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ABSTRACT
To facilitate human decisions with credible suggestions, personal-
ized recommender systems should have the ability to generate corre-
sponding explanations while making recommendations. Knowledge
graphs (KG), which contain comprehensive information about users
and products, are widely used to enable this. By reasoning over a
KG in a node-by-node manner, existing explainable models provide
a KG-grounded path for each user-recommended item. Such paths
serve as an explanation and reflect the historical behavior pattern
of the user. However, not all items can be reached following the
connections within the constructed KG under finite hops. Hence,
previous approaches are constrained by a recall bias in terms of
existing connectivity of KG structures. To overcome this, we pro-
pose a novel Path Language Modeling Recommendation (PLM-Rec)
framework, learning a language model over KG paths consisting
of entities and edges. Through path sequence decoding, PLM-Rec
unifies recommendation and explanation in a single step and fulfills
them simultaneously. As a result, PLM-Rec not only captures the
user behaviors but also eliminates the restriction to pre-existing
KG connections, thereby alleviating the aforementioned recall bias.
Moreover, the proposed technique makes it possible to conduct ex-
plainable recommendation even when the KG is sparse or possesses
a large number of relations. Experiments and extensive ablation
studies on three Amazon e-commerce datasets demonstrate the
effectiveness and explainability of the PLM-Rec framework.

CCS CONCEPTS
• Information systems→ Recommender systems; • Computing
methodologies→ Knowledge representation and reasoning.
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1 INTRODUCTION
Explainable recommender systems have attracted increasing at-
tention both in industry and in academia. Such systems not only
bridge the gap between how the algorithm and customers per-
ceive the relevance of items, but also open up the black box of the
algorithmic decision process [56]. A prominent approach is that
of explaining recommendations by means of knowledge graphs
(KG) [1, 17, 23, 46, 48, 50, 51, 58, 59]. Such KGs [21] regard each
user or item attribute as a vertex, and their relations are leveraged
to build the graph edges (see Figure 1 for an example). Routes from
a user to recommended items can serve as explanations, such that
the relations along the path reflect a simulated decision-making
process and thus provide explicit semantics for the explanations.

While existing KG-enhanced recommender systems have achieved
many promising results, the KG paths used as explanations are usu-
ally produced in a post-hoc [1], pre-defined [48] or path-guided [50,
51, 59] manner, which entails a number of inherent weaknesses.
In post-hoc approaches, the explanations are subsequently pro-
duced after a separate model predicts the recommended items. Since
the generated explanations are not necessarily related with and
may even be orthogonal to the recommendation decision process,
they are not well-suited to promoting the system’s transparency.
Pre-defined methods (e.g., [48]) usually require enumerating all
explanatory paths in an exhaustive manner before making final
recommendation predictions, which is impractical in real-world
recommender systems. Finally, existing approaches attempt to cap-
ture user behavior patterns and item-side knowledge originating
from the KG to ensure the generalization ability in the inference
stage. The latter can be achieved by either exploiting neural sym-
bolic modules [51], adopting a reinforcement learning agent [50], or
mining neural logic rules [59]. With the learned personalized rule
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and reward function, these methods conduct path-guided reasoning
over KG.

However, all of the previous work remains limited to following
the truly connected relations and edges in the KG to arrive at a
reachable set of terminal items. In other words, the topology of
the KG predetermines which items can be recommended, while a
proportion of items may be entirely unreachable along any short
multi-hop KG paths – we denote this phenomenon as recall bias.
Such recall bias may impede the applicability of these approaches in
particular to KGs that are sparse or have a large number of relations.

We claim that an ideal KG explanation should accurately re-
veal the system’s internal decision-making, i.e., how the system
arrives at a recommendation, and the explanatory paths should be
produced in an efficient manner to avoid combinatorial explosion.
Moreover, a KG-based explainable approach should also gain the
capability of inferring new paths beyond the limits of the static
pre-constructed KG topology and better represent user behavior
patterns, as it is not feasible in practical recommendation scenarios
to offer explainable paths within the established KG based purely
on historical user behavior and preference patterns. Fortunately,
path language modeling is a promising avenue to achieve these
goals in a unified manner. Recent work by Li et al. [28] learns an
auto-regressive language model [33, 34] to predict the next edge
or entity, given previous edges or entities in a path. In their work,
they use the learned language model as a scoring function to rate
the salience and coherence of a single path and select suitable path
instances to construct a graph schema.

In our work, we train a path language model on possible KG
paths between every user–item pair. However, unlike Li et al. [28],
our trained path language model is used to predict novel paths and
make recommendations rather than merely serving as a scoring
function. With a user token as initial prompt, we generate potential
paths with the learned path language model until a terminal <eos>
token is decoded or the hop limit is reached. By calculating the
joint probability of each generated path, our Path Language Model-
ing Recommendation (PLM-Rec) selects items from high-scoring
paths and makes recommendations. Thus, PLM-Rec can preserve
the possibility of reaching even items that are unreachable through
existing KG paths, thereby circumventing the recall bias in previous
approaches. Additionally, PLM-Rec regards relations as a special
type of edge tokens, which enables effortless scalability to a large
number of relations. Last but not least, path-guided reasoning ap-
proaches [51, 59] typically require an additional fine stage to ground
personalized rules to concrete KG paths. In contrast, PLM-Rec pre-
dicts next edge or entity tokens that naturally form a concrete path,
obviating the need for any further processing steps. In summary,
PLM-Rec merges reasoning and recommendation in a single stage
and addresses all of the aforementioned shortcomings of previous
approaches simultaneously.

