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ABSTRACT
The issue of fairness in recommendation is becoming increasingly
essential as Recommender Systems (RS) touch and influence more
and more people in their daily lives. In fairness-aware recommenda-
tion, most of the existing algorithmic approaches mainly aim at solv-
ing a constrained optimization problem by imposing a constraint
on the level of fairness while optimizing the main recommendation
objective, e.g., click through rate (CTR). While this alleviates the im-
pact of unfair recommendations, the expected return of an approach
may significantly compromise the recommendation accuracy due to
the inherent trade-off between fairness and utility. This motivates
us to deal with these conflicting objectives and explore the optimal
trade-off between them in recommendation. One conspicuous ap-
proach is to seek a Pareto efficient/optimal solution to guarantee
optimal compromises between utility and fairness. Moreover, con-
sidering the needs of real-world e-commerce platforms, it would be
more desirable if we can generalize the whole Pareto Frontier, so that
the decision-makers can specify any preference of one objective
over another based on their current business needs. Therefore, in
this work, we propose a fairness-aware recommendation framework
using multi-objective reinforcement learning (MORL), called MoFIR
(pronounced “more fair”), which is able to learn a single paramet-
ric representation for optimal recommendation policies over the
space of all possible preferences. Specially, we modify traditional
Deep Deterministic Policy Gradient (DDPG) by introducing condi-
tioned network (CN) into it, which conditions the networks directly
on these preferences and outputs Q-value-vectors. Experiments on
several real-world recommendation datasets verify the superiority
of our framework on both fairness metrics and recommendation
measures when compared with all other baselines. We also extract
the approximate Pareto Frontier on real-world datasets generated
by MoFIR and compare to state-of-the-art fairness methods.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Sequential decision making.
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1 INTRODUCTION
Personalized recommender systems (RS), which are extensively
employed in e-commerce platforms, have been acknowledged for
their capacity to deliver high-quality services that bridge the gap
between products and customers [7, 17, 44, 51]. Despite these huge
advantages, several recent studies also raised concerns that RS
may be vulnerable to algorithmic bias in several aspects, which
may result in detrimental consequences for underrepresented or
disadvantaged groups [19, 29, 43, 59]. For example, the “Matthew
Effect” becomes increasingly evident in RS, which creates a huge
disparity in the exposure of the producers/products in real-world
recommendation systems [16, 18, 33]. Fortunately, these concerns
about algorithmic fairness have resulted in a resurgence of inter-
est to develop fairness-aware recommendation models to ensure
such models do not become a source of unfair discrimination in
recommendation [13, 15, 26, 28].

In the area of fairness-aware recommendation, the methods
can be roughly divided into three categories: pre-processing, in-
processing and post-processing algorithms [14, 29]. Pre-processing
methods usually aim to remove bias in data, e.g., sampling from data
to cover items of all groups or balancing data to increase coverage
of minority groups. In-processing methods aim at encoding fairness
as part of the objective function, while post-processing methods
tend to modify the presentations of the results. Even though all
of them could successfully alleviate the impact of unfair recom-
mendations to some extent, the expected return of an approach
may significantly compromise the recommendation accuracy due
to the inherent trade-off between fairness and utility, which has
been demonstrated by several recent work both empirically and
theoretically [22, 23, 32, 55].

In light of the above, one fundamental research questions is
asked, RQ1: Can we learn a recommendation model that allows for
higher fairness without significantly compromising recommendation
accuracy? And a more challenging one is, RQ2: Can we learn a
single recommendation model that is able to produce optimal recom-
mendation policies under different levels of fairness-utility trade-off

ar
X

iv
:2

20
1.

00
14

0v
1 

 [
cs

.I
R

] 
 1

 J
an

 2
02

2

https://doi.org/10.1145/3488560.3498487
https://doi.org/10.1145/3488560.3498487


so that it would be more desirable for decision-makers of e-commerce
platforms to specify any preference of one objective over another based
on their current business needs?

To deal with RQ1, one conspicuous approach is to seek a Pareto
optimal solution to guarantee optimal compromises between utility
and fairness, where a Pareto efficient/optimal solution means no
single objective can be further improved without hurting the others.
To find solutions with different levels of trade-off between utility
and fairness (RQ2), we need to generalize their Pareto frontier in the
objective space, where Pareto frontier denotes a set, whose elements
are all Pareto optimal. Unfortunately, state-of-the-art approaches
of fairness-aware recommendation are limited in understanding
the fairness-utility trade-off.

Therefore, in this work, we aim to address the above problems
and propose a fairness-aware recommendation framework using
multi-objective reinforcement learning (MORL) with linear prefer-
ences, called MoFIR, which aims to learn a single parametric repre-
sentation for optimal recommendation policies over the space of all
possible preferences. Technically, we first formulate the fairness-
aware recommendation task as a Multi-Objective Markov Deci-
sion Process (MOMDP), with one recommendation objective, e.g.,
CTR, and one fairness objective, e.g., item exposure fairness (our
method is able to generalize to more recommendation objectives
as well as more fairness objectives). Second, we modify classic and
commonly-used RL algorithm—DDPG [42] by introducing condi-
tioned networks [3] into it, which is a representative method to
deal with multi-objective reinforcement learning. Specially, we con-
dition the policy network and the value network directly on the
preferences by augmenting them to the feature space. Finally, we
utilize the vectorized Q-value functions together with modified loss
function to update the parameters. The contributions of this work
can be summarized as follows:
• We study the problem of Pareto optimal/efficient fairness-utility
trade-off in recommendation and extensively explore their Pareto
frontier to better satisfy real-world needs;
• We formulate the problem into a MOMDP and solve it through
a MORL framework, MoFIR, which is optimized over the entire
space of preferences in a domain, and allows the trained model
to produce the optimal policy for any specified preferences;
• Unlike prior methods for fairness-aware recommendation, the
proposed framework does not employ any relaxation for objec-
tives in the optimization problem, hence it could achieve state-
of-the-art results;
• Experiments on several real-world recommendation datasets ver-
ify the superiority of our framework on both fairness measures
and recommendation performance when compared with all other
baselines.

