
28

Attentive Aspect Modeling for Review-Aware
Recommendation

XINYU GUAN, Xi’an Jiaotong University, P. R. China

ZHIYONG CHENG, Qilu University of Technology (Shandong Academy of Sciences), China

XIANGNAN HE, University of Science and Technology of China, China

YONGFENG ZHANG, Rutgers University, USA
ZHIBO ZHU and QINKE PENG, Xi’an Jiaotong University, P. R. China

TAT-SENG CHUA, National University of Singapore, Singapore

In recent years, many studies extract aspects from user reviews and integrate them with ratings for improv-
ing the recommendation performance. The common aspects mentioned in a user’s reviews and a product’s
reviews indicate indirect connections between the user and product. However, these aspect-based methods
suffer from two problems. First, the common aspects are usually very sparse, which is caused by the spar-
sity of user-product interactions and the diversity of individual users’ vocabularies. Second, a user’s interests
on aspects could be different with respect to different products, which are usually assumed to be static in
existing methods. In this article, we propose an Attentive Aspect-based Recommendation Model (AARM) to
tackle these challenges. For the first problem, to enrich the aspect connections between user and product,
besides common aspects, AARM also models the interactions between synonymous and similar aspects. For
the second problem, a neural attention network which simultaneously considers user, product, and aspect
information is constructed to capture a user’s attention toward aspects when examining different products.
Extensive quantitative and qualitative experiments show that AARM can effectively alleviate the two afore-
mentioned problems and significantly outperforms several state-of-the-art recommendation methods on the
top-N recommendation task.

CCS Concepts: • Information systems → Collaborative filtering; Recommender systems;

Additional Key Words and Phrases: Top-N recommendation, neural network, attention mechanism, aspects

This work was finished when Xinyu Guan was a visiting student at the National University of Singapore. The support
provided by China Scholarship Council (CSC) during the visit of Xinyu Guan to National University of Singapore is ac-
knowledged. The first author claims that this work is under the supervision of Dr. Zhiyong Cheng and Dr. Xiangnan He.
This work is supported by the National Natural Science Foundation of China (grant number 61872288). This work is also
supported by the NExT research centre, which is supported by the National Research Foundation, Prime Minister’s Office,
Singapore under its IRC@SG Funding Initiative.
Authors’ addresses: X. Guan, Z. Zhu, and Q. Peng, Xi’an Jiaotong University, Systems Engineering Institute,
28, Xianning West Road, Xi’an, 710049, P. R. China; emails: xinyu_guan@foxmail.com, zdh96.zzb@stu.xjtu.edu.cn,
qkpeng@mail.xjtu.edu.cn; Z. Cheng (corresponding author), Qilu University of Technology (Shandong Academy of Sci-
ences), Shandong Computer Science Center (National Supercomputer Center in Jinan), Shandong Artificial Intelligence
Institute, 19 Keyuan Road, Jinan, Shandong 250014, China; email: jason.zy.cheng@gmail.com; X. He, University of Science
and Technology of China, School of Information Science and Technology, 443 Huangshan Road, Hefei, 230031, China;
email: xiangnanhe@gmail.com; Y. Zhang, Rutgers University, Department of Computer Science, 110 Frelinghuysen Road,
Piscataway 08854, USA; email: zhangyf07@gmail.com; T.-S. Chua, National University of Singapore, School of Computing,
Singapore, 13 Computing Drive, 117417, Singapore; email: dcscts@nus.edu.sg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1046-8188/2019/03-ART28 $15.00
https://doi.org/10.1145/3309546

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3309546

28:2 X. Guan et al.

ACM Reference format:

Xinyu Guan, Zhiyong Cheng, Xiangnan He, Yongfeng Zhang, Zhibo Zhu, Qinke Peng, and Tat-Seng Chua.
2019. Attentive Aspect Modeling for Review-Aware Recommendation. ACM Trans. Inf. Syst. 37, 3, Article 28
(March 2019), 27 pages.
https://doi.org/10.1145/3309546

1 INTRODUCTION

Recommender systems help users find their potentially interested products from an enormous list
of products. Matrix Factorization (MF) methods [27] are widely adopted in recommendation sys-
tems because of their accuracy and scalability. MF methods usually rely on the explicit (e.g., user
ratings) or implicit (e.g., click behaviors) interactions between users and products for recommen-
dation. However, a rating or binary interaction can only reflect the user’s overall attitude toward
a product, which does not include information about the underlying reasons for the user behav-
ior. As a result, it is difficult for MF methods to model user’s fine-grained preferences on specific
product features and provide an explanation to recommendations.
To tackle these limitations, researches have attempted to utilize reviews to alleviate the data

sparsity problem and provide more explainable recommendations [3, 8, 10, 11, 21]. As accompa-
nying information of ratings, the textual review expresses user’s opinions on different product
features, and thus contains more fine-grained information about the user preference. Different
strategies have been applied to incorporate reviews into MF models, including sentiment analy-
sis [35], representation learning [4, 48], and topic models [31, 41]. Although these methods have
achieved some progress, the generated vector representations of users and products are still la-
tent and thus cannot explicitly model user’s preference on specific product features, which could
impede their performance.
Another direction is to leverage the aspects mentioned in user reviews for recommendation.

In this article, aspect is defined as the words or phrases used by users in their product reviews
to describe product features. For example, “battery life” and “battery duration” are two different
aspects while they refer to the same product feature. There are already somemethods which detect
aspects in user reviews and leverage them to model user’s fine-grained preferences to specific
product features [15, 49]. For example, EFM [49] conducted an aspect-level sentiment analysis to
extract user’s preference and product’s quality on a specific product feature, then incorporated the
results into an MF framework to provide a more accurate recommendation. SULM [1] and LRPPM
[9] went beyond EFM [49] by using more effective methods to identify the impact of each aspect
on the overall rating. However, these methods rely highly on the accuracy of external sentiment
analysis tools.
Besides the above-mentioned limitations, thesemethods also suffer from the following two prob-

lems. First, for each user-product pair, they only consider the shared aspects in the user’s reviews
and the product’s reviews. However, due to the sparsity of user-product interactions and users’
diverse language usages, the number of common aspects mentioned in the reviews of both the tar-
geted user and product is usually very limited. Second, a user’s concerned aspects may be different
for different products (even in the same category). For example, a user may be mostly concerned
about “special effects” when watching a superhero movie, while paying more attention to the
“plot” for a suspense movie.
Motivated by the above concerns, in this article, we propose an Attentive Aspect-based Rec-

ommendation Model (AARM), which can effectively tackle the above two problems. For the first
problem of aspect sparsity, AARM models the interactions between synonymous and similar as-
pects to alleviate it, where synonymous aspects are the ones referring to the same product feature

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

https://doi.org/10.1145/3309546

Attentive Aspect Modeling for Review-Aware Recommendation 28:3

(e.g., “storyline” and “plot”); and similar aspects are those of different features that are closely re-
lated (e.g., “battery life” and “charging speed”). Intuitively, a user’s attention to an unmentioned
aspect can be inferred through its similar aspects. For instance, a user who cares about “battery
life” of cell phones may also care about its “charging speed,” although “charging speed” has never
been mentioned in this user’s reviews. In our model, an aspect extracted from reviews is first rep-
resented as an embedding vector. Then a useru’s satisfaction about productv according to aspect a
is estimated by calculating the interactions between a and all the aspects mentioned inv’s reviews.
And an attention module is designed to pick up the interactions between meaningful aspect pairs.
In this way, we achieve the goal of capturing the interactions between synonymous and similar
aspects.
For the second problem of identifying user’s varied interests on aspects, AARM introduces another

attention module which takes user, product, and aspect information into consideration. In this
way, a user’s varied interests on aspects can be captured by the product-dependent user attention.
Instead of rating prediction, we target the top-N recommendation task with a pairwise learning-to-
rank method, which is the most practically used recommendation scenario in real-world systems
[14, 42]. To this end, ourmodel estimates a useru’s satisfaction toward a productv by (1) estimating
v’s performances on u’s concerned aspects; and (2) identifying the impacts of these aspects on the
overall satisfaction.
We evaluate our model on five product datasets from Amazon on the top-N recommendation

task. Experimental results show that AARM outperforms several state-of-the-art methods. Com-
parative experiments have also been conducted to demonstrate the importance of modeling in-
teractions between different aspects and the effectiveness of our attention module on capturing
user’s varied attentions toward aspects. Our main contributions are outlined as follows.

—We propose a novel recommendation method to model the interactions between both the
same and the different aspects, which helps to alleviate the aspect sparsity problem in re-
views. To the best of our knowledge, this is the first attempt to model the interactions
between different aspects to model user preferences in recommendation. And the method
to capture the similarity relation between different aspects can also be used in other rec-
ommendation scenes (e.g., recommendation with tags or item metadata).

—We design an attention mechanism in AARM to capture a user’s varied attention on differ-
ent aspects toward various products. The careful design of the inputs and structure of this
attention module has been demonstrated to be very effective on improving the recommen-
dation accuracy in the experiments.

—We conduct extensive experiments on real-world datasets to demonstrate the effectiveness
of our model. Experimental results show that our method can achieve superior performance
by a large margin.

The reminder of the article is organized as follows. We first discuss existing works related to
our method in Section 2. In Section 3, we describe the details of AARM and describe how to train
the model. In Section 4, we describe the experimental settings and report the results to verify our
assumptions and compare our methods with some state-of-the-art baselines. Finally, in Section 5,
we conclude the article.

2 RELATEDWORK

In recent years, many researchers have paid more attention to users’ product reviews in order
to improve the recommendation accuracy and provide recommendation explanation. According
to how these methods utilize user reviews, we broadly group them into three categories: review-
level, topic-level, and aspect-level methods. In this section, we first review these three types of

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

28:4 X. Guan et al.

review-based methods, and then briefly discuss the recommendation methods with attention
mechanism, which is an important component in our model.