In this work, we learn to capture user–item interactions through
path language modeling over KG paths. We particularly seek to
understand the following questions: 1) how to verify the concerns
about recall bias in existing KG-based explainable recommendation
approaches and quantify such recall bias; 2) how to perform path
language modeling over a KG as well as unify the path reasoning
and item recommendation processes into a shared path decoding
stage; 3) how to infer paths beyond the predefined KG topology by

(a) Path-Guided Reasoning

(b) Path Language Modeling
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Figure 1: An example to illustrate the difference between a)
traditional Path-Guided Reasoning approaches (relations in
reasoning path shown as red lines) and b) the proposed Path
LanguageModeling Recommendation (relations in generated
path sequence are shown in red boxes) when performing in-
ference over knowledge graphs. PLM-Rec is able to go beyond
the original KG topology by learning semantic relationships
among features.

means of suitable decoding strategy so as to enhance the general-
ization ability of the model. The key contributions of our paper can
be outlined as follows:
• We point out the shortcomings of previous KG-based explainable
recommender systems where the newly discovered recall bias
affects the recommendation performance but has been neglected
in previous work.

• We conduct data-driven studies to prove the existence of recall
bias in knowledge graphs and devise a new metric to quantify
and evaluate such recall bias.

• We propose PLM-Rec to conduct reasoning over knowledge
graphs for explainable recommendation, which learns to capture
user behavior and item-side knowledge through path language
modeling. As a result, PLM-Rec addresses the shortcomings in a
unified framework, especially for the recall bias.

• Experiments on multiple real-world e-commerce recommenda-
tion datasets demonstrate that our approach outperforms several
state-of-the-art baselines in terms of recommendation perfor-
mance, while generating intuitive explanations.

2 RELATEDWORK
Recommendation with Knowledge Graphs. Recommender Sys-
tems (RS) can be modeled as either a perceptual learning problem
through Collaborative Filtering (CF) [16, 37] or a cognitive reason-
ing problem through Collaborative Reasoning (CR) [6, 7, 39]. Re-
cently, it has become increasingly important to incorporate knowl-
edge graph (KG) reasoning into recommender systems for both bet-
ter performance and explainability. Previous efforts have attempted
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to make recommendations to users with the help of knowledge
graph embeddings [2]. One research direction leverages knowledge
graph embeddings as rich content information to enhance the rec-
ommendation performance. For example, Zhang et al. [55] adopted
knowledge base embeddings to generate user and item represen-
tations, while Huang et al. [23] employed memory networks over
knowledge graph entity embeddings for recommendation. Wang
et al. [46] proposed a “ripple” network approach for embedding-
guided multi-hop KG-based recommendation. Another research
trend attempts to leverage the entity and path information in the
knowledge graph to make explainable decisions. For example, Ai
et al. [1] incorporate the learning of knowledge graph embeddings
for explainable recommendation. However, their explanatory paths
are essentially post-hoc explanations, as they are generated by soft
matching after the corresponding items have been recommended.
Wang et al. [48] proposed an RNN based model to reason over
KGs for recommendation, which however requires enumerating
all possible paths between each user–item pair for model training
and prediction, which can be very time consuming for large-scale
knowledge graphs. Xian et al. [50] formulate KG-based recommen-
dation as a Markov Decision Process with path-based inference
guided by learned policies. CAFE [51] further introduces a coarse-
to-fine paradigm on the basis of neural symbolic reasoning for
explicit user pattern modeling. LOGER [59] adopts neural logic
reasoning to learn personalized rules with the help of the EM al-
gorithm. However, these two methods both require an additional
fine stage to ground user profiles to concrete paths. Our proposed
approach is different from previous research in that it facilitates
on-the-fly reasoning so that the recommendations are direct results
of the explainable reasoning procedure. Meanwhile, there is no
need to extract all paths between user–item pairs during inference,
which makes the algorithm applicable to large-scale knowledge
graphs.

Explainable Recommendation. Explainable recommendation
has been an important task in both academia and industry [43, 44,
52, 56]. Early approaches predominantly attempt to make latent
factor models explainable by aligning each latent dimension with
an explicit features [9, 57]. With the rapid growth of deep learning
technology, neural network components such as attention mecha-
nisms were harnessed for improved explainability. User review text
related to a user or item is concatenated to form a document, and by
attentively seeking out valuable information within the document,
highlighting the parts with the highest attention weights may serve
as an explanation. For example, Seo et al. [38] attentively high-
light particular words in user reviews as explanations, and Chen
et al. [8, 10] proposed visually explainable recommendation by
highlighting image regions. Based on natural language generation,
recent research also generate natural language explanations for
recommendation [5, 27]. In addition to text-based or image-based
explainable recommendation, more recently, knowledge-aware ex-
plainable recommendation has attracted substantial research at-
tention [1, 46, 50, 51, 59], as introduced in the previous subsection.
HeteroEmbed [1] is a representative method, which conducts ex-
plainable recommendation by reasoning over knowledge graph
embeddings, where the paths between a user and recommended
items in the knowledge graph are considered as explanations.

