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ABSTRACT

Understanding the economic nature of consumer decisions in e-
Commerce is important to personalized recommendation systems.
Established economic theories claim that informed consumers al-
ways attempt to maximize their utility by choosing the items of
the largest marginal utility per dollar (MUD) within their budget.
For example, gaining 5 dollars of extra benefit by spending 10 dol-
lars makes a consumer much more satisfied than having the same
amount of extra benefit by spending 20 dollars, although the sec-
ond product may have a higher absolute utility value. Meanwhile,
making purchases online may be risky decisions that could cause
dissatisfaction. For example, people may give low ratings towards
purchased items that they thought they would like when placing
the order. Therefore, the design of recommender systems should
also take users’ risk attitudes into consideration to better learn
consumer behaviors.

Motivated by the first consideration, in this paper, we propose
a learning algorithm to maximize marginal utility per dollar for
recommendation. With the second, economic theory shows that ra-
tional people can be arbitrarily close to risk neutral when stakes are
arbitrarily small, and this is generally applicable to consumer online
purchase behaviors because most people spend a small portion of
their total wealth for a single purchase. To integrate this theory with
machine learning, we propose to augment MUD optimization with
approximate risk-neural constraint to generate personalized recom-
mendations. Experiments on real-world e-Commerce datasets show
that our approach is able to achieve better performance than many
classical recommendation methods, in terms of both traditional
recommendation measures such as precision and recall, as well as
economic measures such as MUD.
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1 INTRODUCTION

Because of the significant information overload in the Web envi-
ronment, designing personalized recommendation systems is im-
portant to help users find relevant items efficiently. On one hand, it
helps to save the exploration time for consumers, and on the other
hand, it helps to improve the revenue of various online economic
platforms. Traditional recommendation algorithms mostly focus on
optimizing rating- or ranking-oriented measures. For example, rat-
ing prediction algorithms such as matrix factorization [10, 12, 23]
or neural approaches [27] devise models to optimize for the pre-
diction accuracy in terms of RMSE, while top-N recommendation
algorithms such as pair-wise learning to rank [7, 20, 28] propose
models to optimize for ranking performance in terms of Precision,
Recall, F1 and NDCG, etc.

However, previous recommendation algorithms seldom consider
users’ economic incentives when modeling the user behaviors
and generating recommendations. Actually, consumers’ economic
incentives play an important role when making decisions in on-
line economic systems such as e-Commerce. By integrating well-
established behavioral economic principles and machine learning
algorithms, it is possible to develop economics-driven recommender
systems so as to make informed recommendations. Therefore, in
this paper, we propose to maximize the marginal utility per dollar
for economic recommendation. According to behavioral economic
theories, rational consumers would always attempt to maximize
their utility out of the purchased products by choosing the items
that have the largest Marginal Utility per Dollar (MUD) within their
budget. The underlying intuition is that consumers would like to
spend their money in an efficient way, so that every spent dollar
should bring the maximum marginal utility. Meanwhile, making
purchasing decisions online involves potential risks of dissatisfac-
tion. A common observation in practical systems is that people
may spend money to purchase an item that they think will match
their preference when placing the order, but they may eventually
find themselves unsatisfied with the decision when the item is re-
ceived, and will thus make lower ratings towards the item. As a
result, an informed recommendation system should be able to in-
corporate risk attitude into the model. Fortunately, when integrated
with machine learning, established economic principles can help to
model the risk attitudes of user decisions based on large-scale user
transaction logs.
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In this work, we introduce users’ risk attitudes into the economic
modeling of recommendation systems. In particular, we simulate
the risk distribution of each item based on its rating distribution,
and by jointly optimizing the marginal utility per dollar under
approximate risk neutral constraint, our model learns to predict
the consumer decisions with risk-awareness. Experiments based on
real-world e-Commerce datasets verify that our approach not only
achieves better recommendation performance in terms of precision
and recall than both shallow and deep baselines, but also achieves
better economic performance in terms of the marginal utility per
dollar, which means that our recommendation results would help
consumers to spend their money in a more efficient way.

