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Abstract
In modern recommender systems, there are usu-
ally comments or reviews from users that jus-
tify their ratings for different items. Trained on
such textual corpus, explainable recommenda-
tion models learn to discover user interests and
generate personalized explanations. Though
able to provide plausible explanations, existing
models tend to generate repeated sentences for
different items or empty sentences with insuf-
ficient details. This begs an interesting ques-
tion: can we immerse the models in a multi-
modal environment to gain proper awareness of
real-world concepts and alleviate above short-
comings? To this end, we propose a visually-
enhanced approach named METER with the
help of visualization generation and text–image
matching discrimination: the explainable rec-
ommendation model is encouraged to visualize
what it refers to while incurring a penalty if
the visualization is incongruent with the textual
explanation. Experimental results and a man-
ual assessment demonstrate that our approach
can improve not only the text quality but also
the diversity and explainability of the generated
explanations.

1 Introduction

Explainable recommender systems have recently
attracted increasing attention both in industry and
in the academic community. Such systems aim to
provide high-quality recommendations and simul-
taneously generate explanations for the recommen-
dations (Zhang et al., 2014; Zhang and Chen, 2020).
The explanations not only can bridge the gap be-
tween how systems and users perceive the rele-
vance of the recommended items, but also can serve
to shed light on the recommendation decision pro-
cess so as to avoid a black box. To provide appropri-
ate explanations, feature-based (Zhang et al., 2014),
graph-based (Xian et al., 2019, 2020; Geng et al.,
2022; Fu et al., 2020), sentence-based (Chen et al.,
2019a; Li et al., 2020, 2021a, 2022), causality-
based (Tan et al., 2021, 2022; Xu et al., 2021a,b)

Inputs:
User A, Item 1, Feat. word: floors
Outputs:
Pred. rating: 4.62
Gen. explanation: higher floors
have better view
Image visualization:

Inputs:
User B, Item 2, Feat. word: seat
Outputs:
Pred. rating: 4.15
Text explanation: we were seated
immediately and ordered our food
Image visualization:

Figure 1: Example cases by the proposed model on
TripAdvisor and Yelp datasets respectively.

and neural-symbolic (Shi et al., 2020; Chen et al.,
2021, 2022) approaches have been explored in re-
cent years. Among them, PETER (Li et al., 2021a)
is a representative sentence-based method that di-
rectly generates explanation sentences for given
user–item pairs based on Personalized Transformer.

While PETER outperforms previous methods in
terms of both explainability and text quality met-
rics, it also suffers from several shortcomings: PE-
TER tends to repeat certain universally applicable
“safe” sentences as explanations (e.g., “the hotel
is very nice”). For the 32,003 records in the test
split of the TripAdvisor dataset by Li et al. (2020),
PETER only generates around 8,100 unique sen-
tences. The duplicate rate is close to 75%, while
in reality, the duplicate rate of the TripAdvisor
ground truth explanations is only 5.4%. In addi-
tion, such models are trained solely on a textual
corpus, lacking real-world experiences to generate
more authentic explanations, which may lead to
empty sentences with insufficient details. Recently,
Vokenization (Tan and Bansal, 2020) demonstrates
that language understanding can be improved with
token-level visual supervisions. This motivates us
to consider enhancing text explanation generation
with the aid of real-world images.

In this paper, we present an entirely new form



of explanation generation model that is immersed
in a multimodal environment. The goal is to en-
courage it to perceive real-world signals and gen-
erate visually-enhanced explanations to better as-
sist a user’s decision. Specifically, we propose
the Multimodally-Enhanced Transformer for Ex-
plainable Recommendation (METER) approach
for improved text explanations based on condi-
tional image generation and text–image matching.
Unlike traditional caption-to-image generation, our
training sentences are explanations that are more
comprehensive reviews based on user experiences
rather than simple abstract descriptions of the im-
age content. We adopt the generation order “rating
→ text → image” based on the consideration that
the generation difficulty should gradually increase.
With this approach, we seek to guide the model to
understand real-world concepts regarding both item
attributes and user interests (e.g., a spacious room
or modern decoration). Furthermore, METER is
encouraged to visualize what it is talking about for
the given user–item pair and is penalized in case
of a mismatch between the generated visualization
and the textual explanation. This is in line with
the spirit of the context token prediction module
in Li et al. (2021a). While PETER only predicts
text tokens as contextual information, our METER
additionally generates visual tokens as a supple-
ment. We claim that if a sentence contains more
real-world concepts, it is easier to visualize it as an
image with higher fidelity. To this end, we intro-
duce a text–image matching discriminator based on
contrastive learning which helps to improve both
the diversity and faithfulness of the textual explana-
tions. Beyond an auxiliary task for text generation,
another advantage of METER is that the generated
image visualizations may provide intuitive visual
explanations in addition to rating scores and textual
explanations.