Language Modeling over Paths. Language models [33] leverage
various statistical or probabilistic techniques to establishes contex-
tual rules and determine the probability of a given sequence of natu-
ral languagewords. Substantial progress has been achieved in recent
years with neural auto-regressive language modeling [12, 32, 34],
as most notably embodied in the success of the GPT series [4, 35],
contextualized language modeling [11, 30, 54] as in the success-
ful BERT [13] models, or a combination of both styles [14, 26, 40].
There are also attempts to incorporate KGs into pretrained language
models [29, 42, 49] for improved entity-aware representations or
better natural language generation [3, 18, 31, 53]. In the mean-
time, language models have also been applied to directly learn
node representations over paths in a heterogeneous graph struc-
ture [15, 19, 20]. Recently, Li et al. [28] first proposed to employ a
path language model for event graph schema induction, where a
path in the KG is represented as a sequence of interleaved entity and
edge tokens. The learned path language model is then utilized to
score and select coherent and salient event schemas. Our proposed
PLM-Rec approach shares a similar idea, but utilizes the learned
path language model to not only capture user–item interactions
but also generate the candidate path sequences with corresponding
joint probabilities as ranking scores. Hence, the recommendation
and path reasoning processes are unified in a single process. At the
same time, PLM-Rec overcomes the constraints of the predefined
KG topology by only considering the coherence and reasonableness
of candidate paths.

Table 1: Recall bias statistics.

Cellphones Grocery Automotive

3-hop 41% 37% 36%
4-hop 35% 29% 30%
5-hop 19% 12% 14%

3 PRELIMINARIES
In this section, we introduce basic concepts concerning the problem
of KG-based Explainable Recommendation.

In general, there are two graphs available for KG-based recom-
mendation tasks. One is the product graph containing attributes of
all items GA , which can be defined as GA = {(𝑒ℎ, 𝑟 , 𝑒𝑡 ) | 𝑒ℎ, 𝑒𝑡 ∈
E𝑝 , 𝑟 ∈ R𝑝 }, where E𝑝 is the entity set and R𝑝 is the relation set.
A triplet (𝑒ℎ, 𝑟 , 𝑒𝑡 ) indicates that the head entity 𝑒ℎ and the tail
entity 𝑒𝑡 are connected by the directed relation 𝑟 . Another graph
GUV stores the user–item interaction data, which consists of two
separate entity sets U and V , and E𝑢 = U ∪V . The user entity
𝑢 ∈ U and item entity 𝑣 ∈ V are connected by a special interaction
relation 𝑟𝑢𝑣 ∈ R𝑢 when there is a purchase action in e-commerce
or a like action in music recommendation for the user–item pair.
By merging GA with GUV , the resulting user-centric knowledge
graph G can be used for recommendation. In KG-based explainable
recommendation, a path can be formally defined as a sequence 𝑆
of entities and relations in KG: 𝑆 (𝑒0, 𝑒𝑙 ) = {𝑒0, 𝑟1, 𝑒1, 𝑟2, · · · , 𝑟𝑙 , 𝑒𝑙 },
where 𝑙 + 1 entities {𝑒𝑖 }𝑙𝑖=0 are connected by 𝑙 relations {𝑟 𝑗 }

𝑙
𝑗=1. We

call 𝑆 (𝑒0, 𝑒𝑙 ) an 𝑙-hop path that links head entity 𝑒0 to tail entity
𝑒𝑙 . In user-centric recommendation scenarios, a reasoning path
𝑆 (𝑢, 𝑣) that originates from a user entity and ends at an item entity
(i.e., 𝑒0 ∈ U and 𝑒𝑙 ∈ V) is eligible to serve as an explanation of
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recommendation. Specifically, the relation sub-sequence of 𝑆 (𝑢, 𝑣)
can be denoted as 𝜋 (𝑢) = {𝑟 𝑗 }𝑙𝑗=1, which partly represents user
𝑢’s preference and behavior pattern. Based on the aforementioned
concepts and notations, we thus formalize the problem of KG-based
Explainable Recommendation (KG-ER) as: Given a knowledge graph
G and a test user 𝑢, the goal is to select a set of 𝐾 recommendation
items {𝑣𝑘 | 𝑣𝑘 ∈ V, (𝑢, 𝑟𝑢𝑣𝑘 , 𝑣𝑘 ) ∉ G}𝐾

𝑘=1 for user 𝑢 along with 𝐾
corresponding user-centric reasoning paths {𝑆 (𝑢, 𝑣𝑘 )}𝐾𝑘=1.

4 RECALL BIAS FOR KG PATHS
Once constructed, knowledge graphs are often considered as gold
standard data sources. Prior approaches [1, 46, 50, 51, 59] follow the
preexisting connections in KGs to perform path-guided reasoning
and make recommendations. However, merely considering such
truly connected paths may lead to important items never being
reachable given the fixed lengths of reasoning paths, which limits
the recall rate even before any training has taken place. The key
question becomes how to formalize and quantify such statistical
parity [41] in terms of the new reach ratio of ground-truth items
that originated from the constructed KGs.

