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Abstract
In modern recommender systems, there are usu-
ally comments or reviews from users that jus-
tify their ratings for different items. Trained on
such textual corpus, explainable recommenda-
tion models learn to discover user interests and
generate personalized explanations. Though
able to provide plausible explanations, existing
models tend to generate repeated sentences for
different items or empty sentences with insuf-
ficient details. This begs an interesting ques-
tion: can we immerse the models in a multi-
modal environment to gain proper awareness of
real-world concepts and alleviate above short-
comings? To this end, we propose a visually-
enhanced approach named METER with the
help of visualization generation and text–image
matching discrimination: the explainable rec-
ommendation model is encouraged to visualize
what it refers to while incurring a penalty if
the visualization is incongruent with the textual
explanation. Experimental results and a man-
ual assessment demonstrate that our approach
can improve not only the text quality but also
the diversity and explainability of the generated
explanations.

1 Introduction

Explainable recommender systems have recently
attracted increasing attention both in industry and
in the academic community. Such systems aim to
provide high-quality recommendations and simul-
taneously generate explanations for the recommen-
dations (Zhang et al., 2014; Zhang and Chen, 2020).
The explanations not only can bridge the gap be-
tween how systems and users perceive the rele-
vance of the recommended items, but also can serve
to shed light on the recommendation decision pro-
cess so as to avoid a black box. To provide appropri-
ate explanations, feature-based (Zhang et al., 2014),
graph-based (Xian et al., 2019, 2020; Geng et al.,
2022; Fu et al., 2020), sentence-based (Chen et al.,
2019a; Li et al., 2020, 2021a, 2022), causality-
based (Tan et al., 2021, 2022; Xu et al., 2021a,b)

Inputs:
User A, Item 1, Feat. word: floors
Outputs:
Pred. rating: 4.62
Gen. explanation: higher floors
have better view
Image visualization:

Inputs:
User B, Item 2, Feat. word: seat
Outputs:
Pred. rating: 4.15
Text explanation: we were seated
immediately and ordered our food
Image visualization:

Figure 1: Example cases by the proposed model on
TripAdvisor and Yelp datasets respectively.

and neural-symbolic (Shi et al., 2020; Chen et al.,
2021, 2022) approaches have been explored in re-
cent years. Among them, PETER (Li et al., 2021a)
is a representative sentence-based method that di-
rectly generates explanation sentences for given
user–item pairs based on Personalized Transformer.

While PETER outperforms previous methods in
terms of both explainability and text quality met-
rics, it also suffers from several shortcomings: PE-
TER tends to repeat certain universally applicable
“safe” sentences as explanations (e.g., “the hotel
is very nice”). For the 32,003 records in the test
split of the TripAdvisor dataset by Li et al. (2020),
PETER only generates around 8,100 unique sen-
tences. The duplicate rate is close to 75%, while
in reality, the duplicate rate of the TripAdvisor
ground truth explanations is only 5.4%. In addi-
tion, such models are trained solely on a textual
corpus, lacking real-world experiences to generate
more authentic explanations, which may lead to
empty sentences with insufficient details. Recently,
Vokenization (Tan and Bansal, 2020) demonstrates
that language understanding can be improved with
token-level visual supervisions. This motivates us
to consider enhancing text explanation generation
with the aid of real-world images.

In this paper, we present an entirely new form



of explanation generation model that is immersed
in a multimodal environment. The goal is to en-
courage it to perceive real-world signals and gen-
erate visually-enhanced explanations to better as-
sist a user’s decision. Specifically, we propose
the Multimodally-Enhanced Transformer for Ex-
plainable Recommendation (METER) approach
for improved text explanations based on condi-
tional image generation and text–image matching.
Unlike traditional caption-to-image generation, our
training sentences are explanations that are more
comprehensive reviews based on user experiences
rather than simple abstract descriptions of the im-
age content. We adopt the generation order “rating
! text! image” based on the consideration that
the generation difficulty should gradually increase.
With this approach, we seek to guide the model to
understand real-world concepts regarding both item
attributes and user interests (e.g., a spacious room
or modern decoration). Furthermore, METER is
encouraged to visualize what it is talking about for
the given user–item pair and is penalized in case
of a mismatch between the generated visualization
and the textual explanation. This is in line with
the spirit of the context token prediction module
in Li et al. (2021a). While PETER only predicts
text tokens as contextual information, our METER
additionally generates visual tokens as a supple-
ment. We claim that if a sentence contains more
real-world concepts, it is easier to visualize it as an
image with higher fidelity. To this end, we intro-
duce a text–image matching discriminator based on
contrastive learning which helps to improve both
the diversity and faithfulness of the textual explana-
tions. Beyond an auxiliary task for text generation,
another advantage of METER is that the generated
image visualizations may provide intuitive visual
explanations in addition to rating scores and textual
explanations.