To empirically evaluate our framework, we con-
duct experiments and user studies on two real-
world datasets in terms of diversity and faithful-
ness of text explanations, as well as consistency
and quality of image visualizations. Our results
reveal that using the proposed METER leads to im-
provements on text diversity and faithfulness, and
that the generated image visualizations show high
fidelity and good consistency. Overall, we make
the following key contributions:

• To the best of our knowledge, this is the first
exploration of a multimodal explainable rec-

ommender system that jointly generates rating
scores, textual explanations, and images. The sys-
tem will also be promising in creative advertising
applications.

• By immersing the model into a multimodal envi-
ronment, we help it explore the real-world con-
cepts mentioned in the text explanations and in
turn enable it to generate more diverse and faith-
ful natural language rationales that are consistent
with visual grounding.

• Experiments and a user study on real-world
datasets demonstrate the superiority of our ap-
proach over several strong baselines.

2 Related Work

Visually-Guided Language Learning There have
been numerous efforts on utilizing visual informa-
tion to facilitate language tasks. The general strat-
egy they typically pursue is to obtain cross-modally
aligned semantics through visual grounding. Gella
et al. (2017); Zhang et al. (2020); Sigurdsson et al.
(2020) draw on the visual modality to bridge the
gap between languages and conduct visual ground-
ing to improve unsupervised cross-lingual word
mapping or machine translation. Vokenization (Tan
and Bansal, 2020) assigns each text token with
a corresponding voken and improves text-based
pretraining with contextualized, visual-grounded
supervisions. VidLanKD (Tang et al., 2021) fur-
ther solves the shortcomings of Tan and Bansal
(2020) by first learning a multimodal teacher model
on video-language dataset and then transferring
knowledge to the student language model through
distillation. Shen et al. (2021) discovers visual im-
pressions from text-only corpus to improve open-
domain dialog generation. Li et al. (2021b) learns
vision–language representations with cross-modal
contrastive learning on a combination of pure text
corpus and image–text pairs to advance both sin-
gle modal and multi-modal downstream tasks. Re-
cently, DALL-E (Ramesh et al., 2021) merges text
and visual tokens as a single stream of data and em-
ploys a universal Transformer to autoregressively
model the multimodal stream. The astonishing suc-
cess of these methods inspires us to guide person-
alized explanation generation with visual signals.

Generate Explanations for Recommendation
Explainable recommendation has been an impor-
tant task in both research and industry (Zhang and
Chen, 2020). Early approaches mainly attempt to
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Figure 2: Architecture of METER framework: (a) Multimodally-Enhanced Transformer, which takes user ID u,
item ID i, feature word f as initial condition tokens. Text tokens {êt}nt=1 are first generated triggered by the [BOS]
token, next visual tokens {v̂t}mt=1 can be generated conditioned on (u,i,f ) triplet and text sequence. (b) Text–image
matching discriminator that estimates the match score between the generated text explanation and visualization.

make latent factor models interpretable by align-
ing each latent dimension with the explicit mean-
ing (Zhang et al., 2014; Chen et al., 2016). In
recent years, numerous neural models have been
proposed to explain recommendations based on
user reviews (Chen et al., 2019c,a). There have
also been attempts to generate purely visual expla-
nations (Chen et al., 2019b; Tangseng and Okatani,
2020). Compared with other explanation styles
for recommendation, sentence-based methods are
more straightforward and have been at the center
of attention in recent times. Explanation sentences
can either be generated by filling predefined tem-
plates (Zhang et al., 2014; Wang et al., 2018) or
through flexible natural language approaches such
as Attn2Seq (Dong et al., 2017), based on recur-
rent neural networks, and PETER (Li et al., 2021a),
which is powered by a personalized Transformer.
NETE (Li et al., 2020) combines the advantage of
the two styles and produces template-controlled
explanations by learning from sentence templates,
which is an early form of prompt-based genera-
tion. However, none of the previous work has in-
tegrated textual and visual features and provided
multimodal explanations. To the best of our knowl-
edge, METER is also the first approach to draw on
vision for improved textual explanation generation.