To quantify such recall bias, we straightforwardly leverage the
ratio of unreachable items given the fixed lengths of reasoning
paths to demonstrate the degree of recall bias arising in the datasets.
Formally, we denote such items as V̂ and the recall bias can be
calculated as | V̂ |

|V | , where the denominator is the number of ground
truth items in the test dataset. To verify our claim, we first conduct
a data-driven study to prove the existence of recall bias in KG-based
explainable recommendation. Note that such post-hoc statistical
experiments are designed only to verify our concerns for existing
KG-based explainable recommendations and our model does not
take such information as prior input. The results are given in Table 1,
while dataset details can be found in Section 6.

We further design a corresponding metric called new reach
ratio (NR2) to measure to what extent the KG based explainable
model mitigates the recall bias. Formally, it is defined as

NR2 =
1
|U|

∑︁
𝑢∈U

|𝑉𝑢 |
|𝑉 top
𝑢 |

, (1)

where |𝑉 top
𝑢 | denotes the number of ground truths items in top-K

results of user 𝑢 generated by recommender models. |𝑉𝑢 | stands for
the number of new ground truths items within top-K predictions
that are discovered by recommender models and𝑉𝑢 ∈ V̂ . Note that
these items cannot be reached through path-finding in the original
graph by any of the baseline methods.

5 PATH LANGUAGE MODELING FOR
RECOMMENDATION

In this section, we first revisit previous paradigms for the KG-
ER problem. Then we describe how to construct training path
sequences and relevant sequence augmentation strategies. Sub-
sequently, we introduce our proposed Path Language Modeling
Recommendation (PLM-Rec) framework with details on the embed-
ding layer, model, and training objective. Finally, we present how
to decode candidate path sequences and make recommendation
with the trained PLM-Rec model.

5.1 Overview of KG-ER problem
The KG-ER problem consists of two sub-tasks – making recom-
mendations for each user and generating a path sequence as the
explanation of each recommended item. We denote the two tasks as
functions 𝑓 (·) and 𝑔(·). Many approaches [1, 17, 46, 48, 50, 51, 59]
have been proposed for solving the KG-ER problem. Typically, they
follow three different paradigms during inference, namely post-hoc,
pre-defined, or path-guided inference.

In the post-hoc paradigm, the recommendation is first made by
calculating a similarity score between user and item embeddings
trained with rich KG information: {𝑣𝑘 }𝐾𝑘=1 = 𝑓 (𝑢,V). Then, a
separate path-finding process is conducted to retrieve explainable
paths: {𝑆 (𝑢, 𝑣𝑘 )}𝐾𝑘=1 = 𝑔

(
𝑢, {𝑣𝑘 }𝐾𝑘=1,G

)
. In the pre-defined para-

digm, all paths that connect interacting user–item pairs are first
extracted from G through a search algorithm such as breadth-first
search. For a random user 𝑢, we assume there are 𝑀 retrieved
paths: {𝑆 (𝑢, 𝑣𝑖 )}𝑀𝑖=1 = 𝑔 (𝑢,G). A pretrained path scoring model
is finally invoked to select prominent paths and make recommen-
dations: {𝑣𝑘 , 𝑆 (𝑢, 𝑣𝑘 )}𝐾𝑘=1 = 𝑓

(
{𝑆 (𝑢, 𝑣𝑖 )}𝑀𝑖=1

)
. Starting from a user

𝑢, path-guided approaches directly move along KG connections
until reaching a final item 𝑣 . The whole process can be represented
as {𝑣𝑘 , 𝑆 (𝑢, 𝑣𝑘 )}𝐾𝑘=1 = 𝑔(𝑢,G). Nevertheless, all above paradigms
are restricted to pre-existing paths in the constructed KG. In fact,
G is built with historical data and is usually incomplete. Under
a limited path length, some potential items can never be reached
from a given user. Thus, it is necessary to relax the requirement of
path tracking and allow the exploration of new connections across
nodes in the KG. This approach is at least as powerful as increasing
the maximum path length in the aforementioned paradigms.

In contrast to prior approaches, our PLM-Rec framework can
alleviate the recall bias and achieves explainable recommendation
in a single unified step. After training a path language model 𝜙 (·),
we directly apply it to generate candidate path sequences for each
user: {𝑣𝑘 , 𝑆 (𝑢, 𝑣𝑘 )}𝐾𝑘=1 = 𝜙 (𝑢), where the relations in 𝑆 (𝑢, 𝑣𝑘 ) may
either be original links in the KG or novel ones.