2.1 Review-Level Methods

Review-level methods treat the review as a single piece of information and incorporate it with rat-
ings. The opinion-driven MF model [35] calculates the overall opinion of a review by summing up
the orientations of opinion words in the text, and then combines it with numerical ratings for rat-
ing prediction. Meng et al. [32] incorporated other users’ emotions toward a review to calculate the
importance of this review in the training of a MFmodel. Somemethods concatenate all the reviews
belonging to a user (or item) as a user (or item) document, and then employ deep learning meth-
ods to learn the continuous vector representation for the user (or item) [4, 19, 48, 51]. For example,
Transnets [4] and DeepCoNN [51] process the user and item documents with convolutional neural
network to generate the vector representation for users and items. JRL [48] adopts the PV-DBOW
model [28], which is an unsupervised method to learn the continuous vector representations for
documents, and the user and item vector representations from their reviews. In Transnets, Deep-
CoNN, and JRL, in order to estimate the matching degree between a user and an item, reviews of
the user or item are compressed to a vector which is an overall representation of the reviews. In
this way, these review-level methods neglect the user-item interactions at the review components
(e.g., the user’s opinions about the product’s specific features) level, which can be used to connect
the user with candidate products and provide more explainable recommendations.

2.2 Topic-Level Methods

Topic-level methods build a probabilistic graphical model to extract topics from reviews. HFT [31]
combines topic vectors from reviews with latent factors from ratings to improve rating prediction
accuracy. Subsequently, some studies employ different topic models and combination strategies
for the review-based rating prediction task. For example, different from HFT, ITLFM [47] linearly
combines the latent topics and the latent factors. CMR [45] is a probabilistic graphical model which
simultaneously associates the review text, the hidden user communities, and item group relation-
ship with numerical ratings. RBLT [41] also utilizes LDA to extract topics from review text. Then
the preference distribution vector of each user and the recommendability distribution vector of
each item are combined with a vanilla MF model for rating prediction. More recently, Cheng
et al. [12] defined a high-level semantic concept “aspect” as a probability distribution of topics.
They proposed the ATM model to extract topics from reviews and associated the topics with “as-
pects,” and then proposed the ALFM model to associate latent factors with ‘aspects’. In this way,
topics are correlated with factors via the “aspects” indirectly. To estimate the overall rating score,
they first calculated the item’s scores on each aspect and then summed them up using aspect im-
portance as weights. Similarly, MMALFM [10] follows the definition of “aspect” in [12] and jointly
models the “aspects” in textual reviews and item images. These topic-level methods usually focus
on rating prediction task, while we are targeting at top-N recommendation. Similar to review-level
methods, when estimating the matching degree between a user and a product, these topic-level
methods also neglect the interactions between the components of the user and the product’s re-
views. And it is difficult to associate a topic, which is a probabilistic distribution over words or
phrases, with specific product features. Because of these limitations, these methods are incapable
of capturing a user’s preference toward product features in a finer-grained manner and thus pro-
vide more accurate and explainable recommendations.

2.3 Aspect-Level Methods

Aspect-level methods extract aspects from reviews and incorporate them with ratings for recom-
mendation. The proposed method in this article falls into this category. Ganu et al. [17] manually

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

Attentive Aspect Modeling for Review-Aware Recommendation 28:5

defined six aspects and four sentiments for restaurant reviews and used a regression-basedmethod
for rating prediction. Zhang et al. [49] employed an unsupervised tool for aspect extraction and
aspect-level sentiment analysis. Aspect and sentiment outputs from this step were integrated with
MF methods for rating prediction. Chen et al. [9] proposed a tensor-MF method to select the most
interesting product features for each user with a learning-to-rank method. The rating scores were
then predicted as the weighted summation of the product’s sentiment scores on the user’s most
cared product features. Bauman et al. [1] also extracted aspects and conducted aspect-level sen-
timent analysis with external tools. The results of aspect-level sentiment analysis were used in
their model SULM as the ground-truth labels to train a latent factor model for every aspect. These
aspect-level latent factor models were then used to predict user’s sentiment scores toward each
aspect of a product. The number of parameters in SULM is very large as a user or product usually
has many aspects. As we can see, the above methods often rely on external sentiment tools for
aspect-level analysis.
Specifically, there are also some papers which pay attention to users’ varied interests. Chen

et al. [9] proposed an aspect ranking method to capture a user’s varied interests while they paid
more attention to a user’s interest variation over different categories. A3NCF [11], ALFM [12],
and ANR [13] also try to capture users’ varied interests toward aspects. Specifically, A3NCF and
ANR also use neural attention layers to do it. But there are some important differences between
them and our method. First, the “aspects” defined in A3NCF, ALFM, and ANR are different from
the one defined in our model. In A3NCF, “aspect” is defined as a combination of topic vector and
embedding vector. In ALFM, “aspect” is defined as a probability distribution of topics and thus
ALFM is more like a topic-level model. In ANR, an “aspect” of a user is a weighted sum of all the
words’ embeddings in the user’s reviews. Different from them, “aspects” in our model are words or
phrases directly extracted from reviews, which ismuchmore fine-grained concept. Second, A3NCF,
ALFM, and ANR have not considered interactions between different aspects. Different from them,
our method models these interactions because intuitively these aspects are not independent of
each other. Third, those three existing methods are originally designed for rating prediction, while
our model is designed for top-N recommendation.
He et al. [21] did not conduct sentiment analysis but adopted the aspect frequency information

in reviews to construct the user-item-aspect tripartite graph for recommendation. The improved
performance in [21] from baselines verified that the aspect mention signals in reviews could have
already been able to reflect the user’s interests on aspects. Similarly, in AARM we do not conduct
sentiment analysis on reviews explicitly, which helps to simplify the model design and implemen-
tation. Moreover, AARM considers both the interactions between different aspects and the user’s
varied preference toward aspects, which are neglected by previous studies.

2.4 Attention Mechanism

In recent years, many deep learning-based recommendation methods have been proposed and
achieved good performance in many tasks [22, 24, 40, 46]. The attention mechanism which can
assign adaptive weights for a set of features has also been employed in recommendation models
[2, 6, 7, 16, 23]. For example, in the NARRE model [5] for review-based rating prediction, Chen
et al. introduced an attention module to calculate the usefulness of reviews. In TEM [43], which
utilizes user and item’s side information for explainable recommendation, neural attention layer
is used to assign weights to cross features and provide recommendation explanation. ACF [7],
which focuses on multimedia recommendation, uses a component-level attention module to find
informative components for multimedia items (images/videos), and an item-level attentionmodule
to select representative items to to represent users’ preferences. AFM [44], which is an extension of
FM machine [22, 36], uses an attention neural network to discriminate the importance of different

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

28:6 X. Guan et al.

Fig. 1. Attentive aspect-based recommendation model.

feature interactions. A3NCF [11] and ANR [13] also have attention modules which have been
discussed in the last section. Compared with these methods, we specially design two attention
modules for the fine-grained modeling of product features extracted from user reviews. The user-
level attention module in AARM is built to find out the user’s most concerned product features for
a candidate product, while the aspect-level attention module is constructed to select informative
aspect interactions.

3 ATTENTIVE ASPECT-BASED RECOMMENDATION MODEL

In this section, we first provide an overview of our method and define some important notations,
and then introduce how to extract aspects from user reviews. After that, we describe the structure
and details of the proposed AARM model. In particular, we elaborate how AARM could model the
interactions between different aspects and handle a user’s varied interests in aspects. Finally, we
discuss the parameter inference in AARM.

3.1 Preliminaries

Given a user set U = {u1,u2, . . .u |U | } and a product set V = {v1,v2, . . .v |V | }, AARM estimates a
satisfaction score ŷuv for a user u toward a product v . The candidate products are then ranked
in a descending order of ŷ and the top-N products are recommended to u. In our method, aspects
extracted from user reviews are used as the explicit features of users and products. We define
A = {a1,a2, . . . a |A | } as the aspect set of the dataset. The aspects that have been mentioned in the
reviews of user u are represented as Au , which is a subset of A. Similarly, product v’s aspects that
have been mentioned in v’s reviews are represented as Av . Product v’s rating given by user u is
denoted as ruv ∈ R, where R is the collection of ratings.
The structure of AARM is shown in Figure 1. In the input layer, users and products are repre-

sented as binarized sparse vectors using the one-hot encoding method. Above the input layer, the
Aspect Interactions part is used to model the interactions between the aspects from useru’s aspect
set Au and the aspects from the product v’s aspect set Av . Because a user’s review for a product

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

Attentive Aspect Modeling for Review-Aware Recommendation 28:7

may not cover all the factors which can influence the user’s satisfaction toward the product, the
aspects extracted from review text may not be able to fully explain the rating. Hence, the Global
Interactions part is stacked above the input layer to model the implicit factors which influence a
user’s decision but have not been discussed in the reviews. Finally, the results of aforementioned
two parts are concatenated as the input to the Output Layer.

3.2 Aspect Interactions Part

In the Aspect Interactions part, given a user u and a product v , aspects are first extracted from
their reviews and used to construct their aspect sets Au and Av , respectively. To model the simi-
larity between aspects, instead of one-hot encoding or bag-of-words model, embedding layers are
used in AARM to represent aspects as continuous vectors. Specifically, aspect embedding matrix
WA ∈ Rda×|A | is defined to project aspects from Au and Av to Fu ∈ Rda×Mu and Fv ∈ Rda×Mv , re-
spectively, where da is the dimension of aspect embeddings, andMu andMv are, respectively, the
number of aspects in Au and Av . The ith aspect in Au is projected to fu,i which is the ith col-
umn of Fu . Similarly, aspects in Av are projected to the embedding vectors in Fv . Next, Attentive
Aspect-Interaction Pooling Module is designed to model the bi-interactions between the aspect
embeddings of Fu and that of Fv , and outputs a vector yA to represent the preference information
in user reviews.