2 RELATEDWORK
2.1 Fairness in Recommendation
There have been growing concerns on fairness in recommendation
as recommender systems touch and influence more and more peo-
ple in their daily lives. Several recent works have found various
types of bias in recommendations, such as gender and race [2, 8],
item popularity [15, 16, 59], user feedback [13, 25, 27] and opinion
polarity [54]. There are two primary paradigms adopted in recent

studies on algorithmic discrimination: individual fairness and group
fairness. Individual fairness requires that each similar individual
should be treated similarly, while group fairness requires that the
protected groups should be treated similarly to the advantaged
group or the populations as a whole. Our work focuses on the item
popularity fairness from a group level, yet it can be used to solve
multiple types of fairness simultaneously by properly defining and
adding them as additional objectives.

The relevant methods related to fairness in ranking and rec-
ommendation can be roughly divided into three categories: pre-
processing, in-processing and post-processing algorithms [14, 28,
29]. First of all, pre-processing methods usually aim to minimize
the bias in data as bias may arise from the data source. This includes
fairness-aware sampling methodologies in the data collection pro-
cess to cover items of all groups, or balancing methodologies to
increase coverage of minority groups, or repairing methodologies
to ensure label correctness, remove disparate impact [14]. However,
most of the time, we do not have access to the data collection pro-
cess, but are given the dataset. Secondly, in-processing methods aim
at encoding fairness as part of the objective function, typically as a
regularizer [1, 4]. Finally, post-processing methods tend to modify
the presentations of the results, e.g., re-ranking through linear pro-
gramming [25, 43, 53] or multi-armed bandit [5]. However, there is
no free lunch, imposing fairness constraints to the main learning
task introduces a trade-off between these objectives, which have
been asserted in several studies [22, 23, 32, 55], e.g., Dutta et al. [12]
showed that because of noise on the underrepresented groups the
trade-off between accuracy and equality of opportunity exists.

Unfortunately, there is very few work of fairness-aware recom-
mendation that can be found to study the fairness-utility trade-off.
The closest one to our work is [47], which mainly focused on the
trade-off between two-sided fairness in e-commerce recommenda-
tion. [47] used a traditional multiple gradient descent algorithm
to solve multi-objective optimization problem, meaning that they
need to train one network per point on the Pareto frontier, while
our MoFIR generates the full Pareto frontier of solutions in a single
optimization run. Besides, the authors relaxed all their objectives
to get their differentiable approximations, which, to some extent,
hurt its performance, as is shown in the experiment part, Fig. 2.

2.2 Multi-Objective Recommendation
Recommendation with multiple objectives is a significant but chal-
lenging problem, with the core difficulty stemming from the po-
tential conflicts between objectives. In most real-world recommen-
dation systems, recommendation accuracy (e.g., CTR-oriented ob-
jectives) is the dominating factor, while some studies believed that
other characteristics, such as usability, profitability, usefulness, or
diversity should be considered at the same time [20, 21, 36]. When
multiple objectives are concerned, it is expected to get a Pareto
optimal/efficient recommendation [31, 39, 50].

The approaches on recommendation with multiple objectives
to achieve Pareto efficiency can be categorized into two groups:
evolutionary algorithm [60] and scalarization [31]. Ribeiro et al. [39,
40] jointly considered multiple trained recommendation algorithms
with a Pareto-efficient manner, and conducted an evolutionary
algorithm to find the appropriate parameters for weighted model



combination. Besides, Lin et al. [31] optimized GMV and CTR in
e-commerce simultaneously based on multiple-gradient descent
algorithm, which combines scalarization with Pareto-efficient SGD,
and used a relaxed KKT condition. Our proposed method, MoFIR,
belongs to scalarization, however, compared with earlier attempts
in multi-objective recommendation [31, 47], our method learns to
adapt a single network for all the trade-off combinations of the
inputted preference vectors, therefore it is able to approximate all
solutions of the Pareto frontier after a single optimization run.

2.3 RL for Recommendation
RL-based recommenders have recently become an important and at-
tractive topic, as it is natural to model the recommendation process
as a Markov Decision Process (MDP) and use RL agents to capture
the dynamics in recommendation scenarios [34, 35, 41, 48, 49, 58].
Generally speaking, RL-based recommendation systems can be fur-
ther classified into two categories: policy-based [6, 9, 11] or value-
based [37, 56, 58] methods. On one hand, policy-based methods
aim to learn strategies that generate actions based on state (such
as recommending items). These methods are optimized by policy
gradient, which can be deterministic approaches [11, 30, 42] or
stochastic approaches [6, 9]. On the other hand, value-based meth-
ods aims to model the quality (e.g. Q-value) of actions so that the
best action corresponds to the one with the highest Q-value. Apart
from using RL in general recommendation task, there also existed
several works focusing on using RL in explainable recommendation
through knowledge graphs [48, 49].

Currently, there are very few studies using MORL in recommen-
dation. Xie et al. [50] studied multi-objective recommendation to
capture users’ objective-level preferences. However, unlike our pro-
posed MoFIR, which learns a single parametric representation for
optimal recommendation policies, they conducted a Pareto-oriented
RL to generate the personalized objective weights in scalarization
for each user, which is a totally different problem formulation.

3 PRELIMINARY
3.1 Markov Decision Processes
In reinforcement learning, agents aim at learning to act in an envi-
ronment in order to maximize their cumulative reward. A popular
model for such problems is Markov Decision Processes (MDP),
which is a tuple𝑀 = (S,A,P,R, `, 𝛾), where 𝑆 is a set of 𝑛 states,
A is a set of𝑚 actions, P : S ×A ×S → [0, 1] denotes the transi-
tion probability function,R : S×A×S → R is the reward function,
` : S → [0, 1] is the starting state distribution, and 𝛾 ∈ [0, 1) is the
discount factor. We denote the set of all stationary policies by Π,
where a stationary policy 𝜋 ∈ Π : S → 𝑃 (A) is a map from states
to probability distributions over actions, with 𝜋 (𝑎 |𝑠) denoting the
probability of selecting action 𝑎 in state 𝑠 . We aim to learn a policy
𝜋 ∈ Π, able to maximize a performance measure, 𝐽 (𝜋), which is
typically taken to be the infinite horizon discounted total return,