The key contributions of the paper can be summarized as follows:

e We propose to conduct marginal utility per dollar maximiza-
tion for economic recommendation, which is consistent with
established behavioral economic principles, and helps users
to spend their money more efficiently.

o We take consumers’ risk-attitude into consideration for eco-
nomic recommendation, which better simulates the real-
world online economic environment, where users have to
make decisions under potential risks of dissatisfaction.

o We design a joint learning framework to maximize the util-
ity per dollar under risk constraints. Experimental results
on several real-world e-commerce datasets show that our
approach not only achieves better performance than both
shallow and neural recommendation baselines, but also im-
proves the economic measures in terms of money efficiency.

The following parts of the paper will be organized as follows:
we review the related work in section 2, and then introduce the
necessary economics preliminary knowledge in section 3 to help
readers better understand the background. The proposed model
and recommendation strategy are introduced in section 4, followed
by the experimental results in section 5. We finally conclude the
work with possible future research directions in section 6.

2 RELATED WORK
2.1 Collaborative Filtering

Collaborative Filtering (CF) has been an important approach to rec-
ommender systems. Early approaches to CF consider the user-item
rating matrix and conduct rating prediction with user-based [9, 21]
or item-based [14, 24] collaborative filtering methods. With the
development of dimension reduction methods, latent factor models
such as matrix factorization are later widely adopted in recom-
mender systems, such as singular value decomposition [11], non-
negative matrix factorization [13], probabilistic matrix factorization
[16], localized matrix factorization [29], etc. In these approaches,
each user and item is learned as a latent factor representation to
calculate the matching score of the user-item pairs.

Recently, the development of deep learning and neural networks
has further extended collaborative filtering methods for recommen-
dation. The relevant methods can be broadly classified into two
sub-categories: similarity learning approach, and representation
learning approach. The similarity learning approach adopts simple
user/item representations (such as one-hot) and learns a complex
prediction network as the similarity function to calculate user-item
matching scores [8], while the representation learning approach

learns rich user/item representations and adopts a simple similarity
function (e.g., inner product) for matching score calculation [28].
Another important research direction is learning to rank for
recommendation, which learns the relative ordering of items instead
of the absolute preference scores. The most representative method
on this direction is perhaps Bayesian personalized ranking [20],
which is a pair-wise learning to rank method. It is also further
generalized to take other information sources such as images [7].

2.2 Economic Recommendation

For along time, recommendation system research has been working
on the above mentioned rating- or ranking-related tasks such as
rating prediction and top-N recommendation. However, the related
methods seldom consider the economic value that a recommenda-
tion list brings to the user or the system, although this is one of
the most important goals for real-world recommendation systems.
Some recent research on economic recommendation has begun
to take care of the economic value of personalized recommenda-
tion. For example, [26] studied user’s sense of value in terms of
utility in recommender systems, and [31] conducted large-scale
experiment with real-world users to validate the consumer sense of
utility for personalized promotion. [30] further bridged economic
principles and machine learning to maximize the social surplus
for recommendation, [32] proposed to learn the substitutive and
complementary relations between products for utility maximiza-
tion, and [18] proposed value-aware recommendation for profit
maximization based on reinforcement learning. Although current
economic recommendation approaches may improve the economic
value, their basic motivation is to maximize a total utility function
for each user to generate recommendations. However, established
behavioral economic principles show that consumers tend to rely
on the marginal utility per dollar to make purchasing decisions
so as to improve their money efficiency [4, 22], which motivates
us to estimate and maximize the marginal utility per dollar for
economics-driven recommender systems.

3 PRELIMINARIES
3.1 Utility and Marginal Utility

Utility is an economic measure to quantify consumer’s pleasure
or satisfaction towards some items. Basically, it is widely used to
analyze the human behavior in rational choice theory [3]. Utility is
usually a function of the consumption quantity Q, which measures
the total utility of consuming Q services of a certain product. Among
the many different forms of utility functions, the most fundamental
and frequently used one is the King-Plosser-Rebelo (KPR) Utility:

Ukpr(x) = ax In(1 + Qx), (1)

where Qy is the consumption quantity of item x, and ay is a scale
parameter that could be different for diffident users, which means
that people may have different utility even for the same amount of
the same product, because of their different personalized preference.