3.2.1 Aspect Extraction. Because the main contribution of this article focuses on how to lever-
age aspects for personalized recommendation, we refer to external tools for aspect extractions. In
this article, we use the Sentires,1 which has been successfully used in [49, 50] for aspect extraction.
Other aspect extraction tools can also be applied. This toolkit extracts aspects via a hybrid of rule-
based and machine learning algorithms. Given a dataset, it generates an aspect lexicon, which is
used to build the aspect set A of the dataset in this article. With this toolkit, we could obtain user
aspect set Au for each user u ∈ U , and product aspect set Av for each product v ∈ V by extracting
the mentioned aspects from their reviews. Some examples of the automatically extracted aspects
are shown in Table 3.
Note that the size of aspect set varies for different users or products. To accelerate the training of

AARM, we pad all the user aspect sets into the same lengthMu and pad all the product aspect sets
into the same length Mv . Taking a user aspect set as an example, we define a meaningless aspect
< PAD > and add it to the end of user aspect sets whose lengths are less than the pre-defined size
Mu . ForAu whose length is larger thanMu , we calculate the TF-IDF score [38] of each a ∈ Au , and
truncate Au to Mu aspects by dropping the aspects with low TF-IDF scores. The TF-IDF score is
defined as

t f id fu (a) =
t fu (a)∑

i ∈Au
t fu (i)

· ln |U |
d f (a) + 1

, (1)

where t fu (a) is the frequency of a’s occurrence in u’s reviews, |U | is the number of users, and
d f (a) is the number of users who mentioned a. All the product aspect sets are padded into the
same lengthMv in a similar way.

3.2.2 Attentive Aspect-Interaction Pooling Module. As shown in Figure 2, given Fu and Fv as
input, there are four parts in thismodule: aspect embedding transformation,aspect interaction
layer, aspect-level attentive pooling layer, and user-level attentive pooling layer. The final
output of this module is the vector yA (u,v) which represents the overall satisfaction of a user
u toward a product v estimated with review text. In this module, we hold the assumption that

1http://yongfeng.me/software/.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

http://yongfeng.me/software/

28:8 X. Guan et al.

Fig. 2. The attentive aspect-interaction pooling module.

u’s overall satisfaction for v is based on v’s performances on u’s concerned aspects (i.e., aspects
from Au). This module works as follows. First, for each aspect a ∈ Au , the aspect interaction layer
and aspect-level attentive pooling layer are employed to estimate v’s performance on a, where
the performance is represented as vector ha (u,v). Then the user-level attentive pooling layer is
used to estimate u’s preference toward v by integrating ha (u,v) for all the aspects a ∈ Au and
represent the preference as a vector yA (u,v). Finally, yA (u,v) will be combined with the result of
Global Interaction part and further input into the output layer to estimate the user u’s satisfaction
score toward the product v .

Aspect Embedding Transformation. To model the interactions between synonymous and related
aspects, we expect the vector representation of aspect to encode the similarity relation between
aspects. In this article, the Word2vec model [33], which is able to encode many linguistic regulari-
ties and patterns, is used to pre-train aspect embeddings with the review texts in each dataset. The
aspect embedding matrix WA is initialized with the pre-trained embeddings and its parameters
would not be tuned during the training of AARM. Instead, a trainable matrix Wtrans ∈ Rda×da is
defined to customize the pre-trained aspect embedding f (column vector in Fu or Fv) to make it
oriented toward our recommendation task. Then these customized embeddings are normalized as

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

Attentive Aspect Modeling for Review-Aware Recommendation 28:9

c =
Wtrans f

‖Wtrans f ‖ . (2)

Here ‖x‖ is the Euclidean norm of x. In this article, aspect interaction between two aspects is
defined as the element-wise product of their embedding vectors. By normalizing the aspect em-
beddings with their corresponding Euclidean norms, the calculation of interaction between two
aspects is similar to calculating their cosine similarity. As illustrated in [33], if two words have
higher semantics and syntax similarities, their embeddings generated by Word2vec would have
larger cosine similarity. In this way, the results of aspect interactions are associated with the se-
mantics and syntax relations between aspects, which helps in identifying the synonymous and
related aspects. Alternatively, we can also directly tune the aspect embedding matrix WA during
the training of AARM for top-N recommendation. We will compare the performances of these
different settings in the experiment section.

Aspect Interaction Layer. This layer maps the vector representations of aspects inAu andAv to a
set of da-dimensional interacted vectors. The aspect interaction between aspect i ∈ Au and j ∈ Av

is defined as the element-wise product of their embedding vector ci and cj . Hence, the output of
the aspect interaction layer can be represented as a set of vectors:

fAI (u,v) = {ci � cj (xix j)}i ∈Au , j ∈Av . (3)

Here xi ∈ {0, 1} is the masking indicator, where xi = 0 if i is the meaningless aspect 〈PAD〉 (defined
for padding). To implement the masking operation in AARM, we define an aspect masking vector
Wmask ∈ Rda×|A | , where the column of aspect 〈PAD〉 is a zero vector, and the columns of other
aspects inA are vectors of ones. Before calculating the interactions between the aspect i ∈ Au and
aspects inAv , we first calculate the element-wise product between ci and its corresponding column
in Wmask . After the masking operation, the embedding vector of aspect 〈PAD〉 is transformed
into a zero vector. In this way, we make sure that the interactions between aspect 〈PAD〉 and
other aspects are zero vectors. As shown in the following sections, these zero vectors would not
influence AARM’s final predictions.
As shown in Equation (3), besides the same aspects, the interactions between different aspects

(when i � j) are also calculated. This is because we want to model the interactions between syn-
onymous and similar aspects to alleviate the problem that the same aspects shared in a user’s reviews

and a product’s reviews are usually very sparse. However, interactions between unrelated aspects
are also considered in Equation (3). To emphasize on interactions between related aspects and filter
out noisy interactions, the aspect-level attentive pooling layer is stacked above this layer.

Aspect-Level Attentive Pooling Layer. In the aspect interaction layer, for each aspect a ∈ Au , we
calculate its interaction with all the aspects in Av . Intuitively, some aspect interactions should be
given more attention than others. For example, the interactions between the same, synonymous,
or similar aspects usually contain more information about the product’s performance on the user’s
concerned aspects. Hence, an attention module is designed to focus on important aspect interac-
tions. Word2vec embeddings of similar words would have higher cosine similarities [33]. Inspired
by this, for aspect pair i and j, the input of the attention layer is defined as the element-wise prod-
uct of their normalized embedding vectors ci and cj to mimic the cosine similarity between their
embedding vectors. And the aspect-level attention layer is defined as

β̂i, j = watt1
T (ci � cj) (xix j),

βi, j =
exp(β̂i, j)
∑

y∈Av
exp(β̂i,y)

. (4)

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

28:10 X. Guan et al.

Here watt1 ∈ Rda is a learnable vector, and βi, j is the attention value of the interaction between
aspect i and j.
To estimate the product’s performance on the user’s aspect ai ∈ Au , we compress all the inter-

actions between ai and aspects in Av with a weighted sum pooling where β is used as the weight:

hi =
∑

j ∈Av
βi, j (ci � cj) (xix j). (5)

The output of this layer is the vector set {hi ∈ Rda }ai ∈Au .
User-Level Attentive Pooling Layer. We can integrate the vector set {hi }ai ∈Au , which represents

how the product fits the user’s requirements on each aspect, and thus to produce an estimation
of the user’s overall satisfaction on this product. Intuitively, different users may focus on different
aspects even when purchasing the same products. For example, when purchasing a cell phone,
some users are more concerned about battery duration while some other users are more concerned
about the performance of CPU. Furthermore, when purchasing different products, a user’s most
concerned product features may be different. In other words, a user’s attention toward an aspect
when purchasing a specific product is influenced by the characteristics of the user, the aspect, and
the product simultaneously.
To estimate user u’s interest toward aspect a ∈ Au when purchasing a specific product v , a

user-level attentive pooling layer is designed in AARM. The input of this attention layer should
contain not only information of current aspect a, but also information of product v . Intuitively, if
an aspect a ∈ Au is more important to productv , the user should pay more attention to the aspect
a as compared with other unrelated aspects in Au . The importance of the user’s aspect a with
respect to a product v can be measured by the similarities between a and the aspects that have
beenmentioned inv’s reviews (i.e., aspects fromAv). To calculate the importance of aspect ai ∈ Au

with respect to product v , the interactions between ai and all the aspects in Av are calculated and
summed up:

xv,i = gv � ci ,
gv =

∑
j ∈Av

cj . (6)

As the interaction between two aspects represents their similarity, xv,i represents the overall sim-
ilarity between the aspect ai and the product v . To measure the importance of different aspect
ai ∈ Au , xv,i is used as aspect ai ’s input to the user-level attention layer. The attention layer is
defined as

α̂u,v,i = watt2
T xv,i ,

αu,v,i =
exp(α̂u,v,i)∑

j∈Au
exp(α̂u,v, j)

. (7)

Here watt2 ∈ Rda is a learnable vector, and αu,v,i represents the importance of aspect ai ∈ Au in
useru’s preferences with regard to productv . This attention layer is different from the aspect-level
attention layer defined in Equation (4) as watt1 and watt2 are two different vectors.
Finally, we compress the vector set {hi }ai ∈Au with a weighted sum pooling to generate a vector

which represents user u’s overall satisfaction toward product v :

yA (u,v) =
∑

i ∈Au
αu,v,ihi . (8)

Here yA (u,v) ∈ Rda is the output of Aspect Interactions Module.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

Attentive Aspect Modeling for Review-Aware Recommendation 28:11

3.3 Global Interactions Part

Tomodel the implicit factors which are not mentioned in review text but have influence over users’
satisfaction, AARM assigns a latent factor for every user and product, respectively. In this module,
embedding matrix WG

U
∈ Rdд×|U | is defined to project user u to pu , and the embedding matrix

WG
V
∈ Rdд×|V | is defined to project product v to qv . These two embedding matrices are randomly

initialized and tuned during the training for top-N recommendation. Then the global interaction
between user u and product v is calculated in a way similar to that in vanilla latent factor models:

yG (u,v) = pu � qv . (9)

Here yG (u,v) ∈ Rdд is the output of this part.