3 Methodology

3.1 Overview and Problem Formulation
The goal of our METER framework is to give an
estimated rating score r̂u,i that reflects a user u’s

preference towards item i and generate a multi-
modal explanation to justify the estimated rating.
The generated multi-modal explanation consists of
a text sentence Êu,i and an image visualization V̂u,i.
The latter may serve as a supplement to the tex-
tual explanation for better explainability when text
alone provides insufficient information. Moreover,
the METER recommendation explanation model
is encouraged to visualize what it is talking about
for the user–item pairs and will be punished if the
generated visualization does not match its textual
explanation. By doing so, we aim to improve the
quality, diversity, as well as faithfulness of the gen-
erated text explanations through visual grounding.

In the following, we shall first elaborate how to
represent visual information into visual tokens and
how to encode the positional embeddings for differ-
ent types of tokens used in METER. Subsequently,
we describe the Multimodal Enhanced Transformer
for autoregressive multimodal explanation genera-
tion. Moreover, we will introduce the text–image
matching discriminator, which guides the multi-
modal Transformer to generate better and more
diversified text explanations. Finally, we summa-
rize the training objectives of our framework for
rating prediction and explanation generation.

3.2 Visual Encoder

To introduce visual signals into the Transformer
structure, we follow the idea of VQ-VAEs (van den
Oord et al., 2017) to encode an image I ∈
RH×W×3 into a sequence of discrete patch-level



visual tokens zq ∈ Rh×w×d, where H and W is the
original size of the input image, h ·w is the number
of visual patches, and d is the patch-level feature
dimensionality. The visual tokens are constructed
by vector-quantization through a learned discrete
codebook Z = {zk}Kk=1 ∈ Rd of visual representa-
tions. To balance efficiency and perceptual quality,
we adopt VQ-GAN (Esser et al., 2021) as the visual
encoder and decoder in our framework. We first
pre-train the vector-quantized visual patch encoder
E , decoder G, and the discrete codebook Z on our
collected images. With these pretrained compo-
nents, we can encode an input image I with the
encoder E as ẑ = E(I) ∈ Rh×w×d. Next, we seri-
alize ẑ and conduct element-wise quantization for
individual encoding ẑj of ẑ onto its closest code-
book entry zk:

zq =

(
argmin
zk∈Z

∥ẑj − zk∥

)
∈ Rh×w×d

The resulting zq are served as the encoded visual
tokens {vj}mj=1 of the input image. As for the se-
quence of visual tokens ẑq = {v̂j}mj=1 produced
by METER autoregressively, we can utilize the de-
coder G to transform it back to a generated original
size image Î: Î = G (ẑq) ∈ RH×W×3.

3.3 Input Representation
Five distinct types of input tokens can be distin-
guished: user ID, item ID, feature word, text to-
kens for explanation, and visual tokens. With the
aforementioned vector-quantized visual patch en-
coder, we obtain a visual token representation for a
given image. For text explanations, we directly to-
kenize them into text token sequences. Intuitively,
the generated explanation should reflect both the
user’s interest preferences and the item attributes.
Hence, we have user IDs and item IDs as two spe-
cial types of tokens to guide the model to talk about
the correct topics. Finally, the feature words can
serve as conditional inputs to specialize the topic
of explanation.

To represent tokens as embeddings, we prepare
four embedding codebooks: U for user IDs, I for
item IDs, V for text tokens and feature words, and
Z for visual tokens. We set a fixed length m for
visual tokens and a maximum length n for text
tokens. Thus, the input sequence S0 can be rep-
resented as S0 = [u, i, f, e1, · · · , en, v1, · · · , vm].
Before feeding the token sequence into METER,
we provide positional embeddings for non-visual

tokens and visual tokens separately. As the visual
information has a spatial prior and is organized
in a 2-D grid, we adopt an axial positional em-
bedding (Ho et al., 2019) for visual tokens. In
addition, we prepare an embedding codebook P
for non-visual tokens. The final input sequence
representation is the addition of token embeddings
and the corresponding positional embeddings.