5.2 Path Language Modeling over KGs
Training Path Sequence Construction. Knowledge graphs in e-
commerce are massive and informative, comprising a large number
of entities and relations. For the purpose of training path language
models, we require large amounts of path sequences that both rep-
resent user behavior pattern and item-side knowledge. To this end,
we first employ an off-the-shelf random walk algorithm used in
previous work [25] to extract training paths from G with maximum
number of hops 𝑁 . The training paths satisfy two requirements: 1)
starting from a user entity 𝑢 and ending at an item entity 𝑣 . 2) 𝑢
and 𝑣 are connected by an interaction relation 𝑟𝑢𝑣 in the user–item
interaction graph GUV . Without loss of generality, we denote an 𝑙-
hop extracted path as 𝑆train = [𝑢, 𝑟1, 𝑒1, 𝑟2, · · · , 𝑒𝑙−1, 𝑟𝑙 , 𝑣]. Although
the original training paths include enough historical records re-
garding users and items, they are insufficiently diverse to explore
new possibilities within the KG. To further improve the robustness
of the trained PLM-Rec model, it is necessary to augment the input
sequences. After examining the constructed KG, we made the fol-
lowing observations: 1) User reviews typically contain descriptions
of the features of purchased items, and these features account for
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Figure 2: Overview of PLM-Rec framework. (a) shows an example knowledge graph G, from which we extract training path
sequences under different hop constraints. By leveraging augmentations for features with similar semantics, we achieve a
series of training data 𝑆 (𝑢, 𝑣) in (b). We adopt a Transformer-based decoder to train an autoregressive path language model 𝜙 (·)
in (c). The entire pipeline including path generation and recommendation steps for test users is presented in (d).

a large proportion of all entities; 2) due to the scale of G, there
are many similar but distinct style or feature entities. Hence, we
perform sequence augmentation by randomly substituting a style
or feature entity with a similar entity. We use Sentence-BERT [36]
as a metric to measure the semantic similarity and set a similarity
threshold \ to decide augmentation candidates for all style and fea-
ture entities. The union of original and augmented path sequences
serves as the final overall training data.
Token Types and Embeddings. In PLM-Rec, we define two basic
types of input tokens – entity tokens and relation tokens.We denote
their embeddings as E𝑒 ∈ R |E |×𝑑 and E𝑟 ∈ R |R |×𝑑 , where 𝑑 is the
dimensionality of embeddings. The embedding of 𝑆train can be rep-
resented as Strain = [u, r1, e1, r2, · · · , e𝑙−1, r𝑙 , v]. The generation of
path sequences follows the autoregressive style [33], i.e., decoding
one token at a time from left to right given the sequence of previ-
ously observed tokens. The generation is triggered by the initial
user entity token 𝑢, upon which we alternatively decode relation
tokens and entity tokens until reaching the special <eos> token,
which indicates the termination of the sequence. The maximum
hop number 𝑁 implies that the maximum length 𝐿 of desired path
sequences is 𝐿 = 2𝑁 + 1. If the number of generated text tokens
before <eos> is less than 𝐿, we pad the sequence with another spe-
cial token <pad>. Before feeding the token sequence into PLM-Rec,
we add positional embeddings P ∈ R𝐿×𝑑 to the raw embeddings,
capturing the position within the sequence. Furthermore, we also
add a type embedding T = [𝑡1, 𝑡2, 𝑡1, · · · , 𝑡2, 𝑡1, 𝑡0] ∈ R𝐿×𝑑 to help
distinguish entities and relations. Specifically, 𝑡1, 𝑡2, 𝑡0 stands for
entities, relations, and special tokens respectively. The final input
sequence representation S0 can be written as

S0 = Strain + P + T (2)

Autoregressive Path Language Model. To capture the probabil-
ity distribution of entity and relation tokens, we adopt Transformer
[45] decoder layers to learn the autoregressive path language model.

Suppose the Transformer decoder layer has ℎ heads in multi-head
self-attention. For input sequence S𝑖 at layer 𝑖 ∈ [0, 1, . . . , 𝑙], the
encoded sequence S𝑖+1 can be computed as

S𝑖+1 = FFN𝑖
(
Attention

(
S𝑖WQ, S𝑖WK, S𝑖WV

) )
Here, WQ,WK,WV ∈ R𝑑×𝑑ℎ are weight matrices for projecting
query, key, and value respectively [45], 𝑑ℎ = 𝑑/ℎ is the dimension-
ality for each head. FFN𝑖 is a feed-forward module consisting of
two fully-connected layers with ReLU activation. The Attention
function is defined as

Attention(Q,K,V) = softmax

(
QK⊤√︁
𝑑ℎ

)
V

with a scaling factor
√︁
𝑑ℎ that maintains the order of magnitude

in features. We adopt a traditional causal masking strategy during
training to avoid any leakage of future information [45].

Finally, we predict next tokens with two separate fully-connected
layers. For entity and relation tokens, we have

𝑃
(
𝑒 𝑗 | 𝑢, . . . , 𝑟 𝑗

)
= Softmax (S𝑙𝑊𝑒 + 𝑏𝑒 ) (3)

𝑃
(
𝑟 𝑗+1 | 𝑢, 𝑟1, . . . , 𝑒 𝑗

)
= Softmax (S𝑙𝑊𝑟 + 𝑏𝑟 ) (4)

to estimate the token probability distribution, respectively. 𝑊𝑒 ,
𝑊𝑟 , 𝑏𝑒 , 𝑏𝑟 are weight matrices and bias vectors of the two fully-
connected layers. Then the language modeling loss for path se-
quence generation can be expressed as