3.4 Output Layer

To merge information from the aforementioned two modules, yA (u,v) and yG (u,v) are concate-
nated into one vector. And a regression layer without an activation function is stacked above it:

ŷ (u,v) =Wout

[
fG (u,v)
yA (u,v)

]
. (10)

Here Wout belongs to R1×(da+dд) . ŷ (u,v) represents user u’s overall satisfaction score toward
product v .

3.5 Learning

In this article, we binarize the ratings scores and train AARM with a learning-to-rank method.
Ranking methods are widely used in information retrieval [25, 29, 30] and recommendation mod-
els [24, 34]. In AARM, we use Bayesian Personalized Ranking (BPR), which is a pairwise method.
This makes AARM suitable for recommendation with implicit feedbacks. Given a user u, a triple
(u, v+, v−) is constructed for pairwise training. Here, v+ refers to the product that u has pur-
chased, while v− refers to an unpurchased one. During training, the positive user-product pair (u,
v+) is drawn from rating set R, which is accompanied with one negative pair (u, v−), where v− is
randomly sampled from u’s unpurchased products. Intuitively, AARM should give a higher satis-
faction score to the positive pair (u,v+) than the negative pair (u,v−). Hence, the BPR optimization
criterion is employed as the objective function of AARM:

Lbpr =
−1
|R |

∑

(u,v+)∈R
log(σ (ŷ (u,v+) − ŷ (u,v−))). (11)

Here, σ refers to the sigmoid function, and |R | is the number of positive pairs (u,v+) in R.
To prevent the possible overfitting, L2 regularization is used on the user and product embedding

matrix and the kernel matrix of the output layer. As shown in Equation (12), to implement the
L2 regularization, we first calculate the mean values of the element-wise square of these three
matrices. The results are then multiplied by the L2 regularization coefficient λ and added to the
loss function:

L = Lbpr + λ ∗ ��
| |WG

U
| |2

|WG
U
| +

| |WG
V
| |2

|WG
V
| +

| |Wout | |2
|Wout |

�� . (12)

Here λ controls the L2 regularization strength, | |W| | refers to the L2-norm of the matrix W, and
|W| refers to the number of elements in the matrix W. We minimize the loss function L to fit
AARM from data.
Besides L2 regularization, we also use dropout [39] to reduce overfitting. Dropout can prevent

complex co-adaptations on training data by randomly dropping some units during training [39].

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

28:12 X. Guan et al.

Dropout is employed on the output of Global Interactions module and the output of Aspect Inter-
actions module.
Aspect Embedding Pre-Training. In our experiments, gensim’s implementation2 ofWord2vec

is used to train the aspect embeddings. Before training embeddings with Word2vec, we first con-
struct a dictionary for every dataset and then segment the reviews of each dataset into lists of
words or phrases according to this dictionary. All the aspects (in the form of words or phrases) of
each dataset are added into the corresponding dictionary to make sure that the Word2vec tool can
recognize all the aspects and train embedding vectors for them. For each dataset, all the reviews in
the training set are used for the training of aspect embedding. These embedding vectors are used
as the initial values of the aspect embedding matrix WA, which would not be tuned during the
training for top-N recommendation.

4 EXPERIMENTS

In this section, we design experiments to study the following research questions:

—RQ1 Can AARM outperform state-of-the-art methods on top-N recommendation task?
—RQ2 Can the interactions between different aspects improve the performance of AARM?
—RQ3 Can the modeling of varied user interests improve the performance of AARM?
—RQ4 How does the initialization and tuning strategy of aspect embedding influence the
performance of AARM?

—RQ5What are the contributions of the Global Interaction part and Aspect Interaction part
in the overall performance of AARM?

In the rest of this section, we will first introduce experimental settings, and then successively
answer the above research questions with not only quantitative experiments but also qualitative
case studies.

4.1 Datasets

We use the “five-core” subsets from the publicly accessible “Amazon product dataset”3 [20] for
experiments. Here the “five-core” means that each user and product in the subset has at least five
reviews. Each record in the dataset is composed of five variables including user, product, rating,
textual review, and helpfulness votes. In AARM, we only use user, product, and textual review. To
follow the setting of baseline methods, in our pairwise learning-to-rank framework, ratings are
binarized to construct positive user-product pairs. We adopt five different product categories from
the “Amazon product dataset,” that is, “Movies and TV,” “CDs and Vinyl,” “Clothing, Shoes, and
Jewelry,” “Cell Phones and Accessories,” and “Beauty.” Some detailed statistics including the sparsity
and the number of ratings (#Rating), users (#User), and products (#Product) of the five datasets
are summarized in Table 1. Sparsity is defined as #Ratinд/(#User × #Product). We can see that
the five datasets are of different sizes and different levels of sparsity, which could cover different
recommendation scenarios.
For each user, its 70% records are randomly selected as a training set, while the remaining 30%

records are put into a test set. Particularly, we use the exact same splits and evaluation measures
as the experimental settings in [48].4 This is to guarantee that all the methods are evaluated on
exactly the same settings for fair comparisons.

2https://radimrehurek.com/gensim/.
3http://jmcauley.ucsd.edu/data/amazon/.
4We would like to thank the authors for sharing with us the datasets and specific splits.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

https://radimrehurek.com/gensim/
http://jmcauley.ucsd.edu/data/amazon/

Attentive Aspect Modeling for Review-Aware Recommendation 28:13

Table 1. Statistics of the Experimental Datasets

Dataset #Rating #User #Product Sparsity

Movies and TV 1,697,533 123,960 50,052 0.0274%
CDs and Vinyl 1,097,592 75,258 64,421 0.0226%
Clothing, Shoes, and Jewelry 278,677 39,387 23,033 0.0307%
Cell Phones and Accessories 194,439 27,879 10,429 0.0669%
Beauty 198,502 22,363 12,101 0.0734%

Table 2. Statistics of Aspects Extracted from Reviews

Dataset #Aspect Ave. #Aspect/User Ave. #Aspect//Product

Movies and TV 2,865 14.72 32.24
CDs and Vinyl 4,033 31.04 41.31
Clothing, Shoes, and Jewelry 525 7.04 9.77
Cell Phones and Accessories 648 6.93 12.50
Beauty 691 9.72 13.13

Table 3. Some Examples of the Automatically Extracted Aspects

Dataset Aspects

Movies and TV 3D movie, cast, halloween film, halloween movie, harden,
melodrama, movie star, screen time, thrillers, zombie movie

CDs and Vinyl 1980s, band, crooners, crooning, country music, fingerwork,
singers, rock fans, songwriters, composers

Clothing, Shoes, and Jewelry color, cottony, diamonds, fit, price, presentation box, sleeve
shirts, sleeve, traction, torso

Cell Phones and Accessories usb, accessory, a little, car chargers, car speaker, charge cycle,
charge cycles, looks, plastic, quality

Beauty results, smell, chocolate smell, odor, ingredient, ingredients,
face feeling, hair feeling, sheen, shampoos

4.2 Aspects from User Reviews

Some detailed statistics of the aspects extracted from user reviews by Sentires are shown in
Table 2. We can see that the number of aspects (Aspect#), the average number of aspects per user
(Ave. # Aspect/User), and the average number of aspects per product (Ave. # Aspect/Product) in
the five datasets are varied, which makes our experiments more comprehensive.
Table 3 shows some examples of the aspects extracted from each dataset. We did not conduct

any post-processing on the extracted aspects. Although there are some noise words in the as-
pect collection, Sentires is largely effective in extracting many meaningful aspects that correspond
to important product features. And there are synonymous aspects like “songwriters” and “com-
posers,” and related aspects like “smell” and “chocolate smell,” which would usually be treated as
disparate product features in most existing aspect-level models.

4.3 Evaluation Protocols

To generate a top-N recommendation list for user u, a model first estimates the scores of u’s can-
didate products, then ranks all the candidate products according to the scores and truncates the

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

28:14 X. Guan et al.

ranking list at N . In this article, u’s candidate products include all the products in u’s test set and
those that have not been purchased by u. In the evaluation, products in u’s test set would be used
as ground truth. Following the settings in [48], we set N = 10. Four standard metrics are used in
the evaluation: Recall, Precision, Normalized Discounted Cumulative Gain (NDCG), and Hit Ratio
(HT).
Recall is the percentage of products that has been recommended to the user in the products

that have been purchased by the user:

Recall =
ntp

nдt
, (13)

where ntp is the number of ground-truth products in the recommendation list, and nдt is the
number of ground-truth products. We average the measure across all testing users.
Precision is the percentage of products that has been purchased by the user in the top-N rec-

ommendation list:

Precision =
ntp

N
. (14)

The measure is averaged across all testing users.
NDCG is a measure when the positions of the purchased products in the recommendation list

are considered. NDCG is based on the Discounted Cumulative Gain (DCG):

DCG =
N∑

i=1

2r eli − 1
loд2 (i + 1)

. (15)

Here, reli is the graded relevance of the product at position i of the recommendation list for a user.
The NDCG of a user is then calculated as

NDCG =
DCG

IDCG
. (16)

Here IDCG is the DCG of the ideal recommendation list where the user’s ground-truth products
are all ranked at the top. We average NDCG across all testing users.
HT is defined as in the following equation where nhit is the number of users who have pur-

chased at least one product in its recommendation list:

HT =
nhit
|U | . (17)

4.4 Baselines and Parameter Settings

We compare our method AARM with the following baselines.
BPR-MF [37]. The MF based on BPR, which combines the MF model with a pairwise learning

to rank loss function, is a solid baseline for top-N recommendation. Only user-product interaction
data is used in this method.
BPR-HFT [31]. The HFT model associates topics extracted from reviews with latent factors

learned from numerical ratings. It is one of the state-of-the-art review-based recommendation
methods. The original HFT model is a rating prediction method. BPR-HFT [48] modifies HFT by
adding a BPR loss on top of HFT to generate the top-N recommendation.
GMF [24]. GeneralizedMatrix Factorization (GMF) is one of the state-of-the-art neural network-

based recommendation methods which only utilizes user-product interaction records. In experi-
ments, we directly use the released code by the authors,5