3.4 Multimodally-Enhanced Transformer

Given a input sequence, we use a Multimodally-
Enhanced Transformer to encode it and predict the
next token, which can be either a text or visual
token. When the input sequence starts with the
special token [BOS] alone, the model also predicts
the rating score for the candidate user–item pair
and contextual words that could reflect the user’s
preference and the item’s attributes. Suppose our
multimodal Transformer has L layers, each with
h-head multi-head self-attention, and d is the in-
put embedding dimensionality. Then, for input
sequence Sl at layer l ∈ [0, L− 1], the encoded
sequence Sl+1 can be computed as follows (specif-
ically SL denotes the final-layer output):

Sl+1 = FFNl (Attention (SlWQ,SlWK,SlWV))

Here, WQ,WK,WV ∈ Rd×dh are weight matri-
ces for projecting query, key, and value respec-
tively (Vaswani et al., 2017), dh = d/h is the
dimensionality for each head. FFNl is a feed-
forward module consisting of two fully-connected
layers with ReLU in between for the l-th Trans-
former layer. The Attention function is defined as

Attention(Q,K,V) = Softmax

(
QK⊤
√
dh

)
V

with a scaling factor
√
dh that maintains the order

of magnitude in features. We adopt a similar mask-
ing strategy as Li et al. (2021a): the user & item
IDs both can attend to all tokens in the sequence,
while other non-ID tokens (including feature words,
text tokens, and visual tokens) all retain the tradi-
tional causal attention masking in order to avoid
any leakage of future information. Figure 2 (a)
provides an illustration of our masking strategy.

Assuming the final-layer output from the Trans-
former is SL = [su, si, sf , {se}, {sv}], this also
serves as a representation of the input sequence for
next generation iteration. We can use these vector
representations to enable the following four tasks:



Rating prediction The first representation su is
used to conduct rating score prediction. We regard
the score prediction as a regression problem and the
goal is to predict the score r̂u,i for the given pair of
user/item IDs. Due to the adopted masking strategy,
u and i can both attend to each other and capture
the correlation between them. Here we make use
of a two-layer fully-connected network with sig-
moid activation σ to map su to a scalar score value:
r̂u,i = σ (suW1 + b1)W2 + b2, where the dimen-
sionality of input, hidden layer, and output are d, d,
and 1 respectively. Mean Squared Error loss (MSE)
is used for rating score regression:

Lr = E(u,i)∈T (ru,i − r̂u,i)
2

where ru,i is the ground-truth rating score and T
represents the training corpus.
Context token prediction The second represen-
tation si is designed to predict the context words
for a given user–item pair. Similar to su, si also
absorbs the words that are related to a certain user’s
preference and an item’s attributes. Thus, this auxil-
iary task is able to force the Transformer to exploit
the information hidden in the user ID and item ID.
Such design can mitigate the problem of identi-
cal explanations being generated. By passing si
into a single fully-connected layer with Softmax
activation, we can obtain a probability distribu-
tion over the vocabulary V for the context word:
Pc = Softmax (siWc + bc), where the dimension-
ality of input and output are d and |V|, respectively.
The predicted context tokens are the top-n words
with the highest probability. If we represent the
probabilities of these context words C as {ptc}nt=1,
then the negative log likelihood (NLL) loss can be
computed as:

Lc = E

[
1

n

n∑
t=1

− log ptc

]
Explanation/visualization generation The gener-
ation of explanation words and visual codes follows
the autoregressive style, i.e., decoding one token
at a time from left to right. Text generation is trig-
gered by the special [BOS] token, upon which we
repeatedly decode words until [EOS] is sampled. If
the number of generated text tokens before [EOS]
is less than n, we pad the sequence with [PAD].
If the text sequence length is greater than n, we
cut it off at length n. To obtain the visual code
sequence V̂, we iterate METER for a fixed number
of m steps conditioned on the text explanation Ê

and the previously generated visual code sequence.
Similar to context word prediction, we adopt a sin-
gle fully-connected layer for text representations
{se} to produce probability distributions over the
text vocabulary V . As for visual representations
{sv}, we employ another fully-connected layer to
produce probability distributions over the discrete
visual codebook Z . We can then sample words and
visual codes from the obtained probability distribu-
tions. For simplicity, we employ greedy decoding
as the sampling method to select the word/code
with the highest probability. If we denote the prob-
abilities of the sampled words and visual codes as
{pte}nt=1 and {ptv}mt=1, respectively, then the token-
level language modeling loss for text and visual
code generation can be expressed as:

Le = E

[
1

n

n∑
t=1

− log pte

]
+α·E

[
1

m

m∑
t=1

− log ptv

]
where α is a hyperparameter used to balance the
training of textual and visual token generation.
Text–image matching METER is capable of gen-
erating text–image explanation pairs. However, we
still need to know whether and to what degree
the generated image visualization matches the text
explanation from a global perspective. Hence we
adopt a text–image matching discriminator D to
measure the degree of congruency. From another
aspect, if a generated sentence contains more real-
world concepts, it is easier to ground the sentence
to corresponding visual tokens and obtain an image
visualization with higher fidelity. With contrastive
training, we in turn push METER to generate text
explanations with more grounded details. Our dis-
criminator is equipped with two separate encoders
for the visual token sequence and the text sequence.
Assuming the outputs of the two encoders to be
Ê and V̂, we can construct positive training text–
image pairs from the ground truth, as well as neg-
ative ones through alternate pairings. Thus, the
discriminator loss can be written as:

Ld = E [log (D(E,V))] + E
[
log
(
1−D

(
E, V̂

)]
+ E

[
log
(
1−D

(
Ê,V

)]
In summary, the overall training objective function
J consists of the aforementioned four losses:

J = min
Θ

(λeLe + λdLd + λrLr + λcLc)

Here, Θ denotes all trainable parameters, while
λe, λd, λr, λc are regularization weights to help



Figure 3: t-SNE visualization for the top 88 clusters of
sentence semantics when threshold is 0.95. For clarity,
we only show a subset of centric explanation sentences.

balance the learning of different tasks. METER is
then trained on J in an end-to-end manner.

4 Experiments and Discussions

4.1 Building Datasets

To conduct experiments, we adopt two publicly
available explainable recommendation datasets pro-
posed in Li et al. (2020). For each dataset, train-
ing/validation/testing splits are created following
the ratio of 8 : 1 : 1.

To enable the visually-enhanced model proposed
in this paper, we compile a collection of images
portraying real-world concepts. The real-world
concepts are obtained by clustering sentence se-
mantics with the help of Sentence-BERT (Reimers
and Gurevych, 2019). At first, we use Sentence-
BERT to compute the embeddings of all text expla-
nation sentences. Since many ground-truth explana-
tions have similar semantic meanings, we conduct
fast clustering to aggregate these explanation sen-
tences into different groups representing similar
concepts and topics. Figure 3 gives a t-SNE visual-
ization (Van der Maaten and Hinton, 2008) of the
top 88 clusters if setting the similarity threshold
to 0.95. From the figure, we can have a glimpse
of what kinds of topics these explanation typically
show. To ensure a proper amount of clusters, we
set the threshold to 0.85. Thus we obtain 16,577
clusters consists of the most common 99,066 expla-
nations for TripAdvisor and 64,937 clusters which
cover 283,895 explanations for Yelp.

The explanation sentences at cluster centers are
then used as query input to search relevant images
through Google Images API. For TripAdvisor and
Yelp, we retrieve the top 20 and top 10 images for
each centric explanation sentence. As a result, we
have a visual concept pool of 331,540 and 649,370

Text Expl.: The hotel is well located for
access to the falls and the tour services
from the hotel are satisfactory
Assigned image visualization:

Text Expl.: The rooms are all fully
equipped and the view of the golf
course was also nice
Assigned image visualization:

Text Expl.: we also had huevos
rancheros and cheese grits from room
Service one morning which was great
Assigned image visualization:

Text Expl.: The executive floor was
well stocked and snacks where
great
Assigned image visualization:

(b)

(a)

Figure 4: Example ground-truth text explanation–image
visualization pairs on (a) TripAdvisor and (b) Yelp
datasets.

images for TripAdvisor and Yelp, respectively.
After collecting enough images about dataset-

aware topics, we assign each text explanation the
most suitable image visualization by calculating the
similarity between the two modalities with CLIP
model (Radford et al., 2021). In this way, we build
the textual recommendation explanation–image vi-
sualization pairs for both datasets and then train
METER on the constructed multimodal pairs. In
Figure 4, we provide several text explanations with
their corresponding assigned image visualizations.