𝐽 (𝜋 ) � E
𝜏∼𝜋

[ ∞∑︁
𝑡=0

𝛾⊤𝑅 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
]
, (1)

where 𝜏 denotes a trajectory, e.g., 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . ), and 𝜏 ∼
𝜋 indicates that the distribution over trajectories depends on 𝜋
: 𝑠0 ∼ `, 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ) , 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑡 ). We denote 𝑅(𝜏) as the

discounted rewards of a trajectory, the on-policy value function as
𝑉 𝜋 (𝑠) � E𝜏∼𝜋 [𝑅(𝜏) |𝑠0 = 𝑠], the on-policy action-value function as
𝑄𝜋 (𝑠, 𝑎) � E𝜏∼𝜋 [𝑅(𝜏) |𝑠0 = 𝑠, 𝑎0 = 𝑎], and the advantage function
as 𝐴𝜋 (𝑠, 𝑎) � 𝑄𝜋 (𝑠, 𝑎) −𝑉 𝜋 (𝑠).

3.2 Multi-Objective Markov Decision Processes
Multi-Objective Markov Decision Processes (MOMDP) are MDPs
with a vector-valued reward function r𝑡 = R(𝑠𝑡 , 𝑎𝑡 ), where each
component of r𝑡 corresponds to one certain objective. A scalariza-
tion function f maps the multi-objective value of a policy 𝜋 to a
scalar value. In this work, we consider the commonly-used class
of MOMDPs with linear preference functions, e.g., f𝝎 (R(𝑠, 𝑎)) =
𝝎 ·R(𝑠, 𝑎). It is worth noting that if 𝝎 is fixed to a single value, this
MOMDP collapses into a standard MDP. An optimal solution for
an MOMDP under linear f is a convex coverage set (CCS), e.g., a
set of undominated policies containing at least one optimal policy
for any linear scalarization.

3.3 Conditioned Network
Abels et al. [3] studied multi-objective reinforcement learning with
linear preferences and proposed a novel algorithm for learning a sin-
gle Q-network that is optimized over the entire space of preferences
in a domain. The main idea is called Conditioned Network (CN),
in which a Q-Network is augmented to output weight-dependent
multi-objective Q-value-vectors, as is shown in the right side of Fig.
1 (Conditioned Critic Network, where action and state represen-
tations together with weight vector are inputed to the network).
Besides, to promote quick convergence on the new weight vector’s
policy and to maintain previously learned policies, the authors up-
dated each experience tuple in a mini-batch with respect to the
current weight vector and a random previously encountered weight
vector. Specially, given a mini-batch of trajectories, they computed
the loss for a given trajectory (𝑠 𝑗 , 𝑎 𝑗 , r𝑗 , 𝑠 𝑗+1) as the sum of the loss
on the active weight vector 𝝎𝑡 and on 𝝎 𝑗 randomly sampled from
the set of encountered weights.

1
2

[���y( 𝑗)𝝎𝑡 − Q𝐶𝑁
(
𝑎 𝑗 , 𝑠 𝑗 ;𝝎𝑡

) ��� + ���y( 𝑗)𝝎 𝑗 − Q𝐶𝑁
(
𝑎 𝑗 , 𝑠 𝑗 ;𝝎 𝑗

) ���] (2)

y( 𝑗)𝝎 = r𝑗 + 𝛾Q−𝐶𝑁
(
argmax
𝑎∈𝐴

Q𝐶𝑁
(
𝑎, 𝑠 𝑗+1;𝝎

)
· 𝝎, 𝑠 𝑗+1;𝝎

)
(3)

where Q𝐶𝑁 (𝑎, 𝑠;𝝎) is the network’s Q-value-vector for action 𝑎
in state 𝑠 and with weight vector 𝝎. They claimed that training
the same sample on two different weight vectors has the added
advantage of forcing the network to identify that different weight
vectors can have different Q-values for the same state. A more
comprehensive review of MOMDPs and CN can be seen in [3].

In the original paper, the authors only proposed an algorithm
based on Double DQN with discrete action space, which is not
suitable for recommendation scenarios as the action space of rec-
ommendation is very large. Therefore, we modify the traditional
DDPG [42] by introducing conditioned network into its policy net-
work as well as critic network, andmore importantly, wemodify the
original loss functions for both of them. We choose DDPG as it is a
commonly adopted methods in RL, while our modification can be
generalized to other reinforcement learning methods, such as trust



region ploicy optimization. More details about our modification
will be introduced in Section 5.

4 PROBLEM FORMULATION
4.1 MOMDP for Recommendation
The recommendation agent will take the feature representation
of the current user and item candidates I as input, and generate
a list of items 𝐿 ∈ I𝐾 to recommend, where 𝐾 ≥ 1 after a user
sends a request to it at timestamp 𝑡 ∈ (𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, . . . ). User
𝑢 who has received the list of recommended items 𝐿 will give
feedback 𝐵 via clicking on this set of items, which can be used
to measure the recommendation performance. Besides, based on
the recommendation results, we will acquire the total number of
exposure for each item group𝐺 , which can later be used to measure
fairness. Thus, the state 𝑠 can be represented by user features (e.g.,
user’s recent click history), action 𝑎 is represented by items in
𝐿, reward r is the immediate reward vector after taking action 𝑎,
with each component of r corresponds to one certain objective
(e.g., whether user clicks on an item in 𝐿 for utility objective or
whether an item comes from predefined disadvantageous group for
fairness objective). The problem formulation is formally presented
as follows:
• State S: A state 𝑠𝑡 is the representation of user’s most recent
positive interaction history 𝐻𝑡 with the recommendation system,
together with his/her demographic information (if exists).
• Action A: An action 𝑎𝑡 = {𝑎1𝑡 , . . . , 𝑎𝐾𝑡 } is a recommendation
list with 𝐾 items to a user 𝑢 at time 𝑡 with current state 𝑠𝑡 .
• Vector Reward Function 𝒓 : A vector-valued reward function
r𝑡 = R(𝑠𝑡 , 𝑎𝑡 ), where each component of r𝑡 corresponds to one
certain objective. In this work, the reward vector includes two
elements: utility objective and fairness objective. The details of
the definition of our task-specific objectives will be introduced
in the following section.
• Scalarization function f : In this paper, we consider the class
of MOMDPs with linear preferences functions f, which is a
commonly-used scalarization function. Under this setting, each
objective is given a weight𝜔𝑖 , such that the scalarization function
becomes f𝝎 (R) = 𝝎 · R, where each 𝜔𝑖 ∈ [0, 1] and

∑
𝑖 𝜔𝑖 = 1.