Marginal Utility (MU) is the increment of utility gained from
purchasing one extra unit of a product. It can be defined as the first
derivative of the utility function, which is,

dx @)

MUgpRr(x) = 170
X



3.2 Expected Utility and Utility of Expectation

Expected utility, also known as the Von Neumann-Morgenstern
(VNM) utility, is a basic concept in economics, game theory and deci-
sion theory to measure user preference in uncertain circumstances.
When an individual has to make a decision under uncertainty, it is
rational to make a choice with the highest expected utility [5, 25].

Assuming that U is the utility function for random variable X,
then the expected utility (EU) is EU(X) = Y xex U(x)P(x). Mean-
while, the utility of expectation is the utility of the expected value
of random variable X, which is U(EX) = U ( Yxex xP(x)). In this

paper, we use the rating distribution of an item to estimate the
probability distribution P(x) for the item.

3.3 Marginal Utility per Dollar (MUD)

In rational choice theory, the condition where a consumer’s total
utility reaches its maximum is called the consumer equilibrium,
which means that the consumer would not purchase either more or
less products. The equilibrium condition can be defined as follows,

P1Q1 +p2Q2+ - +pnQn =1 (3
MU MU MUy _ “
p1 P2 Pn

where Q; is the purchasing quantity of product i; p; is the price of
i; I is the budget (or ‘income’ in economics); MUj is the marginal
utility of i; A is called the marginal utility of money, which is a
constant value at the equilibrium [17, 22]. Based on the above KPR
utility function, we can also get the functional form of marginal
utility per dollar (MUD) as follows,
Aax

(1+ Qx)px

Intuitively, rational choice and consumer equilibrium means that
when deciding which item to buy, users will always choose the one
that makes the best use of their money. However, after an item is
purchased, its marginal utility (and thus MUD) will diminish, which
means that the next optimal choice could be another item. This
process will iterate until equilibrium, where MUDs of all items are
at the same level that equals the marginal utility of money 1. More
intuitively, at the consumer equilibrium condition, the marginal
utility of purchasing any product with the remaining money will
be less than the marginal utility of the remaining money itself, so
the consumer will stop buying any product. In this work, we use
sigmoid-normalized price o(px) in Eq.(5) for easier optimization.

MUDgppgr(x) = (5)

3.4 Risk Attitude

Risk usually exists when people make decisions under uncertainty.
In recommender systems, users never know for sure if they will sat-
isfy with a product or not. Different people have different attitudes
towards risk. Let X be a random quantity, whose expected value is
EX = Y ex xp(x) (or EX = f xp(x)dx for continuous cases), then
we define utility of expectation as U(EX). Generally, risk attitudes
can be divided into three categories, depending on the relationship
between the expected utility and utility of expectation.

Risk Aversion implies that the expected utility is less than the
utility of expectation, as in Figure 1(a), EU(X) < U(EX). A risk
aversion person always tries to avoid risks.

Risk Appetite means that the expected utility is greater than
the utility of expectation, as in Figure 1(b), EU(X) > U(EX). A
risk appetite person prefers to maximize the profits even with
considerable risk.

Risk Neutral implies that the expected utility is equal to the
utility of expectation, as in Figure 1(c), which means that a person
keep neutral in face of risks, EU(X) = U(EX).

For example, suppose there are two choices in a gamble, one is to
win either $100 or $0 with 50% probability each, and the other choice
is to get $50 with 100% probability. Though the expected utility of
both choices are the same ($50), user’s utility of expectation can be
different because of their different risk preferences.

In this paper, our model is based on an economic assumption
that the risk attitudes of all the consumers is approximately risk-
neutral, which means that the optimization algorithm attempts to
minimize the difference between EU(X) and U(EX). Theoretical
basis of this assumption comes from classical economic theorem
on expected utility [1, 2, 19], which shows that a rational person
with a differentiable utility function will always prefer to take a
sufficiently small stake in any positive-expected-value bet. In other
words, rational persons can be (almost everywhere) arbitrarily close
to risk neutral when stakes are sufficiently small. Since most people
only spend a small part of their assets purchasing an item online,
this theorem is suitable for e-Commerce recommendation scenarios.