Table 1 shows the statistics of the established
multimodal explainable recommendation datasets.
Note that the TripAdvisor dataset mainly focuses
on the hotel and travel domain, while the major-
ity of the Yelp data is about restaurants. Records
in the two datasets consist of: user ID, item ID,
rating score (from 1 to 5), feature word, text expla-
nation, and image visualization aligned with the
text explanation.

Dataset Yelp TripAdvisor

#users 27,147 9,765
#items 20,266 6,280
#explanations 1,293,247 320,023
#features 7,340 5,069
#images 649,370 331,540

Table 1: Statistics of the experimental datasets.

4.2 Implementation Details
To ensure better representative ability of the visual
encoder used in METER, the three components



Methods
Text Explainability Text Diversity Text Quality Image Consistency

FMR↑ FCR↑ DIV↓ USR↑ BLUE-1↑ BLUE-4↑ ROUGE-1↑ ROUGE-2↑ CLIPScore↑

TripAdvisor

Att2Seq 0.06 0.15 4.32 0.17 15.27 1.03 15.92 2.09 -
Transformer 0.04 0.00 10.00 0.00 12.79 0.71 15.88 2.34 -
NETE 0.78 0.27 2.22 0.57 22.39 3.66 27.71 7.66 -
PETER 0.89 0.35 1.61 0.25 24.32 4.55 30.49 9.24 -
METER 0.90 0.39 1.42 0.56 24.57 4.76 30.77 9.41 0.62

Yelp

Att2Seq 0.07 0.12 2.41 0.13 10.29 0.58 13.29 1.31 -
Transformer 0.06 0.06 2.46 0.01 7.39 0.42 12.56 1.09 -
NETE 0.80 0.27 1.48 0.52 19.31 2.69 25.56 6.63 -
PETER 0.86 0.38 1.08 0.34 20.80 3.43 27.95 7.94 -
METER 0.88 0.35 1.02 0.42 21.30 3.61 28.32 8.09 0.59

Table 2: Performance comparison on the TEST splits of TripAdvisor & Yelp datasets among several explanation
generation methods. The metrics are organized into four groups – text explainability (FMR, FCR), text diversity
(DIV, USR), text quality (BLUE, ROUGE), and image consistency (CS). Note that here BLEU and ROUGE scores
are percentage values, while the other metrics are absolute values.

(i.e., encoder, decoder, and visual codebook) of VQ-
GAN are first pre-trained on the collected images
of the two datasets. For image visualization gener-
ation, we first sample 32 candidate images condi-
tioned on the corresponding explanations, and then
use the trained text–image discriminator to produce
match scores. The image with the highest match
score is finally selected as output. The embedding
size d of METER is set to 256, the dimensional-
ity of the feed-forward network’s hidden layer is
1, 024. The maximum text length n of the explana-
tion sequence is set to 15, while the length of the
visual token sequence m is set to 256, and the stan-
dard image size for VQ-GAN is set to 256× 256.
We keep the most frequent 20, 000 words as the
text vocabulary, while the size of the discrete visual
codebook is 1, 024. The Multimodally-Enhanced
Transformer uses L = 8 layers, each endowed with
a multi-head attention with h = 8 heads. We set
the regularization weights λe, λd, λr, and λc to
1.0, 1.0, 0.1, and 1.0, respectively. And we choose
7.0 as the value of the balancing hyperparameter
α. The METER model is trained with Adam op-
timization (Kingma and Ba, 2015) under a batch
size of 32, and the learning rate is set to 5× 10−4.
We conduct all experiments on NVIDIA Quadro
RTX 6000 GPUs.