• Discount rate 𝛾 : 𝛾 ∈ [0, 1] is a discount factor measuring the
present value of long-term rewards.
We aim to learn a policy 𝜋 , mapping from states to actions, to

generate recommendations that achieve the Pareto efficient trade-
off between fairness and utility.

4.2 Multi-Objectives in Fair Recommendation
The reward vector is designed to measure the recommendation
system’s gain regarding utility and fairness. While our method
is capable of dealing with multiple objectives simultaneously, for
simplicity we deliberately select click through rate and item (group)
exposure fairness as our two objectives recommendation utility
and item exposure fairness respectively.

4.2.1 Utility Objective. On one hand, given the recommendation
based on the action 𝑎𝑡 and the user state 𝑠𝑡 , the user will provide
feedback, e.g. click or purchase, etc. The recommender receives im-
mediate reward 𝑅𝑢 (𝑠𝑡 , 𝑎𝑡 ) according to the user’s positive feedback.

We also normalize the reward value by dividing 𝐾 , which is the
length of the recommendation list.

𝑅𝑢 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) =
∑𝐾
𝑙=1 𝟙(𝑎

𝑙
𝑡 gets positive feedback)

𝐾
(4)

4.2.2 Fairness Objective. On the other hand, based on the recom-
mendation list 𝑎𝑡 , the total number of exposure of each item group
will be counted and used to measure exposure fairness. Here, we
calculate the ratio of items from sensitive group to the total num-
ber of recommended items, and use a hinge loss with margin 𝛽 to
punish the abuse of fairness. Usually, we set 𝛽 to be the ratio of the
number of items in sensitive group to the total number of items.

𝑅𝑓 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = max

(∑𝐾
𝑙=1 𝟙(𝑎

𝑙
𝑡 𝑖𝑠 𝑖𝑛 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑔𝑟𝑜𝑢𝑝)

𝐾
, 𝛽

)
(5)

5 PROPOSED FRAMEWORK
5.1 The Conditioned Actor
The conditioned actor is almost the same as traditional actor ex-
cept that we condition the predictions of the policy network to
the preference vectors. Practically, we concatenate the state repre-
sentation 𝑠𝑡 with the vector 𝝎 and train a neural network on this
joint feature space, which is depicted in Fig. 1 (Conditioned Actor
Network). The conditioned actor 𝜋 parameterized by \𝜋 serves as a
stochastic policy that samples an action 𝑎𝑡 ∈ I𝐾 given the current
state 𝑠𝑡 ∈ R𝑚 of a user and the preference vector 𝝎.

First of all, we define 𝑠𝑡 as the concatenation of the user embed-
ding e𝑢 ∈ R𝑑 and their recent history embedding h𝑢 :

𝑠𝑡 = [e𝑢 ; h𝑢 ], (6)

where the recent history embedding h𝑢 = GRU(𝐻𝑡 ) is acquired by
encoding 𝑁 item embeddings via Gated Recurrent Units (GRU) [10],
and 𝐻𝑡 = {𝐻1

𝑡 , 𝐻
2
𝑡 , . . . , 𝐻

𝑁
𝑡 } denotes the most recent 𝑁 items from

user 𝑢’s interaction history. We define the user’s recent history is
organized as a queue with fixed length, and update it only if the
recommended item 𝑎𝑙𝑡 ∈ 𝑎𝑡 receives a positive feedback, which
ensures that the state can always represent the user’s most recent
interests.

𝐻𝑡+1 =

{
{𝐻 2
𝑡 , . . . , 𝐻

𝑁
𝑡 , 𝑎

𝑙
𝑡 } 𝑎𝑙𝑡 gets positive feedback

𝐻𝑡 Otherwise (7)

Secondly, we assume that the probability of actions conditioned
on states and preferences follows a continuous high-dimensional
Gaussian distribution. We also assume it has mean ` ∈ R𝐾𝑑 and
covariance matrix Σ ∈ R𝐾𝑑×𝐾𝑑 (only elements at diagonal are non-
zeros and there are actually 𝐾𝑑 parameters). In order to achieve
better representation ability, we approximate the distribution via a
deep neural network, which maps the encoded state 𝑠𝑡 and prefer-
ences 𝝎 to ` and Σ. Specifically, we adopt a Multi Layer Perceptron
(MLP) with tanh(·) as the non-linear activation function,

(`, Σ) = MLP(𝑠𝑡 ,𝝎). (8)

Once received ` and Σ, we sample a vector from the acquired
Gaussian distribution N(`, Σ) and convert it into a proposal ma-
trix𝑊 ∼ N(`, Σ) ∈ R𝐾×𝑑 , whose 𝑘-th row, denoted by𝑊𝑘 ∈ R𝑑 ,
represents an “ideal” embedding of a virtual item.



Figure 1: The architecture of the proposed MoFIR.

Finally, the probability matrix 𝑃 ∈ R𝐾×|I | of selecting the 𝑘-th
candidate item is given by 𝑃𝑘 = softmax(𝑊𝑘V⊤), 𝑘 = 1, . . . , 𝐾,
whereV ∈ R |I |×𝑑 is the embedding matrix of all candidate items.
This is equivalent to using dot product to determine similarity
between𝑊𝑘 and any item. As the result of taking the action at step
𝑡 , the actor recommends the 𝑘-th item as follows:

𝑎𝑘𝑡 = argmax
𝑖∈{1,...,|I |}

𝑃𝑘,𝑖 , ∀𝑘 = 1, . . . , 𝐾, (9)

where 𝑃𝑘,𝑖 denotes the probability of taking the 𝑖-th item at rank 𝑘 .

