how the
choice of Δ is going to influence the experimental results, we run
additional experiments based on the variants of the original CEF by
either choosing Δ𝑢 or Δ𝑣 alone, denoted as CEF-User and CEF-Item,
respectively. The objective of CEF-User is min ∥Ψ̃𝑐 𝑓

𝐸𝐾
∥2

2 + _∥Δ𝑢 ∥2 .

And that of CEF-Item is min ∥Ψ̃𝑐 𝑓
𝐸𝐾

∥2
2 + _∥Δ𝑣 ∥2 . For convenience,

we only present the results in Yelp dataset, as is shown in Fig. 2.
Similar conclusions are also achieved on other datasets.

As is shown in Fig. 2, the evaluations on CEF-User and CEF-Item
achieve worse fairness-utility trade-off when compared with the
original CEF. This is understandable as CEF uses both Δ𝑢 and Δ𝑣
as its parameters, which is a much larger parameter space and can
achieve better representations. Moreover, even though CEF-User
and CEF-Item are worse than CEF, they are still far more better
than most of the baselines, especially, CEF-User is better than all
the baselines, which indicates the effectiveness of our proposed
framework.

5 CONCLUSION AND FUTUREWORK
In this paper, we study the problem of explainable fairness in rec-
ommendation and propose a framework based on counterfactual
reasoning, called CEF. To the best of our knowledge, this is the
first work to introduce the idea of explainable fairness in recom-
mender systems. We design a learning-based counterfactual rea-
soning method to discover critical features that will significantly

influence the fairness-utility trade-off and use them as fairness ex-
planations for black-box feature-aware recommendation systems.
Extensive experiments have been conducted to evaluate the effec-
tiveness of our proposed framework and the explanations generated
by CEF can achieve better fairness-utility trade-off than all the base-
lines when using them to do fair learning. In the future, we hope to
design algorithmic methods that can generate multiple explanations
at the same time without greedy choosing them through explain-
ability scores. (One possible solution would be using penalizing
vectors to control the number of perturbed features.)
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A APPENDIX: CASE STUDY
In this section, we provide the top-5 feature-based explanations
that are generated by each method on Yelp dataset. The explanation
results are shown in Tab. 5, which exactly verifies our motivation
that it is difficult to manually identify feature explanations for ex-
posure unfairness and popularity bias in recommender system. For
example, it is hard to tell how input features (like chicken, cheese,
pizza) would influence the exposure opportunity in restaurant rec-
ommendation. Thus, we do need explainable fairness methods to
identify such features in recommendation.

Method Feature-based Explanations

Pop-User food, service, chicken, prices, hour
Pop-Item food, service, prices, visit, hour
EFM-User store, patio, dishes, dish, rice
EFM-Item flavor, decor, dishes, inside, cheese

SV server, size, pizza, food, restaurant
CEF meal, cheese, dish, chicken, taste

Table 5: Top-5 feature-based explanations on Yelp dataset.
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