4.3 Evaluation Metrics

We conduct our evaluation from three perspectives
– explanation generation performance, text–image
matching performance, and rating prediction per-
formance. For each of the three aspects, we adopt
both automatic and manual forms of evaluation

(see Sec. 4.6). For explanation performance, we
measure the text quality, diversity, and explain-
ability of the generated explanations. For the text
quality, we adopt BLEU-1 and BLEU-4, as well
as ROUGE-1 and ROUGE-2. To overcome the
drawbacks of the two traditional metrics, we also
employ Unique Sentence Ratio (USR) proposed
by Li et al. (2020) to quantify the diversity of the
generated sentences. For the diversity in feature
word level, we adopt Feature Diversity (DIV) pro-
posed in Li et al. (2020), which measures the in-
tersection of features between any two generated
explanations. In explainable recommendation, an
explanation will normally be valued more by users
if it justifies a recommendation’s advantage using
certain feature words as specified in the datasets.
Thus, we adopt two more metrics tailored for ex-
plainability evaluation proposed by Li et al. (2020)
– Feature Matching Ratio (FMR) and Feature Cov-
erage Ratio (FCR). Specifically, FMR measures
whether a generated explanation contains the fea-
ture in the ground-truth, while FCR is computed
as the number of distinct features contained in the
generated explanations, divided by the total num-
ber of features in the whole dataset. To assess the
text–image matching, we adopt CLIPScore (CS)
proposed by Hessel et al. (2021) as an objective
metric to measure the degree of correspondence for
cross-modality pairs. For the rating prediction per-
formance, we rely on two standard metrics – Root
Mean Square Error (RMSE) and Mean Absolute
Error (MAE). By including the recommendation
experiment, we merely seek to prove that the rat-
ing scores predicted by our method are sufficiently



Figure 5: Qualitative results generated by METER with a conditional feature word as input: (a) is from TripAdvisor,
while (b) is from Yelp. The real-world concepts in the generated explanations are highlighted.

strong to merit explanation generation, because if
a rating prediction is inaccurate, the generated ex-
planation will be less meaningful.

4.4 Comparison Baselines

For the performance comparison, we consider sev-
eral baselines with regard to the task of expla-
nation generation: Attn2Seq (Dong et al., 2017)
learns to encode attributes into vectors, and then
invokes an attention mechanism to generate re-
views conditioned on the attribute vector. Trans-
former (Vaswani et al., 2017) treats user and item
IDs as words and trains on the explanation gen-
eration task with a vanilla Transformer structure
through language modeling. NETE (Li et al., 2020)
designed a tailored GRU module to incorporate the
given feature into the decoding stage. The sys-
tem can generate template-like explanations while
also making recommendations. PETER (Li et al.,
2021a) is a simple and effective framework that
attempts to use the IDs to predict the words in the
target explanation. It is built upon a modified atten-
tion mask of the Transformer model. With regard
to mere recommendation, we compare with two tra-
ditional methods in addition to NETE and PETER:
PMF (Salakhutdinov and Mnih, 2007) conducts
probabilistic matrix factorization in latent space.
SVD++ (Koren, 2008) combines factor and neigh-
borhood models to enhance the accuracy.

4.5 Results and Analysis

In this section, we evaluate the performance of
the proposed METER approach on two real-world
datasets and compare with several representative
explanation generation methods in Table 2 and rec-
ommendation models in Table 3. From Table 2, we
can see that METER achieves the best FMR and
DIV against all other methods, showing that ME-
TER can cover more diverse feature words during
generation while maintaining good explainability.
METER notably improves the USR over PETER
but is slightly lower than NETE. Note that NETE is
a template-based approach so it naturally achieves
high USR scores. Among all methods, METER
exhibits the best balance between text quality and
text diversity, while being the only method that
can produce both text and images, with reasonably
high Image Consistency. Since automatic metrics
cannot completely reflect the quality and faithful-
ness of generated text explanations, we also con-
duct a user study in the next subsection for further
verification. Moreover, Table 3 indicates that ME-
TER can achieve comparable rating performance to
other approaches. In Figure 5, we present several
real examples illustrating how METER is able to
jointly generate not only high-quality rating scores
and text explanations but also image visualizations.
Taking the first case in (b) as an example, we ob-
serve how METER creates coherent explanations



Methods
Yelp TripAdvisor

RMSE ↓ MAE ↓ RMSE ↓ MAE ↓

PMF 1.09 0.88 0.87 0.70
SVD++ 1.01 0.78 0.80 0.61
NETE 1.01 0.79 0.79 0.60
PETER 1.01 0.78 0.81 0.63
METER 1.01 0.79 0.80 0.61

Table 3: Recommendation performance comparison in
terms of RMSE and MAE among several methods.

rather than directly copying the feature word into
the generated sentence, leading to greater diversity.