4 THE FRAMEWORK
4.1 The Personalized MUD Function

Different users may have different marginal utility functions, which
represent their personalized preferences towards different items.
In order to leverage MUD optimization for personalized recom-
mendation, we need to adapt the (non-personalized) MUD function
in Eq.(5) to personalized settings. First, the parameter ay in Eq.(5)
only depends on the product x instead of a particular user-item pair.
To solve the problem, we substitute a, with a;;, where i indicates
the i-th user, and j indicates the j-th item. Besides, an important
information in recommendation systems is the user-item rating,
which contains rich signals about the consumer preference on tar-
geted items. Usually, higher rating scores for a user-item pair imply
higher consumer satisfaction, thus brings higher MUD. As a result,
we introduce the rating scores into the MUD function. Finally, the
personalized MUD function is defined as:

tanh(f,-j)a,-j

Mij(Fij, Qij) = (1+Qij)a(p))

(6)

where Q;; is the consumption quantity of item j by consumer i;
o(pj) is the sigmoid price of item j, which can be seen as a normal-
ization of item prices; a;; is the personalized shape parameter that
determines the scale of MUD; and 7;; is the predicted rating score
of item j by consumer i. For easy optimization, we adopt hyperbolic
tangent tanh(-) to map the ratings in to the range of (0,1).

There are many different ways to predict the user-item rating
scores 7, including user/item-based collaborative filtering, matrix
factorization, or deep neural networks. For simplicity, we take the
most commonly used matrix factorization (MF) approach [11] for
rating prediction.
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Figure 1: Representing three different risk attitudes based on the relationship between the expected utility and the utility of
expectation. Here, x-axis represents the possible consumption quantity and y-axis is the utility of the corresponding quantity.

4.2 Multinomial Logistic Modeling (MLM)

Discrete choice problem describes a situation when a consumer
chooses an option between two or more discrete alternatives. There
are many forms of different discrete choice models and they share
some similarities. More formally, suppose that at time point ¢, con-
sumer i chooses item j over a set of some other alternative products
Q;;(j). We define the total choice set as I1;; = {j, Qi¢(j)} and its k-
th element is H;‘t (H% ; = J)- The probability that consumer i chooses
alternative j is expressed as P;;.

Researchers in economics have utilized Random Utility Models
(RUM) to deal with this problem [32]. Different from traditional
RUMs, in this paper, we adapt the idea of choosing the alternative
item that provides the highest utility into choosing the alternative
item with the highest MUD, so as to maximize the utility without
violating the budget constraint. In this way, we have:

Y k k
Mi(Il5) = Mi(Il3;) + ek 7
where Mi(Hft) represents the true MUD of a product combination,
and M,‘(H{%) represent the observed MUD. ¢ is a random variable
capturing the impact of all unknown factors. Thus, the probability
a customer chooses H% ; (item j) over other alternatives is:
Pij(Mi(IT},) > Mi(ITf,) = Pij(er = e < Mi(IT},) = Mi(11F,)) (8)
where k = 2, ..., |II;;|. If €; and ¢ obey an i.i.d. extreme value
distribution, then we have,
exp(M;(I},))
I;
Tt exp(Mi (1K)

Pij(yir = 1) = Py (M;(I1},) > M;(115)) =

where y;; is an indication function that,

(171 (17K
y”:{(l) ML) > Mi(TIK) Vi #1 (10)

Otherwise

4.3 Estimated Risk Distribution

Shopping online is risky because consumer may be unsatisfac-
tory with the purchased items. In order to better understand con-
sumer behaviors, we take risk into consideration based on clas-
sical expected utility theory. To calculate the expected utility of
a product, we have to know the probability distribution function
P(x) of its utility. In this work, we simulate the distribution func-
tion for each specific user-item pair as N(fij,a]%IF), where 7;j
is the predicted rating score from matrix factorization (MF), and

Table 1: Parameters setting for each datasets and method
where K is the latent factor size, Ir is learning rate, #i is the
number of iterations and A is the regularization parameter.