L𝑃𝐿𝑀 =
∑︁
𝑆train


∑︁

𝑒 𝑗 ∈𝑆train
log 𝑃

(
𝑒 𝑗 | 𝑢, . . . , 𝑟 𝑗

)
+

∑︁
𝑟 𝑗+1∈𝑆train

log 𝑃
(
𝑟 𝑗+1 | 𝑢, 𝑟1, . . . , 𝑒 𝑗

)
(5)
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5.3 Path Generation and Recommendation
Decoding Path Sequences. With the pretrained PLM-Rec model
𝜙 (·) and an initial user token 𝑢, we can conduct path generation
under certain decoding strategy. The goal of explainable recom-
mendation is to select the list {𝑣𝑘 , 𝑆 (𝑢, 𝑣𝑘 )}𝐾𝑘=1, so greedy search
is unsuitable, since only one sequence would be decoded. In this
paper, we adopt Nucleus Sampling [22] as the strategy for decoding
path sequences. We define the nucleus probability to be 𝑝 . Thus,
we can select a top-𝑝 vocabulary 𝑉 (𝑝) ⊂ 𝑉 at each decoding step
as ∑︁

𝑆𝑖 ∈𝑉 (𝑝 )

𝑃 (𝑆𝑖 | 𝑆1:𝑖−1) ≥ 𝑝 (6)

Based on 𝑉 (𝑝) , we re-scale the original distribution to a new one,
and then sample the next word from it:

𝑃 ′ (𝑆𝑖 | 𝑆1:𝑖−1) =
{
𝑃 (𝑆𝑖 | 𝑆1:𝑖−1) /𝑝 ′ if 𝑆𝑖 ∈ 𝑉 (𝑝)

0 otherwise.
, (7)

where 𝑝 ′ =
∑
𝑆𝑖 ∈𝑉 (𝑝 ) 𝑃 (𝑆𝑖 | 𝑆1:𝑖−1). To make recommendations, we

usually sample 𝑇 > 𝐾 sequences from the learned path language
model, and finally select 𝐾 sequences along with corresponding
items by ranking the joint probability 𝑃 (𝑢, 𝑟1, 𝑒1, · · · , 𝑟𝑙 , 𝑣).

6 EXPERIMENTS
In this section, we evaluate the performance of the proposed PLM-
Rec approach on real-world datasets compared with seven repre-
sentative and state-of-the-art recommendation methods. We aim
to answer the following research questions:
• RQ1: How does PLM-Rec perform compared with state-of-the-
art knowledge-based recommendation methods?

• RQ2: How do factors such as the path length, sequence augmen-
tation, decoding strategy affect the performance of PLM-Rec?

• RQ3: Can PLM-Rec provide reasonable explanations about user
preferences towards certain recommended items?

Table 2: Basic statistics of the experimental datasets.

Dataset Cellphones Grocery Automotive

#Users 61,254 57,822 95,445
#Items 47,604 40,694 78,557
#Interactions 607,673 709,280 1,122,776
Sparsity (%) 0.0208 0.0301 0.0150

#Entities 169,331 173,369 270,543
#Relations 45 45 73
#Triples 3,117,051 3,742,954 4,580,318

6.1 Experimental Setup
Datasets.We adopt the consumer transaction dataset crawled from
Amazon.com1 in our experiments. The dataset includes user reviews
& transactions (user_id, item_id, rating, user review, etc.) and item
metadata (item_id, price, related_items, category, brand, etc.) on
24 product categories dated from May 1996 to July 2014. We take
three categories (Cellphone, Grocery, Automotive) of different entity
and relation sizes to validate the performance of our model. We
1https://nijianmo.github.io/amazon/