4.6 User Study
To genuinely assess the quality of text explanations
generated by METER and whether the image visu-
alization matches the text explanation, we conduct
a user study on the faithfulness of the generated text
explanations with associated visual grounding. We
randomly sampled 500 generated explainable con-
textual sentences as well as corresponding image
visualizations. For comparison, we also randomly
pick 500 samples from the baselines and randomly
mixed them with the samples from our method. We
asked 30 human subjects to provide a rating range
from 1 − 5, where larger scores represent better
faithfulness and diversity. For better evaluation, we
also provide the original user/item information and
ground-truth explanation sentence for their refer-
ence. We consider Faithfulness as a criterion to as-
sess the degree of explainability of the text, which
encompasses both its readability and its cogency to
the human participants. A higher Diversity repre-
sents more lexically varied generated context. We
further consider Consistency representing to what
extent the generated images match the associated
generated sentence, while higher Quality scores in-
dicate the generated image contains clearer details
and better fidelity. We then calculate the overall
scores by averaging the ratings given by each hu-
man participant across 500 samples each from both
the baseline and from our method. The results are
reported in Table 4 and show that our method can
generate diverse and faithful explanation sentences
of a higher quality than PETER, while also attain-
ing a high image quality and good cross-modal
consistency.

4.7 Ablation Study
We also provide an ablation study of the training
tasks on TripAdvisor dataset. According to Table 5,
the context prediction task has a big influence on

Sentence Image

Faithfulness Diversity Consistency Quality

Baselines 3.41 2.96 2.54 3.04
Ours 4.57 3.70 3.06 4.19

Table 4: Manual evaluation performance between ME-
TER and baselines. Note that the baseline for sentence
generation is PETER, while for image generation it
is METER without VQ-GAN tokenizer pretrained on
images of certain dataset. Results are not comparable
across two domains (Sentence & Image).

Expl. Div. Qual. Rec. Cons.

FMR FCR DIV USR B4 RMSE CS

w/o Lc 0.82 0.20 1.73 0.33 4.22 0.80 0.57
w/o Lr 0.85 0.38 1.45 0.54 4.71 3.25 0.60
w/o Lv 0.87 0.37 1.49 0.45 4.58 0.80 0.13
w/o Ld 0.83 0.34 1.58 0.39 4.35 0.80 0.54
w/o f 0.07 0.17 2.51 0.15 1.09 0.81 0.59
METER 0.90 0.39 1.42 0.56 4.76 0.80 0.62

Table 5: Ablation study of different training loss com-
ponents of METER on the TripAdvisor dataset.

the explainability and diversity of the generated
explanations. The feature word has a vital role
in deciding the topic for the model to consider.
Obviously the rating prediction task is important
for recommendation performance, while the visual
generation task is decisive for the image consis-
tency score. As we expected, the discriminator loss
can assist the model to generate both diverse expla-
nations and better image visualizations.

5 Conclusion

In this paper, we propose METER, the first attempt
to jointly generate rating scores, text explanations,
and corresponding image visualizations. We im-
merse our model in a multimodal environment by
putting all modalities to one shared Transformer
decoder structure. A text–image matching discrim-
inator is further introduced to encourage sentences
with more groundable and fine-grained concepts.
Experimental results demonstrate that our frame-
work can provide diverse and faithful text expla-
nations, together with image visualizations as ad-
ditional intuitive explanations. This proves that
visual information offers auxiliary knowledge for
the explanation generation model to gain aware-
ness of real-world semantics. Our dataset and
code are available at https://github.com/
jeykigung/METER. In the future, we plan to
investigate generating visually-enhanced explana-
tions for more domains such as fashion and movie.

https://github.com/jeykigung/METER
https://github.com/jeykigung/METER
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