Dataset Baby Electronics Games

Methods | K | Ir | A [#| K | Ir | A |#| K | Ir | A |#
CF 50 | le-4 | 15| 3|100|1e-4|{05| 2 |100|1e-5| 1 |3
BPR 100 |{1le-4| 1 |3 | 50 |le-4| 1 |3 (100 |1e-4| 1 |3
NCF 100 |{1e-4| 1 | 5| 70 |le-4| 1 |5 (100 |1e-4| 1 |5
MPUM |100(1e-4| 1 [3| 70 [5e-4| 1 |3 |100|5e-4|15]|3
ROM 100 | 5e-4| 1 [ 3| 70 |1e-4| 05| 3 |100|1le-4|15]|3

OMF = 1/ﬁ Y.(rij — fij)? is the unbiased estimation of predic-

tion RMSE. Since the objective function of MF minimizes RMSE, this
distribution naturally applies higher probability to those frequent
ratings. As a result, the intuition of the setting is that if the pre-
dicted rating 7;; is close to the true rating r;; (i.e., easy to predict),
then we should have a higher probability to observe this rating.

4.4 Risk-based Optimization of MUD (ROM)

We introduce our optimization framework based on approximate
risk neutral constraint as follows:

max Z log(P(yij = 1)) — All®||? (12)
(i,j)eR
stomin > (Ui - Uy (7)? + Al (12)
(i,j)eR

where R is the set of all the observed user-to-item rating pairs;
P(yi; = 1) is the multinomial logistic model described in Eq.(9); U;;
is the expected utility, and Uj; (F) is the utility of expectation, which
will be introduced in detail in the next section; and finally, ® is
the parameter set to be learned in the corresponding loss function,
which will also be crystallized in the next section. The model in-
volves two optimization functions Eq.(11) and Eq.(12), showing that
we maximize the log-likelihood of a multinomial logistic model, so
as to optimize the probability of purchasing positive items based
on marginal utility per dollar under risk neutral constraint.

4.5 Model Specification

We provide details of the above framework to explain how to learn
the parameters. In particular, ratings are predicted based on MF:

(13)

Fip= o+ +y] + ()" q]



where a” is the global bias, B/ is the user bias, yjr is the item bias, p’
and q]r. are K-dimensional latent factors of user i and item j. Then
we use 7 as an input to calculate MUD, as shown in Eq.(6).
To reduce the parameter space, a;; is also re-parameterized based
on the idea of latent factor modeling,
aij=a®+ i +yf + ) qf (14)
In this way, the optimization problem in Eq.(11) and Eq.(12) can
be specialized as follow:

exp(Mi(H%t) )
max log = Al (15)
(i,jZ)E’R (Zlnltlexp(M )))

5
min Z { Z P, tanh(n) — tanh(z nPn)} Zj In®(1 + Qij) + A2
(i,j)eR

n=1
(16)
where Py, = Pr(rij = n) = fnnj)o"ss N (#ij, UZZWF)dr is the probabil-
ity that the rating score of item jisn (n =1, 2, 3, 4 or 5, representing
five different rating scores, for n = 1, integral lower bound is —co
and for n = 5, upper bound is +o0). We use SGD optimization

algorithm to learn the model parameters.

4.6 Top-K Recommendation

Once we learned the model parameters a;; and #;; according to
ROM, we can then calculate the marginal utility per dollar M;; for
each user-item pair. We rank all products for a user according to
their MUD values, and select the top items whose price is within
the user’s budget to generate the top-K recommendation list, where
in this work, a consumer’s budget is considered as the highest price
that the consumer had ever spent in his/her purchasing history.

5 EXPERIMENTS
5.1 Dataset Description

We use the consumer transaction data from Amazon! [6, 15] in our
experiments. The dataset includes user transaction (user id, item id,
rating, etc.) and item metadata (item id, price, related item, etc.) on
24 product categories lasting from May 1996 to July 2014. We take
three categories (Baby, Electronics and Video Games) that have
different size and data sparsity for experiments.

Table 2: Basic statistics of the experimental data sets.