utilize the Amazon e-commerce dataset in that it is a large-scale
dataset for e-commerce recommendation, which contains rich user
behavior patterns (such as mentioned feature words, preferred
styles, etc.) and item-side knowledge (such as brands, categories,
related products, etc.), and thus enables the creation of a large-scale
product knowledge graph to generate recommendations together
with corresponding explanations. In the constructed knowledge
graphs, each user entity is connected to the item entities that they
interacted with before through a purchase relation, and each item
is connected to its brand/category/feature as well as related items
through other attribute relations. A path is considered valid as long
as it connects a user with the recommended item. As indicated
in previous work [17, 48], greater path lengths introduce more
noisy entities, while shorter paths tend to be more reliable for users
as explanations of recommended items. Hence, we only take into
consideration paths with up to 5 hops of relationships throughout
our experiments. More detailed statistics of the three datasets are
reported in Table 2. On each dataset, we split the records into
training, valid, and testing splits chronologically with a ratio of
3:1:1, which follows the setups of [59]. Note that since the entities
and relations of the knowledge graphs are from different domains,
the evaluation results are not comparable across different KGs.
Implementation Details. In our experiments, the entity embed-
ding size 𝑑 is set to 100, and the entity embeddings are initialized
with pretrained KG embeddings [2]. Besides user and item entities,
other entities can be divided into seven types, i.e., aspect_value,
feature, price, brand, category, related_product, style. For training
sequence construction, the path hop 𝑁 is set to 3 and the seman-
tic similarity threshold \ is set to 0.8. The path language model
is trained with Adam optimization [24] on Nvidia GeForce RTX
3090 GPU. In the training process, we adopt a learning rate of
2 × 10−4, a batch size of 128, and a number of training epochs of
20. During path sequence decoding, we employ nucleus sampling
with nucleus 𝑝 = 0.4 as the basic strategy. The influence of these
hyperparameters will be studied in Sections 6.3 through 6.5.
Baselines.We compare our model with the following baselines, in-
cluding KG-based embedding approaches (CKE, RippleNet, KGAT)
and Path-based reasoning approaches (HeteroEmbed, PGPR, CAFE,
LOGER). Specifically, CKE [55], also known as the Collaborative
Knowledge-base Embedding model, is a neural model that incor-
porates text, images, and a knowledge base for recommendation.
RippleNet [46] follows the idea of user preference propagation to
extend users’ historical interests along KG links to facilitate recom-
mendation. KGAT [47] leverages a graph-based attention network
to capture high-order KG relations to improve recommendation per-
formance. As for path-reasoning approaches, HeteroEmbed [1]
first conducts recommendation based on pretrained TransE [2]
entity embeddings and then performs post-hoc path searching
over the KG to extract explanations for user-recommended items.
PGPR [50] introduces reinforcement learning to learn a suitable
multi-hop scoring function and path-reasoning policies in support
of explainable recommendation. CAFE [51] adopts neural symbolic
reasoning to achieve explainable recommendation. It first gener-
ates user behavior profiles in a coarse stage and then carries out
path reasoning with the extracted profiles for KG grounding in a
fine stage. LOGER [59] draws on logical rules to guide the path
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Table 3: Recommendation performance of our method compared to other baselines on three Amazon datasets: Cellphones,
Grocery, and Automotive. We follow four representative recommendation metrics (Precision, Recall, Hit Ratio, and NDCG) to
evaluate the performance of different approaches and set the length of the recommendation list 𝐾 to 10. The best results in
each column are highlighted in bold, while underlined numbers denote second-best results.

Cellphones Grocery Automotive

Precision Recall NDCG HR Precision Recall NDCG HR Precision Recall NDCG HR

CKE 0.0360 0.1760 0.1847 0.3067 0.0612 0.2528 0.3070 0.4511 0.0458 0.1871 0.2257 0.3621
RippleNet 0.0419 0.2141 0.2177 0.3715 0.0591 0.2682 0.2858 0.4800 0.0477 0.1950 0.2353 0.3916
KGAT 0.0476 0.2274 0.2365 0.3835 0.0702 0.2916 0.3381 0.5020 0.0601 0.2500 0.2859 0.4514
PGPR 0.0462 0.2148 0.2366 0.3801 0.0649 0.2710 0.3174 0.4926 0.0589 0.2315 0.2804 0.4409
HeteroEmbed 0.0527 0.2543 0.2626 0.4226 0.0785 0.3316 0.3701 0.5572 0.0695 0.2923 0.3314 0.5082
CAFE 0.0608 0.2806 0.2995 0.4371 0.0823 0.3532 0.4016 0.5838 0.0717 0.2978 0.3475 0.5193
LOGER 0.0622 0.2977 0.3227 0.4808 0.0906 0.3754 0.4370 0.6121 0.0743 0.3091 0.3653 0.5346
PLM-Rec 0.0642 0.3035 0.3423 0.4952 0.0933 0.3829 0.4479 0.6251 0.0776 0.3251 0.3818 0.5527

reasoning, where personalized rules are learned through the EM
algorithm in an iterative manner.

Table 4: Comparison of ability of different approaches to
mitigate recall bias, in terms of NR2.

Method Cellphones Grocery Automotive

Path-guided methods 0 0 0
PLM-Rec (𝑁 = 3) 0.1656 0.1526 0.1904
PLM-Rec (𝑁 = 4) 0.1370 0.1238 0.1357
PLM-Rec (𝑁 = 5) 0.0668 0.0592 0.0929

Evaluation Metrics.We adopt the same four representative rec-
ommendation metrics as in previous work [59] to evaluate the
models: Hit Ratio (HR), Recall, Precision (Prec.), and Normalized
Discounted Cumulative Gain (NDCG). Meanwhile, we adopt the
proposed New Reach Ratio (NR2) to measure a model’s ability to
mitigate recall bias. Due to computational overhead, we randomly
sample a user subset when calculating the value of NR2.

6.2 Performance Comparison (RQ1)
We compare the performance of our model with baseline methods
in terms of their top-10 recommendations. The main results under
four recommendation metrics are reported in Table 3. Generally,
our method achieves the best recommendation performance against
both KG-based embedding and Path-based reasoning approaches
across all settings. Taking the Cellphones dataset as an example,
PLM-Rec obtains an NDCG@10 score of 0.3423, which improves
over HeteroEmbed by 7.97%, CAFE by 4.28%, and the best baseline
LOGER by 1.96%. Moreover, we observe that PLM-Rec shows better
recall than baselines, while maintaining a higher precision. Similar
trends can be observed on other benchmarks as well. Interestingly,
we observe that our method is much better than the baselines on the
Automotive dataset. Table 2 shows that the density of Automotive is
the lowest compared with the other two datasets, which means that
the Automotive dataset includes much fewer user–item interactions.
The observation implies the advantage of our PLM-Rec approach
on sparse datasets, owing to its ability to discover more latent
connections across entities by exploring the semantic space of the
KG. At the same time, Automotive also includes more relation types,
which further shows PLM-Rec’s capability of dealing with more
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Figure 3: Results of varying maximum path hop length 𝑁 on
Cellphones (orange) and Grocery (green) datasets.

relations. From Table 4, we find that PLM-Rec significantly breaks
the constraint of KG topology under a fixed path length. In contrast
to path-guided approaches, PLM-Rec effectively mitigates the recall
bias and arrives at a greater number of ground truth items.