5https://github.com/hexiangnan/neural_collaborative_filtering.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

https://github.com/hexiangnan/neural_collaborative_filtering

Attentive Aspect Modeling for Review-Aware Recommendation 28:15

BPR-AFM [44]. Attentional Factorization Machine (AFM) is an improved variant of the famous
factorization machine (FM) [36]. Similar to our method, AFM uses a neural attention network
to discriminate the importance of different feature interactions. The original version of AFM is
designed for regression task and optimizes the squared loss. We modified AFM by adding a BPR
loss on top of AFM to generate the top-N recommendation. Given a user and an item as input,
we use the user identity, the item identity, the user’s aspects, and the item’s aspects as features.
Both the identity features and aspect features have corresponding embedding vectors in themodel,
which are randomly initialized and then fine-tuned during the training.
DeepCoNN [51]. The Deep Cooperative Neural Network is one of the state-of-the-art deep

learning methods for recommendation which utilizes reviews to build user and product represen-
tations. It uses the review-based user and product representations for rating prediction.
JRL [48]. The Joint Representation Learningmodel is a state-of-the-art methodwhich integrates

different information sources with deep learning methods for top-N recommendation. Textual re-
views, product images, and numerical ratings are jointly used in JRL.
JRL-Review [48]. JRL-Review is a single-view version of JRL which incorporates textual re-

views for top-N recommendation. JRL-Review employs the PV-DBOW model [28] to learn the
vector representations of users and products from their corresponding reviews. It is one of the
state-of-the-art review-based recommendation methods.
eJRL [48]. eJRL is another variant of JRL which jointly utilizes textual reviews, product images,

and numerical ratings for recommendation. The difference between them is that eJRL prevents
information propagation among different information sources.
The hyper-parameters of baselines are tuned on a training set with fivefold cross-validation. In

particular, the dimension of latent factors (or embeddings) for BPR-MF, BPR-HFT, and DeepCoNN
is 100. For BPR-HFT, the number of topics is 10. For JRL, JRL-Review, and eJRL, the embedding size
is set as 300. For GMF and BPR-AFM, the size of all the embedding vectors is set as 128.
Parameter Settings. We implemented our methods with Tensorflow.6 When padding user as-

pect set to the same size, the maximum size Mu was defined as the 75% quantile of the sizes of
all user aspect sets. Similarly, the maximum size Mv of product aspect set was defined as the 75%
quantile of the sizes of all product aspect sets. For embedding layers, we set the dimension dд of
user and product embeddings in the global interactions module to 128; set the dimension da of
aspect embeddings to 128. AARM was optimized with mini-batch Adam [26] because Adam uses
adaptive learning rates for parameters with different update frequencies and converges faster than
vanilla stochastic gradient descent. We tested the learning rate of [0.001, 0.003, 0.01]. For the co-
efficient of L2 regularization, [0.0, 0.0001, 0.01, 0.1] was tested. To prevent overfitting, in dropout
layers, the dropout rate was set to 0.5. When pre-training aspect embeddings with Word2Vec, the
window size and the number of noise words for negative sampling are both 5.
Themodel was trained for a maximum of 300 epochs with early stopping. To build the validation

set, 1,000 users are randomly selected from the users in the training set. For each user, one of his
purchased products is randomly drawn from the training set as the ground-truth product in the
validation set. And when evaluating the model on the validation set, for each user, all the products
which are not paired with the user in the training set are added to the candidate set. Then to
build a recommendation list for each user, products in the candidate set are ranked according to
the estimated matching degrees between them and the user. The aforementioned four measures
are used to evaluate the top-N recommendation lists and then averaged across all the validation
users. For every 10 epochs, we will test the model’s performance on the validation set. The training
would be stopped if half of the four measures decreased for 40 successive epochs.

6https://www.tensorflow.org/.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

https://www.tensorflow.org/

28:16 X. Guan et al.

Table 4. The NDCG and Hit Ratio (HT) Results of Baselines and the Proposed Method for RQ1

Movies CDs Clothings Cell Phones Beauty

Measures (%) NDCG HT NDCG HT NDCG HT NDCG HT NDCG HT

BPR-MF 1.267 4.421 2.009 8.554 0.601 1.767 1.998 5.273 2.753 8.241

GMF 3.519 10.897 4.530 14.266 1.144 2.795 3.623 8.230 4.079 11.112

BPR-HFT 2.092 6.378 2.661 9.926 1.067 2.872 3.151 8.125 2.934 8.268

DeepCoNN 3.800 10.522 4.218 13.857 1.310 3.286 3.636 9.913 3.359 9.807

BPR-AFM 3.649 11.578 4.716 15.278 1.354 3.511 3.627 9.229 4.103 11.899

JRL-Review 4.222 12.958 5.286 16.592 1.270 3.527 4.184 10.632 4.216 12.422

eJRL 4.405 13.292 5.023 16.081 1.523 4.182 4.185 10.531 3.896 11.090

JRL 4.334 13.245 5.378 16.774 1.735 4.634 4.364 10.940 4.396 12.776

AARM 5.020 15.187 7.252 20.749 1.956 4.915 4.976 11.568 5.314 13.648

Impr-JRL-Review 18.901 17.202 37.193 25.054 54.094 39.354 18.929 8.804 26.044 9.870

Impr-eJRL 13.961 14.257 44.376 29.028 27.742 17.527 18.901 9.847 36.396 23.066

Impr-JRL 15.828 14.662 34.846 23.697 12.795 6.064 14.024 5.740 20.883 6.825

Due to limitation of space, we present the name of dataset “Movies and TV” as “Movies,” “CDs and Vinyl” as “CDs,”
“Clothing, Shoes, and Jewelry” as “Clothings,” “Cell Phones and Accessories” as “Cell Phones” for short. The best results
are highlighted in bold. The improvements (or decrements for negative values) achieved by AARM compared with the
best review-based baseline (Impr-JRL-Review) and the best multi-modal baseline (Impr-JRL or Impr-eJRL) are shown in
the last three rows.

Table 5. The Corresponding Recall and Precision Results of Baselines and the Proposed Method

Movies CDs Clothings Cell Phones Beauty

Measures (%) Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

BPR-MF 1.988 0.528 2.679 1.085 1.046 0.185 3.258 0.595 4.241 1.143

GMF 5.169 1.306 6.280 1.844 1.832 0.299 5.751 0.931 6.291 1.439

BPR-HFT 3.255 0.776 3.570 1.268 1.819 0.297 5.307 0.860 4.459 1.132

DeepCoNN 4.671 0.886 6.001 1.681 2.332 0.229 6.353 0.999 5.429 1.200

BPR-AFM 5.314 1.409 6.499 2.030 2.275 0.366 6.244 1.021 6.373 1.522

JRL-Review 6.145 1.465 7.454 2.079 2.211 0.336 7.275 1.062 6.766 1.467

eJRL 6.289 1.521 6.973 2.002 2.679 0.396 7.130 1.054 6.010 1.355

JRL 6.334 1.492 7.545 2.085 2.989 0.442 7.510 1.096 6.949 1.546

AARM 7.140 1.834 9.965 2.716 3.292 0.511 8.014 1.259 7.947 1.818

Impr-JRL-Review 16.192 25.188 33.687 30.640 48.892 52.083 10.158 18.550 17.455 24.777

Impr-eJRL 13.532 20.579 42.908 35.664 22.882 29.040 12.398 19.450 32.230 34.170

Impr-JRL 12.725 22.922 32.074 30.264 10.137 15.611 6.711 14.872 14.362 17.594

4.5 Model Comparison (RQ1)

Tables 4 and 5 show the performance of our method and baselines on top-N recommendation task.
The performances of rating-based methods (BPR-MF and GMF), review-based methods (BPR-HFT,
DeepCoNN, BPR-AFM, and JRL-Review), multi-modal methods (eJRL and JRL), and our method
(AARM) are shown in the four blocks in each table from top to bottom. The last block of each
table also presents the percentage of improvements (or decrements for negative values) achieved
by AARM as compared with the best review-based baseline (Impr-JRL-Review) and the best multi-
modal baseline (Impr-JRL or Impr-eJRL). The best results are highlighted in bold. As we use the
same split as [48], we directly reproduce their results of BPR-MF, BPR-HFT, DeepCoNN, JRL-
Review, eJRL, and JRL for fair comparisons. From Tables 4 and 5, we can see the following:

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

Attentive Aspect Modeling for Review-Aware Recommendation 28:17

(1) In general, neural network-based methods outperform shallow models (e.g., BPR-MF and
BPR-HFT). GMF, which only uses user-product interaction data, even largely outperforms
BPR-HFTwhich incorporates reviews for recommendation. Thismight be attributed to the
powerful representation learning capacity of neural models.

(2) Generally, review-based methods outperform rating-based methods. All the review-based
methods outperform BPR-MF. Among neural network-basedmethods, BPR-AFM and JRL-
Review also outperform GMF. This shows that review is an important information source
to boost recommendation performance.

(3) Our proposed method AARM outperforms all the rating-based methods and review-based
methods on all the datasets in terms of different metrics. Compared to these baselines,
AARM makes better use of the user-product interaction records and review texts. This is
because of AARM’s finer-grained modeling of aspect interactions, which simultaneously
considers the interactions between different aspects and user’s varied attentions toward
aspects. In the following sections, we further analyze how the specific designs of AARM
boost its recommendation performance.

(4) AARMalso outperforms both of themulti-modal deep learningmethods on all the datasets
and on all the measures. It is surprising that our method outperforms these multi-modal
deep learning methods which not only utilize review data but also leverage product image
and numerical rating data for recommendation. This further indicates that textual review
is a very informative information source andAARM’s finer-grained aspect modeling could
effectively leverage reviews for recommendation. In the following sections, wewill discuss
the contribution of each part of AARM by comparing AARM with its variants.