5.2 The Conditioned Critic
The conditioned critic ` also differs from the traditional critic in
that we concatenate the state representation 𝑠𝑡 with the vector 𝝎 as
well as the embedding of action 𝑎𝑡 , and require the output to be a Q-
value-vector with the size equal to the number of objectives, which
is depicted in Fig. 1 (Conditioned Critic Network). The conditioned
critic ` is parameterized with \` and is constructed to approxi-
mate the true state-action value vector function Q𝜋 (𝑠𝑡 , 𝑎𝑡 ,𝝎) and
is used in the optimization of the actor. Following Eq. 2 introduced
in conditioned network [3], the conditioned critic network is up-
dated according to temporal-difference learning that minimizes the
following loss function:

L(\` ) = E𝑠,𝑎,𝝎
[
∥y𝑡 − Q𝑡 (𝑠, 𝑎,𝝎;\` ) ∥22

]
(10)

where y𝑡 = r𝑡 + 𝛾Q𝜔 (𝑠𝑡+1, 𝑎𝑡+1,𝝎;\` ).

5.3 Parameters Training Procedure of MoFIR
We present the detailed training procedure of our proposed model,
MoFIR, in Algorithm 1 and the model architecture in Fig. 1. As men-
tioned before, we modify traditional single-objective DDPG into
multi-objective DDPG by introducing the conditioned networks to
both its actor network and critic network. In each episode, there are
two phases — the trajectory generation phase (line 15-20) andmodel
updating phase (line 22-32). In the trajectory generation phase, we
sample one linear preference 𝝎0 and fix it to generate user-item in-
teraction trajectories. Then in the model updating phase, we sample
anotherN𝜔 preferences together with𝝎0 to update the conditioned
actor network and the conditioned critic network. Here, we do not

follow the original setting in [3], which only uses one more ran-
dom sampled preference vector, as Yang et al. [52] observed that
increasing the number of sampled preference vectors can further
improve the coverage ratio of RL agent and diminish the adaptation
error in their experiments.

6 EXPERIMENTS
In this section, we first introduce the datasets, the comparison
baselines, then discuss and analyse the experimental results.

6.1 Dataset Description
To evaluate the models under different data scales, data sparsity
and application scenarios, we perform experiments on three real-
world datasets. Some basic statistics of the experimental datasets
are shown in Table 1.
• Movielens:We choose Movielens100K 1, which includes about
one hundred thousand user transactions, respectively (user id,
item id, rating, timestamp, etc.).
• Ciao: Ciao was collected by Tang et al. [45] from a popular
product review site, Epinions, in the month of May, 20112. For
each user, they collected user profiles, user ratings and user trust
relations. For each rating, they collected the product name and
its category, the rating score, the time point when the rating is
created, and the helpfulness of this rating.
• Etsy: We collect a few weeks of user-item interaction data on a
famous e-commerce platform, Etsy. For each record, we collect
user id, item id and timestamp. Since the original data is sparse,
we filter out users and items with fewer than twenty interactions.
For each dataset, we first sort the records of each user based

on the timestamp, and then split the records into training and
testing sets chronologically by 4:1. The last item in the training
set of each user is put into the validation set. Since we focus on
item exposure fairness, we need to split items into two groups 𝐺0
and 𝐺1 based on item popularity. It would be desirable if we have
the item impression/listing information and use it to group items,
however, since Movielens and Ciao are public dataset and only have
1https://grouplens.org/datasets/Movielens/
2https://www.cse.msu.edu/ tangjili/datasetcode/truststudy.htm

https://grouplens.org/datasets/Movielens/


Algorithm 1:Multi-Objective DDPG Algorithm
1 Input:
2 A preference sampling distribution 𝐷𝜔 ;
3 A multi-objective critic network ` parameterized by \` ;
4 An actor network 𝜋 parameterized by \𝜋 ;
5 Pre-trained user embeddings U and item embeddings V .
6 Output:
7 Parameters \𝜋 , \` of the actor network and critic network.
8 Initialization:
9 Randomly initialize \𝜋 and \` ;

10 Initialize target network `′ and 𝜋 ′ with weights
\𝜋 ′ ← \𝜋 , \` ′ ← \` ;

11 Initialize replay buffer 𝐷 .
12 for Episode = 1 ... 𝑀 do
13 Initialize user state 𝑠0 from log data;
14 Sample a linear preference 𝝎0 ∼ 𝐷𝜔 ;
15 for 𝑡 = 1 ... 𝑇 do
16 Observe current state, represent it as 𝑠𝑡 based on Eq. (6);
17 Select an action 𝑎𝑡 ∈ I𝐾 using actor network 𝜋 based on

Eq. (9)
18 Calculate utility reward and fairness reward and get the

multi-objective reward vector r𝑡 according to
environment feedback based on Eq. (4) and Eq. (5);

19 Update 𝑠𝑡+1 based on Eq. (6);
20 Store transition (𝑠𝑡 , 𝑎𝑡 , r𝑡 , 𝑠𝑡+1) in 𝐷 .
21 end
22 if update then
23 Sample minibatch of N trajectories T from 𝐷 ;
24 Sample N𝜔 preferences W = {𝝎1,𝝎2, . . . ,𝝎𝑁𝜔 } ∼ 𝐷𝜔 ;
25 Append 𝝎0 toW;
26 Select an action 𝑎′ ∈ I𝐾 using actor target network 𝜋 ′;
27 Set y = r + 𝛾Q′ (𝑠′, 𝑎′,𝝎;\` ′) ,𝝎 ∈ W
28 Update critic by minimizing ∥y − Q (𝑠, 𝑎,𝝎;\` ) ∥22

according to:

∇\` L ≈
1
NN𝜔

[
(y − Q (𝑠, 𝑎,𝝎;\` ))𝑇 ∇\`Q (𝑠, 𝑎,𝝎;\` )

]
29 Update the actor using the sampled policy gradient:

∇\𝜋 𝜋 ≈
1
NN𝜔

∑︁
𝑖

𝝎𝑇 ∇𝑎Q (𝑠, 𝑎,𝝎;\` ) ∇\𝜋 𝜋 (𝑠,𝝎)

30 Update the critic target networks:

\`
′ ← 𝜏\` + (1 − 𝜏)\` ′

31 Update the actor target networks:

\𝜋
′ ← 𝜏\𝜋 + (1 − 𝜏)\𝜋 ′

32 end
33 end

Table 1: Basic statistics of the experimental datasets.