To empirically evaluate our framework, we con-
duct experiments and user studies on two real-
world datasets in terms of diversity and faithful-
ness of text explanations, as well as consistency
and quality of image visualizations. Our results
reveal that using the proposed METER leads to im-
provements on text diversity and faithfulness, and
that the generated image visualizations show high
fidelity and good consistency. Overall, we make
the following key contributions:

• To the best of our knowledge, this is the first
exploration of a multimodal explainable rec-

ommender system that jointly generates rating
scores, textual explanations, and images. The sys-
tem will also be promising in creative advertising
applications.

• By immersing the model into a multimodal envi-
ronment, we help it explore the real-world con-
cepts mentioned in the text explanations and in
turn enable it to generate more diverse and faith-
ful natural language rationales that are consistent
with visual grounding.

• Experiments and a user study on real-world
datasets demonstrate the superiority of our ap-
proach over several strong baselines.

2 Related Work

Visually-Guided Language Learning There have
been numerous efforts on utilizing visual informa-
tion to facilitate language tasks. The general strat-
egy they typically pursue is to obtain cross-modally
aligned semantics through visual grounding. Gella
et al. (2017); Zhang et al. (2020); Sigurdsson et al.
(2020) draw on the visual modality to bridge the
gap between languages and conduct visual ground-
ing to improve unsupervised cross-lingual word
mapping or machine translation. Vokenization (Tan
and Bansal, 2020) assigns each text token with
a corresponding voken and improves text-based
pretraining with contextualized, visual-grounded
supervisions. VidLanKD (Tang et al., 2021) fur-
ther solves the shortcomings of Tan and Bansal
(2020) by first learning a multimodal teacher model
on video-language dataset and then transferring
knowledge to the student language model through
distillation. Shen et al. (2021) discovers visual im-
pressions from text-only corpus to improve open-
domain dialog generation. Li et al. (2021b) learns
vision–language representations with cross-modal
contrastive learning on a combination of pure text
corpus and image–text pairs to advance both sin-
gle modal and multi-modal downstream tasks. Re-
cently, DALL-E (Ramesh et al., 2021) merges text
and visual tokens as a single stream of data and em-
ploys a universal Transformer to autoregressively
model the multimodal stream. The astonishing suc-
cess of these methods inspires us to guide person-
alized explanation generation with visual signals.

Generate Explanations for Recommendation
Explainable recommendation has been an impor-
tant task in both research and industry (Zhang and
Chen, 2020). Early approaches mainly attempt to



Figure 2: Architecture of METER framework: (a) Multimodally-Enhanced Transformer, which takes user IDu,
item ID i , feature wordf as initial condition tokens. Text tokensf êt gn

t =1 are �rst generated triggered by the[BOS]
token, next visual tokensf v̂t gm

t =1 can be generated conditioned on (u,i ,f ) triplet and text sequence. (b) Text–image
matching discriminator that estimates the match score between the generated text explanation and visualization.

make latent factor models interpretable by align-
ing each latent dimension with the explicit mean-
ing (Zhang et al., 2014; Chen et al., 2016). In
recent years, numerous neural models have been
proposed to explain recommendations based on
user reviews (Chen et al., 2019c,a). There have
also been attempts to generate purely visual expla-
nations (Chen et al., 2019b; Tangseng and Okatani,
2020). Compared with other explanation styles
for recommendation, sentence-based methods are
more straightforward and have been at the center
of attention in recent times. Explanation sentences
can either be generated by �lling prede�ned tem-
plates (Zhang et al., 2014; Wang et al., 2018) or
through �exible natural language approaches such
as Attn2Seq (Dong et al., 2017), based on recur-
rent neural networks, and PETER (Li et al., 2021a),
which is powered by a personalized Transformer.
NETE (Li et al., 2020) combines the advantage of
the two styles and produces template-controlled
explanations by learning from sentence templates,
which is an early form of prompt-based genera-
tion. However, none of the previous work has in-
tegrated textual and visual features and provided
multimodal explanations. To the best of our knowl-
edge, METER is also the �rst approach to draw on
vision for improved textual explanation generation.

3 Methodology

3.1 Overview and Problem Formulation

The goal of our METER framework is to give an
estimated rating scorêru;i that re�ects a useru's

preference towards itemi and generate a multi-
modal explanation to justify the estimated rating.
The generated multi-modal explanation consists of
a text sentencêEu;i and an image visualization̂Vu;i .
The latter may serve as a supplement to the tex-
tual explanation for better explainability when text
alone provides insuf�cient information. Moreover,
the METER recommendation explanation model
is encouraged to visualize what it is talking about
for the user–item pairs and will be punished if the
generated visualization does not match its textual
explanation. By doing so, we aim to improve the
quality, diversity, as well as faithfulness of the gen-
erated text explanations through visual grounding.