6.3 Ablation on Path Length (RQ2)
In this section, we evaluate how the maximum number of path
hops 𝑁 affects our model in the following two respects: 1) the
performance in terms of the basic metrics (NDCG, Recall, Precision);
2) how many new items can be reached compared to previous path-
guided approaches. According to Figure 3, almost all traditional
recommendation metrics reach peak values when 𝑁 is set to 3. In
most cases, the scores for the three metrics rise as 𝑁 increases from
2 to 3 and decrease when 𝑁 continues increasing. These results
demonstrate that 3 is the optimal choice of 𝑁 on the Amazon
datasets, which is in linewith previouswork, since longer-hop paths
can introduce more noisy entities and weaken the performance of
the path language model. From Table 4, we can observe that PLM-
Rec generally mitigates more recall bias and achieves a higher NR2
with shorter hop settings or in a sparser KG. This matches the
statistics in Table 1 – a larger number of hops yields a greater
number of reachable items.

6.4 Ablation on Sequence Decoding (RQ2)
In this section, we study the influence of nucleus probability 𝑝 dur-
ing sequence decoding. We vary the nucleus probability 𝑝 among
{0.2, 0.4, 0.6, 0.8}. As shown in Figure 4, an optimal choice of prob-
ability 𝑝 is usually around 0.4. If 𝑝 is too large, more noisy tokens
are sampled. If 𝑝 is too small, the diversity of generation is affected,
resulting in sub-optimal performance.
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Figure 5: Results of varying semantic threshold \ on Cell-
phones (orange) and Grocery (green) datasets.

6.5 Ablation on Sequence Augmentation (RQ2)
In this section, we discuss the influence of similarity threshold \ .
Particularly, we try different \ amongst {0.5, 0.6, 0.7, 0.8, 0.9} and
plot how the NDCG and NR2 scores develop according to different
\ values in Figure 5. We find that 0.8 is the optimal choice of \ with
regard to both NDCG and NR2. Lower \ values lead to conflicting
training sequences being generated, which may mislead PLM-Rec,
while higher \ values imply less augmentation and decrease the
generalization ability of PLM-Rec.

6.6 Case Study (RQ3)
Finally, we conduct case studies of the recommendations given by
our PLM-Rec framework. Figure 6 provides two real-world exam-
ples from the Grocery dataset to illustrate how our model mitigates
the recall bias through path sequence decoding.

The first one shows how PLM-Rec discovers the ground truth
itemwalnuts, which is unreachable with path-finding under a 3-hop
setting. The user has previously purchased a lemonade with feature
California-sourced citrus. In the original KG topology, it is impossi-
ble to reach walnuts in 3 steps. However, California-sourced citrus
suggests a potential preference of the user for California-produced
products. Our PLM-Rec captures this latent behavior pattern and
generates other California-related features and thus recommends
walnuts to the user. This demonstrates PLM-Rec’s ability to learn
semantics and infer shortcuts to further recommendation items.

The second case involves recommendingmatcha-related utensils
to a user who loves strong matcha flavor. Since matcha utensils
such as matcha tea set - b belong to the Home and Kitchen category
on Amazon, they serve as the tail entity of also-buy in the Grocery
subset and there is no direct connection between Home and Kitchen
items provided in Grocery. Therefore, in this case, a longer 6-hop
path would be needed for the user entity to reach the item matcha
tea set - b if following the existing KG links. In contrast, PLM-Rec

Case 1: Shortcut through similar semantics

Case 2: Implicitly extend path hop 
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Figure 6: Case study of real-world recommendation examples,
demonstrating two advantages of path language modeling
in solving recall bias.

absorbs knowledge about products of the same category during
training and thus only requires 4 hops to reach the recommended
item. In other words, PLM-Rec can implicitly extend path hops by
acquiring semantic generalization capabilities.

7 CONCLUSIONS
In this paper, we shed light on the problem of recall bias in prior ap-
proaches and explore the new direction of leveraging path language
modeling to capture the knowledge and long-range dependencies
along KG paths. PLM-Rec overcomes the constraints of sticking to
pre-existing connections in the KG topology and thus eliminates the
recall bias that past paradigms entail. Through a suitable decoding
strategy, the learned path language model performs path-guided
reasoning over knowledge graphs to simultaneously generate rec-
ommendations and corresponding explanations. It also unifies rec-
ommendation and path-based reasoning in a single step, thus avoid-
ing the additional path grounding step of prior work. Experimental
results including extensive ablation studies on three real-world
datasets prove the effectiveness and generalization ability of our
PLM-Rec model in terms of the recommendation performance as
well as providing reasonable path-based explanations.
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