Dataset #users #items #act./user #act./item #act. density

Movielens100K 943 1682 106 59.45 100,000 6.305%
Ciao 2248 16861 16 2 36065 0.095%
Etsy 1030 945 47 51 48080 4.940%

interaction data, we use the number of interaction to group items
in them. Specifically, for Movielens and Ciao, the top 20% items in

terms of number of interactions belong to the popular group 𝐺0,
and the remaining 80% belong to the long-tail group 𝐺1, while for
Etsy data, we additionally collect the listing impressions per month
for each item and group items based on this.

Moreover, for RL-based methods, we set the initial state for each
user during training as the first five clicked items in the training
set, and the initial state during testing as the last five clicked items
in the training set. We also set the RL agent recommend ten items
to a user each time.

6.2 Experimental Setup
6.2.1 Baselines: We compare our proposed method with the fol-
lowing baselines, including both traditional and reinforcement
learning based recommendation models.
• MF: Collaborative Filtering based on matrix factorization [24]
is a representative method for rating prediction. However, since
not all datasets contain rating scores, we turn the rating predic-
tion task into ranking prediction. Specifically, the user and item
interaction vectors are considered as the representation vector
for each user and item.
• BPR-MF: Bayesian Personalized Ranking [38] is one of the most
widely used ranking methods for top-K recommendation, which
models recommendation as a pair-wise ranking problem. In the
implementation, we conduct balanced negative sampling on non-
purchased items for model learning.
• NGCF: Neural Graph Collaborative Filtering [46] is a neural
network-based recommendation algorithm, which integrates the
user-item interactions into the embedding learning process and
exploits the graph structure by propagating embeddings on it to
model the high-order connectivity.
• LIRD: The original paper for List-wise recommendation based
on deep reinforcement learning (LIRD) [57] utilized the concate-
nation of item embeddings to represent the user state, and the
actor will provide a list of K items as an action.
We also include two state-of-the-art fairness frameworks to show

the fairness performance of our proposed method.
• FOE: Fairness of Exposure in Ranking (FOE) [43] is a type of post-
processing algorithm incorporating a standard linear program
and the Birkhoff-von Neumann decomposition. It is originally
designed for searching problems, so we follow the same modifi-
cation method mentioned in [16, 47], and use ranking prediction
model such as MF, BPR, and NGCF as the base ranker, where
the raw utility is given by the predicted probability of user 𝑖
clicking item 𝑗 . In our experiment, we haveMF-FOE, BPR-FOE
and NGCF-FOE as our fairness baselines. Since FOE assumes
independence of items in the list, it cannot be applied to LIRD,
which is a sequential model and the order in its recommendation
makes a difference.
• MFR: Multi-FR (MFR) [47] is a generic fairness-aware recom-
mendation framework with multi-objective optimization, which
jointly optimizes fairness and utility for two-sided recommen-
dation. In our experiment, we only choose its item popularity
fairness. We also modify it as the original fairness considers posi-
tion bias as well, which is not the same setting as ours. Finally, we
have MF-MFR, BPR-MFR and NGCF-MFR. For same reason
as FOE, we do not include LIRD as well.



Table 2: Summary of the performance on three datasets.We evaluate for ranking (𝑅𝑒𝑐𝑎𝑙𝑙 , 𝐹1 and𝑁𝐷𝐶𝐺 , in percentage (%) values,
% symbol is omitted in the table for clarity) and fairness (𝐾𝐿 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 and 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑅𝑎𝑡𝑒, also in % values), while 𝐾 is the
length of recommendation list. Bold scores are used when MoFIR is the best, while underlined scores indicate the strongest
baselines. When MoFIR is the best, its improvements against the best baseline are significant at p < 0.01.

Methods Recall (%) ↑ F1 (%) ↑ NDCG (%) ↑ KL (%) ↓ Popularity Rate (%) ↓
K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

Movielens-100K

MF 1.422 2.713 5.228 2.019 3.016 4.127 3.561 3.830 4.705 229.124 224.390 215.772 99.745 99.258 98.224
BPR-MF 1.304 3.539 8.093 1.824 3.592 5.409 3.025 3.946 5.787 230.531 230.531 229.464 99.873 99.873 99.777
NGCF 1.995 3.831 6.983 2.846 4.267 5.383 5.319 5.660 6.510 232.193 232.193 232.193 100.000 100.000 100.000
LIRD 2.798 6.586 13.711 3.198 4.850 5.855 4.583 6.217 8.840 209.845 193.918 176.644 97.434 95.058 92.121

MF-FOE 1.164 2.247 4.179 1.739 2.730 3.794 3.520 3.796 4.367 181.000 175.355 170.444 92.895 91.888 90.981
BPR-FOE 0.974 2.053 4.404 1.496 2.568 3.933 3.127 3.514 4.332 176.938 172.465 168.952 92.174 91.357 90.700
NGCF-FOE 1.193 1.987 4.251 1.759 2.398 3.698 4.033 3.897 4.633 232.193 232.193 232.193 100.000 100.000 100.000

MF-MFR 1.546 2.807 5.422 2.019 3.016 4.127 3.276 3.613 4.571 100.590 96.620 85.420 74.867 73.743 70.419
BPR-MFR 1.418 2.811 6.155 2.019 3.016 4.127 3.522 3.822 5.047 165.897 155.339 137.663 90.117 88.017 84.205
NGCF-MFR 1.456 2.900 6.570 2.846 4.267 5.383 3.041 3.472 4.928 212.497 202.306 185.518 97.794 96.352 93.674

MoFIR-1.0 6.580 12.753 22.843 5.658 7.178 7.858 8.026 10.848 14.683 232.193 232.193 232.193 100.000 100.000 100.000
MoFIR-0.5 4.679 9.520 19.918 4.438 5.808 7.421 6.633 9.300 14.370 173.672 170.303 162.386 91.580 90.954 89.433
MoFIR-0.1 0.323 0.781 1.550 0.521 1.008 1.483 1.251 1.404 1.598 0.795 0.608 0.306 24.305 23.754 22.646