4.6 Effect of Interactions Between Different Aspects (RQ2)

Previous aspect-based methods neglect the interactions between synonymous and similar aspects
when making recommendations, and are limited by the sparsity of shared aspects in the reviews of
users and products. AARM alleviates this problem by modeling the interactions between different
aspects and using an attention module to capture the important aspect interactions. To verify the
effect of this design, we compare AARM with its two variants, which are termed as “A_Inter” and
“No-AspectAtt” in Figure 3, under the same experimental settings.
As variants of AARM, the differences between AARM, No-AspectAtt, and A_Inter are in the

Aspect Interactions part. Given a user u and a product v , A_Inter only considers the interactions
between shared aspects of u and v , that is, a ∈ Au ∩Av . Hence, in the Aspect Interactions part of
A_Inter, we first calculate the intersection Ainter

u,v of Au and Av . To estimate ha which represents
u’s preference to v according to aspect a ∈ Au , Equations (3), (4), and (5) of AARM are replaced
with the following equation:

ha =
∑

i ∈Ainteru,v

(ci � ci) (xi). (18)

Here xi ∈ {0, 1} is an indicator, where xi = 0 if i is the meaningless aspect 〈PAD〉 defined for
padding. As A_Inter only considers interactions between the same aspects, no aspect-level at-
tention module is used here. In No-AspectAtt, the aspect-level attention layer is removed and the
aspect interactions are directly summed up. Equations (4) and (5) of AARM are replaced with the
following equation:

hi =
∑

j ∈Av
(ci � cj) (xix j). (19)

We evaluate A-Inter and No-AspectAtt’s performance on top-N recommendation task and com-
pare them with AARM in Figure 3. All the experimental settings are kept the same to ensure

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

28:18 X. Guan et al.

Fig. 3. Performance of AARM,No-AspectAtt, and A_Inter on five datasets for RQ2. Due to limitation of space,
we present dataset “Movies and TV” as “Movie,” “CDs and Vinyl” as “CD,” “Clothing, Shoes, and Jewelry”
as “Cloth,” and “Cell Phones and Accessories” as “Cell” for short.

the reliability of results. As shown in Figure 3, AARM substantially outperforms A_Inter and No-
AspectAtt on all datasets in terms of all measures. Compared to A-Inter, the average improvements
achieved by AARM are 39.401% for NDCG, 37.427% for recall, 32.823% for HT, and 33.593% for pre-
cision. The results demonstrate the importance of modeling the interactions between different
aspects and the effectiveness of our carefully designed aspect-level attentive layer. We will further
perform a qualitative analysis of the aspect-level attention layer in Section 4.10.

4.7 Effect of Varied User Interest Modeling (RQ3)

In the design of AARM,we assume that a user’s interests toward aspects are varied among different
products. And a user-level attentive pooling layer (Equations (6), (7), and (8)), which simultane-
ously considers user, product, and aspect information, is designed to capture a user’s different
biases toward aspects when facing different products. To verify the effect of the user-level atten-
tion module, we design two variants of AARM, called A_Static and No-UserAtt, and compare them
with AARM on the top-N recommendation task under the same settings.
The differences between AARM, A_Static, and No-UserAtt are in the design of the user-level

attention module. A_Static also assumes that a user’s interests toward different aspects are differ-
ent. But different from AARM, A_Static assumes that a user’s interests toward aspects are fixed
when facing different products. Therefore, the inputs of the user-level attention layer in A_static
do not consider the information of candidate products. When estimating user u’s interests toward
its aspects, different from AARM, the input of the aspect ai ∈ Au is designed as

xu,i = gu � ci ,
gu =

∑
j ∈Au

cj . (20)

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

Attentive Aspect Modeling for Review-Aware Recommendation 28:19

Table 6. The NDCG and Hit Ratio (HT) Results of AARM and Its Variants on Five Datasets for RQ3

Measures (%)
Movies CDs Clothings Cell Phones Beauty

NDCG HT NDCG HT NDCG HT NDCG HT NDCG HT

AARM 5.020 15.187 7.252 20.749 1.957 4.915 4.976 11.568 5.314 13.648

A_Static 4.376 13.318 6.794 19.567 1.898 4.590 4.728 11.181 4.918 12.735

No-UserAtt 4.290 13.104 6.700 19.108 1.310 3.217 4.685 10.786 4.739 12.297

Impr A_static 14.717 14.034 6.741 6.041 3.109 7.081 5.245 3.461 8.052 7.169

Impr No-UserAtt 17.016 15.896 8.239 8.588 49.389 52.782 6.211 7.250 12.133 10.986

We follow the short form convention adopted in Table 4 to name the datasets. The best performance of each measure
on each dataset is highlighted in bold. The last block shows the percentage of improvements (or decrements for negative
values) achieved by AARM compared with A_static (Impr A_static) and No-UserAtt (Impr No-UserAtt).

Table 7. The Corresponding Precision and Recall Results of AARM
and Its Variants on Five Datasets for RQ3

Measures (%)
Movies CDs Clothings Cell Phones Beauty

Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

AARM 7.140 1.834 9.965 2.716 3.292 0.511 8.014 1.259 7.947 1.818

A_Static 6.275 1.588 9.075 2.470 3.131 0.476 7.776 1.219 7.337 1.699

No-UserAtt 6.076 1.561 8.953 2.403 2.193 0.337 7.583 1.176 7.046 1.648

Impr A_static 13.785 15.491 9.807 9.960 5.142 7.353 3.061 3.281 8.314 7.004

Impr No-UserAtt 17.512 17.489 11.303 13.025 50.114 51.632 5.684 7.058 12.787 10.316

Here gu is the overall representation of aspects in Au . And xu,i , which represents a summation of
the similarities between aspect ai and all the aspects in Au , is aspect ai ’s input to the user-level
attention layer.
Similar to Equation (7), the attention layer is defined as

α̂u,i = watt2
T xu,i ,

αu,i =
exp(α̂u,i)∑

j∈Au
exp(α̂u, j)

. (21)

Here watt2 ∈ Rda , and αu,i represents the importance of aspect ai ∈ Au with respect to the user
u. From Equations (20) and (21), we can see that no product information is used in the user-level
attention module.
Different from AARM, No-UserAtt assumes that a user would assign equal weights to its aspects

when purchasing products. So instead of the user-level attentive pooling layer, No-UserAtt directly
sums up the set of vectors {hi }ai ∈Au which represents the candidate product’s performances on
the aspects of user u:

yA (u,v) =
∑

j ∈Au
hj . (22)

As shown in Tables 6 and 7, AARM outperforms A_static and No-UserAtt on all the datasets and
on all the measures. We remind one that the only differences between AARM and A_static are the
different assumptions about user attentions on aspects toward different products. From the results,
we can see that AARM’s varied user interests assumption is more reasonable as compared to the
constant user interests assumption of A_static. In real-life scenarios, a user could be interested in
many different kinds of products and each product can be described by a specific set of aspects.
Obviously, the user will pay less attention to the aspects which are not related to the current
product. As no two products are exactly alike, a user’s interests on the diverse aspects can be

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

28:20 X. Guan et al.

Table 8. The NDCG and Hit Ratio (HT) Results of AARM and Its Variants on Five Datasets for RQ4

Measures (%)
Movies CDs Clothings Cell Phones Beauty

NDCG HT NDCG HT NDCG HT NDCG HT NDCG HT

AARM 5.020 15.187 7.252 20.749 1.957 4.915 4.976 11.568 5.314 13.648

Random+Tune 4.607 13.989 6.709 19.443 1.487 3.636 4.354 10.316 4.794 12.972

Pre-train+Tune 4.764 14.320 6.744 19.905 0.802 2.046 4.210 10.191 4.658 12.266

Random vs. Pre-train −3.296 −2.311 −0.519 −2.321 85.411 77.713 3.420 1.227 2.920 5.756

We follow the short form convention adopted in Table 4 to name the datasets. The best performance of each measure
on each dataset is highlighted in bold. The last block shows the percentage of improvements (or decrements for negative
values) achieved by Random+Tune compared with Pre-train+Tune (Random vs. Pre-train).

Table 9. The Corresponding Precision and Recall Results of AARM
and Its Variants on Five Datasets for RQ4

Measures (%)
Movies CDs Clothings Cell Phones Beauty

Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

AARM 7.140 1.834 9.965 2.716 3.292 0.511 8.014 1.259 7.947 1.818

Random+Tune 6.495 1.667 8.957 2.428 2.476 0.382 7.161 1.135 7.288 1.706

Pre-train+Tune 6.744 1.719 9.270 2.616 1.346 0.216 7.012 1.110 6.969 1.647

Random vs. Pre-train −3.692 −3.025 −3.376 −7.187 83.952 76.852 2.125 2.252 4.577 3.582

varied even for the products from the same category. We will further represent how the user-level
attentive pooling works when facing different products in Section 4.10.
In Tables 6 and 7, A_static also outperforms No-UserAtt on all the datasets in general. As

A_static can be viewed as an enhanced version of No-UserAtt, where a fixed user interests model is
added, we can see that identifying the different importance of aspects can boost the recommenda-
tion performance. This result is reasonable because different users have different tastes, and they
would put different attentions to different product features.

4.8 Effects of Initialization and Tuning Strategy of Aspect Embedding (RQ4)

In AARM, the embeddings of aspects are first initialized with the vectors which are pre-trained
with Word2vec on each dataset, and then transformed by the matrix Wtrans . This is inspired by
the findings in [33] that the word embeddings trained with Word2vec can retain the syntactic
and semantic similarity relation between words. We keep the aspect embedding matrix WA fixed
during the training of AARM for top-N recommendation while the matrix Wtrans are tunable
during the training. We choose this tuning strategy because similar words will be shifted similarly
as shown in [18].