In the following, we shall �rst elaborate how to
represent visual information into visual tokens and
how to encode the positional embeddings for differ-
ent types of tokens used in METER. Subsequently,
we describe the Multimodal Enhanced Transformer
for autoregressive multimodal explanation genera-
tion. Moreover, we will introduce the text–image
matching discriminator, which guides the multi-
modal Transformer to generate better and more
diversi�ed text explanations. Finally, we summa-
rize the training objectives of our framework for
rating prediction and explanation generation.

3.2 Visual Encoder

To introduce visual signals into the Transformer
structure, we follow the idea of VQ-VAEs (van den
Oord et al., 2017) to encode an imageI 2
RH � W � 3 into a sequence of discrete patch-level



visual tokenszq 2 Rh� w� d, whereH andW is the
original size of the input image,h � w is the number
of visual patches, andd is the patch-level feature
dimensionality. The visual tokens are constructed
by vector-quantization through a learned discrete
codebookZ = f zkgK

k=1 2 Rd of visual representa-
tions. To balance ef�ciency and perceptual quality,
we adopt VQ-GAN (Esser et al., 2021) as the visual
encoder and decoder in our framework. We �rst
pre-train the vector-quantized visual patch encoder
E, decoderG, and the discrete codebookZ on our
collected images. With these pretrained compo-
nents, we can encode an input imageI with the
encoderE asẑ = E(I ) 2 Rh� w� d. Next, we seri-
alizeẑ and conduct element-wise quantization for
individual encodinĝzj of ẑ onto its closest code-
book entryzk :

zq =

 

arg min
zk 2Z

kẑj � zkk

!

2 Rh� w� d

The resultingzq are served as the encoded visual
tokensf vj gm

j =1 of the input image. As for the se-
quence of visual tokenŝzq = f v̂j gm

j =1 produced
by METER autoregressively, we can utilize the de-
coderGto transform it back to a generated original
size imagêI : Î = G(ẑq) 2 RH � W � 3.

3.3 Input Representation

Five distinct types of input tokens can be distin-
guished: user ID, item ID, feature word, text to-
kens for explanation, and visual tokens. With the
aforementioned vector-quantized visual patch en-
coder, we obtain a visual token representation for a
given image. For text explanations, we directly to-
kenize them into text token sequences. Intuitively,
the generated explanation should re�ect both the
user's interest preferences and the item attributes.
Hence, we have user IDs and item IDs as two spe-
cial types of tokens to guide the model to talk about
the correct topics. Finally, the feature words can
serve as conditional inputs to specialize the topic
of explanation.

To represent tokens as embeddings, we prepare
four embedding codebooks:U for user IDs,I for
item IDs,V for text tokens and feature words, and
Z for visual tokens. We set a �xed lengthm for
visual tokens and a maximum lengthn for text
tokens. Thus, the input sequenceS0 can be rep-
resented asS0 = [ u; i; f; e 1; � � � ; en ; v1; � � � ; vm ].
Before feeding the token sequence into METER,
we provide positional embeddings for non-visual

tokens and visual tokens separately. As the visual
information has a spatial prior and is organized
in a 2-D grid, we adopt an axial positional em-
bedding (Ho et al., 2019) for visual tokens. In
addition, we prepare an embedding codebookP
for non-visual tokens. The �nal input sequence
representation is the addition of token embeddings
and the corresponding positional embeddings.

3.4 Multimodally-Enhanced Transformer

Given a input sequence, we use a Multimodally-
Enhanced Transformer to encode it and predict the
next token, which can be either a text or visual
token. When the input sequence starts with the
special token[BOS] alone, the model also predicts
the rating score for the candidate user–item pair
and contextual words that could re�ect the user's
preference and the item's attributes. Suppose our
multimodal Transformer hasL layers, each with
h-head multi-head self-attention, andd is the in-
put embedding dimensionality. Then, for input
sequenceSl at layerl 2 [0; L � 1], the encoded
sequenceSl+1 can be computed as follows (specif-
ically SL denotes the �nal-layer output):

Sl+1 = FFN l (Attention ( Sl W Q; Sl W K ; Sl W V))

Here,W Q; W K ; W V 2 Rd� dh are weight matri-
ces for projecting query, key, and value respec-
tively (Vaswani et al., 2017),dh = d=h is the
dimensionality for each head.FFN l is a feed-
forward module consisting of two fully-connected
layers with ReLU in between for thel-th Trans-
former layer. TheAttention function is de�ned as

Attention( Q; K ; V ) = Softmax
�

QK >
p

dh

�
V

with a scaling factor
p

dh that maintains the order
of magnitude in features. We adopt a similar mask-
ing strategy as Li et al. (2021a): the user & item
IDs both can attend to all tokens in the sequence,
while other non-ID tokens (including feature words,
text tokens, and visual tokens) all retain the tradi-
tional causal attention masking in order to avoid
any leakage of future information. Figure 2 (a)
provides an illustration of our masking strategy.