Dataset #users | #items | #interactions | sparsity
Baby 23,894 | 39,767 200,170 0.0211%
Electronics 58,248 | 45,777 477,074 0.0179%
Video Games | 24,735 | 23,669 236,530 0.0404%

Basic statistics of the experimental datasets as shown in Table
2. For each dataset, we sort the transactions of each consumer
according to the purchase timestamp, and then split the records
into training, validation, and testing sets chronologically by 3:1:1,
namely, the first 60% items of each user are used for training, the
following 20% for validation, and the last 20% for testing?.
!http://jmcauley.ucsd.edu/data/amazon/

Zcode of the paper is released at https://github.com/TobyGE/Maximizing-Marginal-
Utility-per-Dollar-for-Economic-Recommendation

5.2 Experimental Setup

We compare our model with the following baselines, including both
economic and non-economic methods. Fro non-economic methods,
we involve both shallow and deep learning baselines.

CF: Collaborative Filtering based on matrix factorization is a
representative method for rating prediction. In this experiment, we
use CF based on latent factor modeling [11].

BPR: Bayesian Personalized Ranking [20] is one of the most
representative ranking-based methods for top-N recommendation.

NCEF: Neural Collaborative Filtering is a state-of-the-art recom-
mendation algorithm based on deep neural networks. We choose
Neural Matrix Factorization to conduct the experiments, which
fuses Generalized Matrix Factorization and Multiple Layer Percep-
tron under the NCF framework.

MPUM: Multi-Product Utility Maximization for recommenda-
tion [32], which is an economic recommendation approach that
maximizes the utility of product combinations for recommendation.

For each dataset, we use the validation set to find the best pa-
rameters of each method, which are shown in Table 1.

5.3 Evaluation Measure

To compare the performance of our model and the baselines, we
use both traditional measures such as Precision, Recall, and F;, and
the economic measure MUD. Assuming I is the recommendation
list for consumer i, and N is the total number of consumers, the
average marginal utility per dollar over all users is,

a;j tanh(r;;)
Z Z 1+ Qz])o'(Pj) (a7

11]€F

M@IT;| =

5.4 Experimental Results

Key experimental results are shown in Table 3, and we also plot the
conversion rate in Figure 2 under different recommendation length
K (from 1 to 10). We analyze and discuss the results in terms of the
following three perspectives.

5.4.1 Recommendation Performance: According to Table 3,
among the shallow baseline models (CF, BPR, and MPUM), all pair-
wise learning methods (BPR and MPUM) are better than the point-
wise CF method, which shows the superiority of pair-wise methods
on top-K ranking tasks. By learning deep structures for user-item
matching, NCF achieves the best baseline performance in many
cases. Furthermore, our ROM approach achieves the best top-K
performance against all baselines in most cases. For example, when
averaged across all datasets and recommendation lengths, we get
27.97% improvement than NCF. In particular, the improvement
is 83.18% for Precision@1 on the Baby dataset against NCF. For
NDCG, we get 112.54% improvement in average than NCF base-
line, especially the largest improvement (407.75%) is achieved on
the Electronics when K = 1. For conversion rate, we get 15.66%
improvement than the BPR baseline when averaged across K on
the Baby dataset, and the largest improvement (63.5%) is achieved
when K = 1. Compared with NCF, we got 19.01% improvement for
top 1 to 10 conversion rate on Baby and the largest improvement
(78.69%) is achieved when K = 1.



Table 3: Summary of the performance. We evaluate for ranking (P, R, F;, NDCG) and economic value (MUD), and K is the
length of recommendation list. When ROM is the best, its improvements against the best baseline are significant at p=0.01.