Ciao

MF 0.518 1.938 3.100 0.395 0.687 0.599 0.408 0.924 1.264 81.154 65.458 47.848 69.088 63.835 57.098
BPR-MF 1.087 2.204 4.607 0.677 0.770 0.858 0.776 1.181 1.900 119.307 100.884 82.717 79.826 74.949 69.580
NGCF 1.721 2.816 4.380 1.056 0.958 0.783 1.670 2.027 2.450 142.025 96.789 59.561 85.181 73.792 61.693
LIRD 0.766 2.448 3.599 0.554 1.082 0.921 1.393 2.638 3.277 65.744 105.507 64.888 63.936 76.223 63.632

MF-FOE 0.685 1.208 1.914 0.458 0.474 0.396 0.475 0.669 0.864 19.720 11.167 7.622 43.068 37.033 33.915
BPR-FOE 1.442 2.111 3.693 0.812 0.663 0.731 0.934 1.154 1.657 55.999 46.858 40.626 60.347 56.686 53.987
NGCF-FOE 1.234 1.907 2.903 0.651 0.583 0.566 0.937 1.156 1.477 79.313 74.038 71.335 43.357 34.226 30.391

MF-MFR 0.307 0.619 1.281 0.395 0.687 0.599 0.237 0.345 0.535 0.185 0.096 0.068 18.003 18.553 18.784
BPR-MFR 1.146 1.962 2.667 0.395 0.687 0.599 1.011 1.314 1.534 4.303 2.540 1.454 30.304 27.829 25.868
NGCF-MFR 1.284 2.131 4.033 1.056 0.958 0.783 1.014 1.342 1.901 37.133 20.302 10.515 52.388 43.430 36.498

MoFIR-1.0 2.162 3.867 5.866 1.626 1.513 1.323 4.000 4.764 5.813 181.742 156.545 123.213 93.025 88.263 80.796
MoFIR-0.5 1.254 2.665 4.122 0.845 0.971 0.879 2.031 2.724 3.490 19.077 12.750 8.032 42.663 38.278 34.305
MoFIR-0.1 0.892 1.610 2.338 0.557 0.532 0.445 1.054 1.311 1.576 0.054 0.010 0.484 21.100 19.522 16.795

Etsy

MF 2.693 5.581 10.348 2.917 4.176 4.912 3.438 4.671 6.681 190.410 190.173 186.243 94.491 94.452 93.797
BPR-MF 3.113 5.850 11.704 3.309 4.320 5.385 3.700 4.880 7.341 179.815 176.447 169.740 92.687 92.085 90.849
NGCF 3.414 6.026 11.746 3.674 4.498 5.406 4.180 5.238 7.610 194.985 185.756 175.403 95.228 93.715 91.896
LIRD 7.163 12.176 24.056 4.158 4.493 4.967 6.587 9.289 13.833 212.890 197.336 166.047 97.847 95.597 90.145

MF-FOE 1.382 2.436 4.515 1.641 2.160 2.704 2.111 2.482 3.318 42.682 29.960 22.502 54.898 48.865 44.758
BPR-FOE 1.503 2.808 5.513 1.802 2.468 3.132 2.328 2.783 3.844 43.394 30.734 23.390 55.209 49.263 45.276
NGCF-FOE 1.958 3.135 5.478 2.227 2.593 2.923 2.705 3.106 4.024 47.548 30.829 21.678 56.974 49.311 44.268

MF-MFR 2.482 5.150 10.279 2.917 4.176 4.912 3.265 4.504 6.671 173.889 158.030 134.564 91.620 88.565 83.497
BPR-MFR 2.510 4.849 9.711 2.917 4.176 4.912 3.144 4.110 6.206 136.319 120.661 94.153 83.899 80.165 73.031
NGCF-MFR 2.325 4.146 7.946 3.558 4.820 5.616 2.994 3.636 5.210 104.348 91.557 74.402 75.907 72.270 66.901

MoFIR-1.0 6.690 13.871 24.728 4.833 5.932 6.238 9.183 13.629 19.822 139.319 134.627 129.318 84.578 83.511 82.270
MoFIR-0.5 5.333 10.342 19.383 3.460 3.979 4.218 4.626 6.614 9.798 70.154 67.961 64.956 65.470 64.714 63.657
MoFIR-0.1 1.340 2.966 5.864 1.151 1.641 1.895 1.778 2.839 4.425 0.569 0.545 0.396 23.628 23.550 23.016

We implement MF, BPR-MF, NGCF, MF-FOE, BPR-FOE, NGCF-
FOE, MF-MFR BPR-MFR and NGCF-MFR using Pytorch with Adam
optimizer. For all of them, we consider latent dimensions 𝑑 from
{16, 32, 64, 128, 256}, learning rate 𝑙𝑟 from {1e-1, 5e-2, 1e-2, . . . , 5e-4,
1e-4}, and the L2 penalty is chosen from {0.01, 0.1, 1}. We tune the
hyper-parameters using the validation set and terminate training
when the performance on the validation set does not change within
5 epochs. Further, since the FOE-based methods needs to solve a
linear programming with size |I | × |I|for each consumer, which
brings huge computational costs, we rerank the top-200 items from

the base model then select the new top-K (K<100) as the final rec-
ommendation. Similarly, we implement MoFIR with 𝑃𝑦𝑡𝑜𝑟𝑐ℎ. We
first perform basic MF to pretrain 16-dimensional user and item
embeddings, and fix them through training and test. We set |𝐻𝑡 | = 5,
and use two GRU layers to get the state representation 𝑠𝑡 . For the
actor network and the critic network, we use two hidden layer MLP
with tanh(·) as activation function. Finally, we fine-tune MoFIR’s
hyper-parameters on our validation set. In order to examine the
trade-off between performance and fairness, we use different level
of preference vectors in test. Since MoFIR is able to approximate all
possible solutions of the Pareto frontier, we simply input different



(a) NDCG vs Long-tail Rate on ML100K (b) NDCG vs Long-tail Rate on Ciao (c) NDCG vs Long-tail Rate on Etsy

Figure 2: Approximate Pareto frontier in three datasets generated by MoFIR and NGCF-MFR, where 𝑥-axis represents the
𝐿𝑜𝑛𝑔𝑡𝑎𝑖𝑙 𝑅𝑎𝑡𝑒@20 (𝐿𝑜𝑛𝑔𝑡𝑎𝑖𝑙 𝑅𝑎𝑡𝑒 equals to one minus 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑅𝑎𝑡𝑒) and 𝑦-axis represents the value of 𝑁𝐷𝐶𝐺@20.

preference vetors 𝝎 into the trained model to get variants of MoFIR
and denote the resulting alternatives as MoFIR-1.0, MoFIR-0.5,
andMoFIR-0.1, where the scalar is the weight on the recommen-
dation utility objective.