There are also two other alternatives for the initialization and tuning strategies of aspect embed-
ding matrixWA. The first one is to randomly initialize the aspect embedding matrix and then tune
it during the training for top-N recommendation. We conducted experiments under this setting
and presented the results in Tables 8 and 9 in the row of “Random+Tune.” The second choice is to
initialize the aspect embedding matrix with pre-trained embeddings and then tune it during the
training for top-N recommendation. The experiment results of the second settings are presented
in Tables 8 and 9 in the row of “Pre-train+Tune.”

As shown in Tables 8 and 9, AARM with the “pre-training + trainable linear transformation”
strategy outperforms Random+Tune and Pre-train+Tune on all the datasets and on all the mea-
sures. The results are reasonable because in the design of the attention layers in AARM, we as-
sumed that the similarity between two aspects can be represented by the interaction between

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

Attentive Aspect Modeling for Review-Aware Recommendation 28:21

Table 10. The NDCG and Hit Ratio (HT) Results of AARM and Its Variants on Five Datasets for RQ5

Measures (%)
Movies CDs Clothings Cell Phones Beauty

NDCG HT NDCG HT NDCG HT NDCG HT NDCG HT

AARM 5.020 15.187 7.252 20.749 1.957 4.915 4.976 11.568 5.314 13.648

Global Part 3.035 9.965 4.860 15.462 1.084 2.770 3.492 8.250 4.199 11.050

Aspect Part 2.401 8.237 5.200 16.700 1.677 4.395 3.006 7.568 3.781 11.246

Aspect vs. Global −20.890 −17.341 6.996 8.007 54.705 58.664 −13.918 −8.267 −9.955 1.774

We follow the short form convention adopted in Table 4 to name the datasets. The best performance of each measure
on each dataset is highlighted in bold. The last block shows the percentage of improvements (or decrements for negative
values) achieved by Aspect Part compared with Global Part (Aspect vs. Global).

Table 11. The Corresponding Precision and Recall Results of AARM
and Its Variants on Five Datasets for RQ5

Measures(%)
Movies CDs Clothings Cell Phones Beauty

Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

AARM 7.140 1.834 9.965 2.716 3.292 0.511 8.014 1.259 7.947 1.818

Global Part 4.485 1.206 6.760 2.057 1.802 0.295 5.645 0.895 6.171 1.507

Aspect Part 3.512 0.936 7.686 2.020 2.925 0.451 5.187 0.794 6.036 1.249

Aspect vs. Global −21.695 −22.388 13.698 −1.799 62.320 52.881 −8.113 −11.285 −2.188 −17.120

them. The capability of enabling similar words shifted similarly makes the “pre-training + train-
able linear transformation” strategy more suitable for our task.
Comparing the performance of Random+Tune with Pre-train+Tune in Tables 8 and 9, we can

find that Pre-train+Tune outperforms Random+Tune in larger datasets like “Movies and TV” and
“CDs and Vinyl” (refer to Table 1), while Random+Tune performs better in smaller datasets like
“Clothing, Shoes and Jewelry,” “Cell Phones and Accessories,” and “Beauty” (refer to Table 1). This
may be caused by the fact that when the training data is not sufficient, the Pre-train+Tune strategy
may not be able to transform the pre-trained embeddings for the new task and thus lose the original
similarity between words [18]. The Random+Tune strategy which assigns a much smaller random
initial value to the embedding matrix is easier to be optimized for the new task in an end-to-end
style.

4.9 Model Ablation: Effect of Global Module and Aspect Module (RQ5)

In this section, we examine the roles of the Global Interactions part and Aspect Interactions part
in the results of AARM. As shown in Figure 1, given the user and product as input, the two parts
of AARM worked separately. Then the outputs of these two parts are merged and input into the
output layer to estimate the score. To verify the effect of the Aspect Interactions part, we remove
the Global Interactions part from AARM, and directly input the result of the Aspect Interactions
part into the output layer. This variant of AARM is referred to as “Aspect Part” in Tables 10 and
11. Similarly, another variant of AARM which is referred to as “Global Part” in Tables 10 and 11
is constructed by removing the Aspect Interactions part from AARM to verify the effect of the
Global Interactions Part.
From Tables 10 and 11, we can find that AARM significantly outperforms Aspect Part and Global

Part. This result indicates that our combination strategy based on concatenation is valid. And the
Global Interactions part, which is designed to capture the user preferences that have not been
mentioned in review texts, is an effective complement to the Aspect Interactions part.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

28:22 X. Guan et al.

Table 12. The Distributions of the Number of Shared Aspects Between a User
and a Product on the Five Datasets

Datasets 0 1 2 3 4 5 >5
Cell Phones and Accessories 26.34% 28.95% 19.73% 11.31% 6.09% 3.26% 4.33%
Beauty 35.31% 29.85% 16.37% 8.21% 4.22% 2.29% 3.76%
Clothing, Shoes, and Jewelry 12.09% 24.90% 25.50% 17.92% 10.07% 5.01% 4.50%
Movies and TV 30.98% 27.26% 15.54% 8.73% 5.21% 3.30% 8.98%
CDs and Vinyl 3.06% 10.71% 13.91% 13.36% 11.39% 9.29% 38.27%

From left to right, the columns present the ratios of different user-product pairs which have specific numbers of shared
aspects. Specifically, the last column represents the ratio of user-product pairs which have more than five shared aspects.

As compared with Global Part, Aspect Part performs better in two datasets while it falls be-
hind in the other three datasets. Because the Aspect Part connects users and products via the
interactions between their aspects, its performance may be influenced by the number of interac-
tions between related aspects. To verify this viewpoint, we traverse all the users and products in
a dataset to construct all the possible user-product pairs, and then count the number of shared
aspects of each user-product pair. A shared aspect of a user-product pair is an aspect which has
been mentioned in both the user and the product’s reviews. The distributions of the number of
shared aspects of each user-product pair on the five datasets are shown in Table 12.
From Tables 10, 11, and 12, we can find that Aspect Part usually performs better on datasets

which have more shared aspects between each user-product pair in general. For example, Aspect
Part substantially outperforms the Global Part in the “CDs and Vinyl” and “Clothing, Shoes, and
Jewelry” datasets which have the smallest ratios of 0 shared aspects (see the second column in the
table). And for datasets “Movies and TV,” “Cell Phones and Accessories,” and “Beauty” where more
than 20% user-product pairs do not have any shared aspects, Global Part outperforms Aspect Part.

4.10 Case Study of Attention Layers

The user-level and aspect-level attention modules are important parts of AARM. The user-level
attention module (refer to Equation (7)) is employed to capture a user’s varied preferences on as-
pects. And the aspect-level attention module (refer to Equation (4)) is designed to enhance the
interactions between meaningful aspect pairs, like the interactions between the same or similar
aspects, and reduce the influence of the interactions between the two irrelevant aspects. To illus-
trate the roles of these two attention modules in AARM, we randomly selected some examples for
qualitative analysis.
In Table 13, we show the user-level attention values of a user “A1P9UMP1XSE6MI” in the “Cell-

phones and Accessories” dataset when examining different products. The first column is the ids of
four products in the dataset and their aspect sets. Each product has 15 aspects, which is the 75%
quantile of the sizes of all product aspect sets in the dataset. The rest of the columns show the as-
pects of the user (the second row from top to bottom) and the attention values that are assigned to
these aspects when facing the aforementioned four products. From each product’s aspect set, we
can find that product “B00EOE6FUW” is a “usb charger,” “B005HS5MKS” is a “bluetooth earpiece,”
and “B002VPE1NO” and “B00E8GYIRI” are the “shell case” of cellphones. The shared aspects of
each user-product pair and corresponding attention values are highlighted in red.
As shown in Table 13, when examining a product, the user-level attention module can find

the aspects which are related to the product and assign higher attention values to them. First,
all the shared aspects (highlighted in red) of each user-product pair are assigned much higher
attention values. Second, the user-level attention module can assign higher values to aspects that

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

Attentive Aspect Modeling for Review-Aware Recommendation 28:23

Table 13. A Case Study of the User-level Attention Module

Aspects of User A1P9UMP1XSE6MI

Products and Their Aspects
sound
quality

shell
case grommets quality

impact
protection

usb
cords

bluetooth
earpiece

usb
plug

grab

B00EOE6FUW: usb, usb cable,
charging device, colors, cable,
usb charger, car trip, usb cords,
usb end, nokia lumia, usb
chargers, car chargers, wiggle,
ultra, usb plug

0.0013 0.0008 0.0058 0.0014 0.0003 0.4406 0.0034 0.5389 0.0075

B005HS5MKS: peeve, sound
quality, sizes, bluetooth
earpiece, downside, quality,
protection, looks

0.4161 0.0103 0.1416 0.1392 0.0126 0.0371 0.1780 0.0174 0.0477

B002VPE1NO: metallic, shell
case, shell, looks, grip, finish,
impact protection, protection,
iphone cases, grommets,
rubber strips, plastic, case w,
armor, air case

0.0109 0.4785 0.1309 0.0084 0.1464 0.0199 0.0197 0.0102 0.1751

B00E8GYIRI: impact
protection, protection, shell,
packing snapon cases, plastic,
plastic case, case, scuff, bulk,
matte phone protection,
polycarbonate, iphone cases,
shell case

0.0077 0.6295 0.0248 0.0042 0.1929 0.0160 0.0144 0.0121 0.0984

The first column (from the left) shows ids and aspect sets of four products from the “Cell Phones and Accessories” dataset.
The rest of the columns show the aspects of the user (the second row from top to bottom) and the attention values assigned
to these aspects when facing the aforementioned four products. In each row, the aspects mentioned in both the user and
product’s reviews and their corresponding attention values are highlighted in red.