Dataset Baby
Measures Precision(%) Recall (%) F; Measure (%) NDCG MUD (x1072)
K 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
CF 3.687 2.658  1.929 | 2.613 9.421 13.669 | 3.059 4.147 3.380 | 0.0084 0.0283  0.0599 | 0.29448  1.3698 2.6969
NCF 3.829 3.151 2.522 2.714 8.935 17.878 3.177  4.659 4.421 0.0187 0.0503 0.0868 | 0.28657 1.3699 2.7224
BPR 4.185 3.041 2483 | 2.966 10.777 17.600 | 3.472 4.743 4352 | 0.0162 0.0472  0.0837 | 0.26216  1.3164 2.6720
MPUM 6.177 2978  2.262 4.378 10.554 16.036 5.125 4.645 3.966 0.0338 0.0718  0.0915 | 0.26664  1.3482 2.7099
ROM 7.014 3.421 2.553 | 4972 12.124 18.098 | 5.819 5.336 4.475 | 0.0380 0.0804 0.1021 | 33.149 73.634 106.523
Dataset Electronics
Measures Precision(%) Recall(%) F; Measure(%) NDCG MUD (x107%)
K 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
CF 5.983 3.199  2.262 4.316 11.538 16.319 5.014 5.009 3.974 0.0106 0.0336  0.0726 | 0.01793 0.06293  0.12605
NCF 6.852 4.089 2.944 | 4942 14746 21.233 | 5742 6.402 5.170 | 0.0142 0.0456  0.0970 | 0.01426 0.05981  0.11355
BPR 7.847 4.011 2.648 5.660 14.468 19.099 6.577  6.281  4.651 0.0087 0.0313 0.0811 | 0.01149 0.07350  0.12193
MPUM 9.866 3.452 2333 | 7.117 12452  16.827 | 8.269 5406 4.098 | 0.0652 0.1006  0.1168 | 0.00788 0.05266  0.11403
ROM 11.262 4.159 2.766 | 8.124 15.000 19.952 | 9.439 6.512 4.859 | 0.0721 0.1167 0.1346 | 14.551 29.770 41.179
Dataset Video Games
Measures Precision(%) Recall(%) F; Measure(%) NDCG MUD (x1072)
K 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
CF 3.558 2421  1.891 | 2.159 7.345 11.473 | 2.687 3.641 3.247 | 0.0121  0.0313  0.0568 | 0.12979  0.64827 1.2875
NCF 3.869 2.907  2.426 | 2.348 8.819 14.719 | 2.922 4372 4.165 | 0.0170 0.0431 0.0745 | 0.13018 0.64710 1.2867
BPR 4.253 2917 2359 | 2.581 8.851 14316 | 3.212 4388 4.051 | 0.0152  0.0404 0.0715 | 0.12956 0.64319 1.2845
MPUM 6.642 3.007  2.201 | 4.030 9.123 13.357 | 5.017 4.523  3.078 | 0.0389  0.0690 0.0846 | 0.12303 0.63397 1.2765
ROM 7.026  3.297 2,516 | 4.263 10.001 15.268 | 5.307 4.959 4.320 | 0.0400 0.0737 0.0920 | 9.0342 20.267 29.874
Baby Electronics Games
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Figure 2: Conversion rate on three datasets. x-axis is the length of the recommendation list and y-axis is the conversion rate.

The observations imply that by modeling user behaviors based
on established economic principles, our model is able to better
capture the user preferences for top-K recommendation.

5.4.2 Economic Performance: Itisnot surprising that our method
achieves significantly higher MUD scores than non-economic meth-
ods, becuase we try to optimize for economic values directly. There-
fore, we only compare ROM with another economic baseline (i.e.,
MPUM). We see that our model gets much higher MUD than MPUM,
which means that higher utility values does not necessarily imply
higher marginal utility per dollar. The higher MUD values produced
by our model mean that our recommendations could help users
to spend their money more efficiently (i.e., more utility gain per
dollar), and thus help to provide more informed recommendations.

5.4.3 Shallow vs. Deep Models: According to Table 3 and Fig-
ure 2, our model is better than NCF in most cases. However, NCF
got 6.43% improvement from ROM when K = 10 on Electronics,
and according to Fig.2, NCF grows faster when the recommenda-
tion length increases. Neural network is good at learning complex

user-item interactions, so it is not surprising that it gets better
performance when K is sufficiently large. However, in practical rec-
ommender systems the top-5 or 10 results are much more important
than later items. Our model is better than NCF from top-1 to top-10
in most cases, and the improvement is especially significant on
top-1, which is also reasonable because marginal utility measures
the incremental benefit for each extra unit of an item.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we bridge economic principles and machine learning
for personalized recommendation. In particular, we propose to
maximize marginal utility per dollar under approximate risk-neutral
constraint for recommendation. Experimental results verified the
effectiveness of our model on top-K recommendation and economic
values. In the future, we will relax the risk-neural constraint to other
risk attitude functions for more diverse user modeling. We will
also consider other economic principles and/or learning methods to
benefit recommendation systems both effectively and economically.
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