6.2.2 Evaluation Metrics: We select several most commonly
used top-K ranking metrics to evaluate each model’s recommenda-
tion performance, includingRecall, F1 Score, andNDCG. For fair-
ness evaluation, we define Popularity Rate, which simply refers
to the ratio of the number of popular items in the recommenda-
tion list to the total number of items in the list. We also employ
KL-divergence (KL) to compute the expectation of the difference
between protected group membership at top-K vs. in the over-all
population, where 𝑑𝐾𝐿 (𝐷1 | |𝐷2) =

∑
𝑗 𝐷1 ( 𝑗) ln 𝐷1 ( 𝑗)

𝐷2 ( 𝑗) with 𝐷1 rep-
resents the true group distribution between 𝐺0 and 𝐺1 in top-K
recommendation list, and 𝐷2 = [ |𝐺0 |

|I | ,
|𝐺1 |
|I | ] represents their ideal

distribution of the overall population.

6.3 Experimental Results
The major experimental results are shown in Table 2, besides, we
also plot the approximate Pareto frontier between NDCG and Long-
tail Rate (namely, 1-Popularity Rate) in Fig. 2. We analyze and
discuss the results in terms of the following perspectives.

6.3.1 Recommendation Performance. For recommendation perfor-
mance, we compare MoFIR-1.0 with MF, BPR, NGCF, and LIRD
based on 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , 𝐹1@𝑘 and 𝑁𝐷𝐶𝐺@𝑘 and provide the these
results of the recommendation performance in Table 2. Among all
the baseline models, we can see that all sequential recommenda-
tion methods (LIRD, MoFIR-1.0) are much better than the tradi-
tional method, which demonstrates the superiority of sequential
recommendation on top-K ranking tasks. Specifically, LIRD is the
strongest baseline in all three datasets on all performance metrics:
when averaging across recommendation lengths LIRD achieves
41.28% improvement than MF, 27.08% improvement than BPR-MF,
and 8.97% improvement than NGCF.

Our MoFIR approach achieves the best top-K recommendation
performance against all baselines on all datasets: when averaging
across three recommendation lengths on all performance metrics,

MoFIR gets 41.40% improvement than the best baseline on Movie-
lens100K; MoFIR gets 46.45% improvement than LIRD on Ciao; and
MoFIR gets 18.98% improvement than LIRD on Etsy. These above
observations imply that the proposed method does have the ability
to capture the dynamic nature in user-item interactions, which re-
sults in better recommendation results. Besides, unlike LIRD, which
only concatenates user and item embeddings together, MoFIR uses
several GRU layers to better capture the sequential information in
user history, which benefits the model performance.

6.3.2 Fairness Performance. For fairness performance, we compare
MoFIRs with FOE-based methods andMFR-based methods based on
𝐾𝐿 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒@𝑘 and 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑅𝑎𝑡𝑒@𝑘 , which are also shown
in Table 2. It is easy to find that there does exist a trade-off between
the recommendation performance and the fairness performance,
which is understandable, as most of the long-tail items have rela-
tively fewer interactions with users. When comparing the baselines,
we can easily find that MFR is able to achieve better trade-off than
FOE as it is also a multi-objective optimization method.

From Table 2, MoFIR is able to adjust the degree of trade-off
between utility and fairness through simply modifying the weight
of recommendation utility objective. It is worth noting that MoFIR-
0.1 can always closely achieve the ideal distribution as its 𝐾𝐿s are
close to zero. In Table 2, we can find that even MoFIR has the similar
performance of fairness with other baselines, it can still achieve
much better recommendation performance (for example, BPR-FOE
and MoFIR-0.5 in Movielens100k or NGCF-FOE and MoFIR-0.5
in Ciao or MF-MFR and MoFIR-0.5 in Etsy), which indicates its
capability of finding better trade-off.

6.3.3 Fairness-Utility Trade-off. We only compare MoFIR with
MFR, since FOE is a post-processing method, which doesn’t opti-
mize the fairness-utility trade-off. In order to better illustrate the
trade-off between utility and fairness, we fix the length of the rec-
ommendation list at 20 and plot 𝑁𝐷𝐶𝐺@20 against 𝐿𝑜𝑛𝑔𝑡𝑎𝑖𝑙 𝑅𝑎𝑡𝑒
in Fig. 2 for all datasets, where 𝐿𝑜𝑛𝑔𝑡𝑎𝑖𝑙 𝑅𝑎𝑡𝑒 equals to one minus
𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑅𝑎𝑡𝑒 . Each blue point is generated by simply chang-
ing the input weights to the fine-tuned MoFIR, while each orange
point is generated by running the entire MFR optimization. The
clear margin distance between the blue points’ curve (Approximate



Pareto frontier) and the orange points’ curve demonstrates the great
effectiveness of MORL compared with traditional multi-objective
optimization method in recommendation.

7 CONCLUSION
In this work, we achieve the approximate Pareto efficient trade-
off between fairness and utility in recommendation systems and
characterize their Pareto Frontier in the objective space in order to
find solutions with different level of trade-off. We accomplish the
task by proposing a fairness-aware recommendation framework
using multi-objective reinforcement learning (MORL) with linear
preferences, called MoFIR, which aims to learn a single paramet-
ric representation for optimal recommendation policies over the
space of all possible preferences. Experiments across three differ-
ent datasets demonstrate the effectiveness of our approach in both
fairness measures and recommendation performance.
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