Assuming the �nal-layer output from the Trans-
former isSL = [ su ; si ; sf ; f seg; f svg], this also
serves as a representation of the input sequence for
next generation iteration. We can use these vector
representations to enable the following four tasks:



Rating prediction The �rst representationsu is
used to conduct rating score prediction. We regard
the score prediction as a regression problem and the
goal is to predict the scorêru;i for the given pair of
user/item IDs. Due to the adopted masking strategy,
u andi can both attend to each other and capture
the correlation between them. Here we make use
of a two-layer fully-connected network with sig-
moid activation� to mapsu to a scalar score value:
r̂u;i = � (suW1 + b1) W2 + b2, where the dimen-
sionality of input, hidden layer, and output ared, d,
and1 respectively. Mean Squared Error loss (MSE)
is used for rating score regression:

L r = E(u;i )2T (ru;i � r̂u;i )
2

whereru;i is the ground-truth rating score andT
represents the training corpus.
Context token prediction The second represen-
tationsi is designed to predict the context words
for a given user–item pair. Similar tosu , si also
absorbs the words that are related to a certain user's
preference and an item's attributes. Thus, this auxil-
iary task is able to force the Transformer to exploit
the information hidden in the user ID and item ID.
Such design can mitigate the problem of identi-
cal explanations being generated. By passingsi

into a single fully-connected layer withSoftmax
activation, we can obtain a probability distribu-
tion over the vocabularyV for the context word:
Pc = Softmax ( si Wc + bc), where the dimension-
ality of input and output ared andjVj, respectively.
The predicted context tokens are the top-n words
with the highest probability. If we represent the
probabilities of these context wordsC asf pt

cg
n
t=1 ,

then the negative log likelihood (NLL) loss can be
computed as:

L c = E

"
1
n

nX

t=1

� logpt
c

#

Explanation/visualization generation The gener-
ation of explanation words and visual codes follows
the autoregressive style, i.e., decoding one token
at a time from left to right. Text generation is trig-
gered by the special[BOS] token, upon which we
repeatedly decode words until[EOS] is sampled. If
the number of generated text tokens before[EOS]
is less thann, we pad the sequence with[PAD].
If the text sequence length is greater thann, we
cut it off at lengthn. To obtain the visual code
sequencêV , we iterate METER for a �xed number
of m steps conditioned on the text explanationÊ

and the previously generated visual code sequence.
Similar to context word prediction, we adopt a sin-
gle fully-connected layer for text representations
f seg to produce probability distributions over the
text vocabularyV. As for visual representations
f svg, we employ another fully-connected layer to
produce probability distributions over the discrete
visual codebookZ . We can then sample words and
visual codes from the obtained probability distribu-
tions. For simplicity, we employ greedy decoding
as the sampling method to select the word/code
with the highest probability. If we denote the prob-
abilities of the sampled words and visual codes as
f pt

egn
t=1 andf pt

vgm
t=1 , respectively, then the token-

level language modeling loss for text and visual
code generation can be expressed as:

L e = E

"
1
n

nX

t=1

� logpt
e

#

+ � �E

"
1
m

mX

t=1

� logpt
v

#

where� is a hyperparameter used to balance the
training of textual and visual token generation.
Text–image matching METER is capable of gen-
erating text–image explanation pairs. However, we
still need to know whether and to what degree
the generated image visualization matches the text
explanation from a global perspective. Hence we
adopt a text–image matching discriminatorD to
measure the degree of congruency. From another
aspect, if a generated sentence contains more real-
world concepts, it is easier to ground the sentence
to corresponding visual tokens and obtain an image
visualization with higher �delity. With contrastive
training, we in turn push METER to generate text
explanations with more grounded details. Our dis-
criminator is equipped with two separate encoders
for the visual token sequence and the text sequence.
Assuming the outputs of the two encoders to be
Ê andV̂ , we can construct positive training text–
image pairs from the ground truth, as well as neg-
ative ones through alternate pairings. Thus, the
discriminator loss can be written as:

L d = E [log (D(E; V ))] + E
h
log

�
1 � D

�
E; V̂

�i

+ E
h
log

�
1 � D

�
Ê; V

�i

In summary, the overall training objective function
J consists of the aforementioned four losses:

J = min
�

(� eL e + � dL d + � r L r + � cL c)

Here, � denotes all trainable parameters, while
� e, � d, � r , � c are regularization weights to help