are related to the product but have not beenmentioned in the product’s reviews. For example, when
examining the shell cases “B002VPE1NO” and “B00E8GYIRI,” “grab” is assigned a higher weight,
although it is not in the product’s aspect set. This is because there are some related aspects of “grab”
in the two products’ aspect sets which are captured by our attention module (refer to Figure 4).
The examples in Table 13 indicate why AARM can outperform A_Static and No-UserAtt (refer

to Tables 6 and 7). The user’s aspect set consists of three unrelated kinds of aspects: (1) “sound
quality,” “quality,” and “bluetooth earpiece”; (2) “usb cords” and “usb plug”; (3) “shell case,” “grom-
mets,” “impact protection,” and “grab.” In this case, No-UserAtt would assign the same weights to
aspect ‘bluetooth earpiece” and “shell case” when purchasing a bluetooth earpiece. And A_Static
would assign same weights to aspect “sound quality” no matter what kinds of products the user is
purchasing. By identifying different aspects’ different roles when purchasing different products,
AARM achieved better performance.
Next, we present how the aspect-level attention module finds the meaningful interactions (i.e.,

interactions between the shared aspects, synonymous aspects, and similar aspects) from all the
aspect interactions between a user and a product. In Figure 4, we show the aspect-level atten-
tion values of the interactions between aforementioned user “A1P9UMP1XSE6MI” and product
“B002VPE1NO.” In the heat map, the columns refer to the product’s aspects while the rows refer
to the user’s aspects. The color of each grid cell represents the attention value assigned to the
corresponding interaction. The darker the color in a grid cell, the higher the attention value.
First, we can see that interactions between the shared aspects like “grommets,” “impact protec-

tion,” and “shell case” are captured and assigned higher attention values. Second, the interactions
between synonymous aspects are assigned higher weights as compared with unrelated ones. For
example, (“shell case,” “shell”) is assigned the second highest attention value in the interactions

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

28:24 X. Guan et al.

Fig. 4. Heat map of aspect-level attention. The columns refer to aspects of the product while the rows refer
to aspects of the user. Darker color in the grid cell means that higher attention value is assigned to the
interaction between corresponding aspects by the aspect-level attention module.

between “shell case” and the product’s aspects. Third, some interactions between similar aspects
are captured. For example, in the interactions with “impact protection,” the product’s aspects “pro-
tection,” “armor,” and “grip” are assigned high attention values. Finally, for the user’s aspects that
are unrelated to the product (e.g., “usb plug”), their attention value distributions are more uniform
compared to the shared and similar aspects. By assigning higher attention values to meaningful
aspect interactions, AARM can alleviate the impact of noisy interactions and overcome the aspect
sparsity problem.

5 CONCLUSION AND FUTURE WORK

In this article, we presented an AARM, which carefully captures the interactions between aspects
extracted from reviews for recommendation. AARM first calculates the interactions between as-
pect embeddings to estimate how a product fits a user’s requirements on each aspect, and then es-
timates the user’s overall satisfaction on the product by synthesizing the product’s performances
on each aspect. To deal with the problem that the number of shared aspects between a user and a
product is often limited, AARM takes the interactions between different aspects into consideration.
With a well-designed aspect-level attention module, not only the shared aspects but also other re-
lated aspect pairs can be selected and assigned higher attention values. In addition, we hold the
assumption that a user’s interests toward aspects are varied when examining different products. To
achieve the goal, an attention module which simultaneously considers user and product informa-
tion is designed in AARM. In the experiments on five real-world datasets, AARM outperforms the
state-of-the-art methods on the top-N recommendation task. In particular, compared with multi-
modal (textual reviews, product images, and numerical ratings) methods JRL and eJRL, AARM can
still achieve better results in all datasets. To demonstrate the effectiveness of each component in
AARM, a lot of quantitative experiments and qualitative case studies are conducted.
In the future, we would like to extend our work in the following three ways: (1) Applying our

method to capture the similarity relation between two different aspects to other recommendation

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

Attentive Aspect Modeling for Review-Aware Recommendation 28:25

scenes. By using the pre-trained aspect embedding, the aspect embedding transformation module,
and the aspect interaction layer, AARM can mimic the cosine similarity and capture the semantics
and syntax similarities between two aspects. This strategy can also be used in other recommen-
dation scenes (e.g., recommendation with tags or item metadata) to capture the relation between
different elements (like tags or item categories). (2) Extracting aspects with neural network and
combining it with AARM. In particular, we would like to jointly train the aspect extraction module
and the recommendation module in an end-to-end style. Ideally, the end-to-end training could re-
duce noisy aspects and mine more domain-specific aspects. (3) Integrating aspect-level sentiment
information in AARM. Aspect-level sentiment information is useful to identify a user’s likes and
dislikes about product features. But existing methods usually use external tools for aspect-level
sentiment analysis, which relies on the accuracy of these tools and is usually not able to deal with
new reviews. We will study how to extract the sentiment information and integrate it into AARM
with end-to-end learning.

REFERENCES

[1] Konstantin Bauman, Bing Liu, and Alexander Tuzhilin. 2017. Aspect based recommendations: Recommending items
with themost valuable aspects based on user reviews. In Proceedings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. ACM, 717–725.
[2] Da Cao, Xiangnan He, Lianhai Miao, Yahui An, Chao Yang, and Richang Hong. 2018. Attentive group recommen-

dation. In Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information

Retrieval. ACM, New York, 645–654.
[3] Da Cao, Xiangnan He, Liqiang Nie, Xiaochi Wei, Xia Hu, Shunxiang Wu, and Tat-Seng Chua. 2017. Cross-platform

app recommendation by jointly modeling ratings and texts. ACM Transactions on Information Systems 35, 4 (2017),
Article 37, 37:1–37:27 pages.

[4] Rose Catherine and William Cohen. 2017. Transnets: Learning to transform for recommendation. In Proceedings of

the 11th ACM Conference on Recommender Systems. ACM, 288–296.
[5] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Neural attentional rating regression with review-level

explanations. In Proceedings of the 2018 World Wide Web Conference. International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, Switzerland, 1583–1592.

[6] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2019. Social attentional memory network: Modeling aspect-
and friend-level differences in recommendation. In Proceedings of the 11th ACM International Conference on Web

Search and Data Mining.
[7] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. 2017. Attentive collab-

orative filtering: Multimedia recommendation with item-and component-level attention. In Proceedings of the 40th

International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 335–344.
[8] Li Chen, Guanliang Chen, and Feng Wang. 2015. Recommender systems based on user reviews: The state of the art.

User Modeling and User-Adapted Interaction 25, 2 (2015), 99–154.
[9] Xu Chen, ZhengQin, Yongfeng Zhang, and Tao Xu. 2016. Learning to rank features for recommendation overmultiple

categories. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information

Retrieval. ACM, 305–314.
[10] Zhiyong Cheng, Xiaojun Chang, Lei Zhu, Rose C. Kanjirathinkal, and Mohan Kankanhalli. 2019. MMALFM: Explain-

able recommendation by leveraging reviews and images.ACMTransactions on Information Systems (TOIS) 37, 2 (2019),
16.

[11] Zhiyong Cheng, Ying Ding, Xiangnan He, Lei Zhu, Xuemeng Song, and Mohan Kankanhalli. 2018. A3NCF: An adap-
tive aspect attention model for rating prediction. In Proceedings of the 27th International Joint Conference on Artificial

Intelligence. International Joint Conferences on Artificial Intelligence Organization, 3748–3754.
[12] Zhiyong Cheng, Ying Ding, Lei Zhu, and Mohan Kankanhalli. 2018. Aspect-aware latent factor model: Rating predic-

tion with ratings and reviews. In Proceedings of the 2018 World Wide Web Conference. International World Wide Web
Conferences Steering Committee, 639–648.

[13] Jin Yao Chin, Kaiqi Zhao, Shafiq Joty, and Gao Cong. 2018. ANR: Aspect-based neural recommender. In Proceedings

of the 27th ACM International Conference on Information and Knowledge Management. ACM, 147–156.
[14] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on top-N rec-

ommendation tasks. In Proceedings of the 4th ACM Conference on Recommender Systems. ACM, 39–46.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

28:26 X. Guan et al.

[15] Ruihai Dong and Barry Smyth. 2017. User-based opinion-based recommendation. In Proceedings of the 26th Interna-

tional Joint Conference on Artificial Intelligence. AAAI Press, 4821–4825.
[16] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative memory network for recommendation systems. In Proceed-

ings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’18).
ACM, New York, 515–524.

[17] Gayatree Ganu, Yogesh Kakodkar, and AméLie Marian. 2013. Improving the quality of predictions using textual
information in online user reviews. Information Systems 38, 1 (2013), 1–15.

[18] Yoav Goldberg. 2017. Neural network methods for natural language processing. Synthesis Lectures on Human Lan-

guage Technologies 10, 1 (2017), 1–309.
[19] Yangyang Guo, Zhiyong Cheng, Liqiang Nie, Xin-Shun Xu, and Mohan Kankanhalli. 2018. Multi-modal preference

modeling for product search. In Proceedings of the 2018 ACM on Multimedia Conference. ACM.
[20] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual evolution of fashion trends with one-

class collaborative filtering. In Proceedings of the 25th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 507–517.

[21] Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. 2015. TriRank: Review-aware explainable recommendation
by modeling aspects. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Man-

agement. ACM, 1661–1670.
[22] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse predictive analytics. In Proceedings

of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 355–364.
[23] Xiangnan He, Zhenkui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and Tat-Seng Chua. 2018. NAIS: Neural

attentive item similarity model for recommendation. IEEE Transactions on Knowledge and Data Engineering 30, 12
(2018), 2354–2366.

[24] XiangnanHe, Lizi Liao, Hanwang Zhang, LiqiangNie, XiaHu, and Tat-SengChua. 2017. Neural collaborative filtering.
In Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 173–182.

[25] Richang Hong, Lei Li, Junjie Cai, Dapeng Tao, MengWang, and Qi Tian. 2017. Coherent semantic-visual indexing for
large-scale image retrieval in the cloud. IEEE Transactions on Image Processing 26, 9 (2017), 4128–4138.

[26] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv:1412.6980.
[27] Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix factorization techniques for recommender systems. Computer 42, 8

(2009), 30–37.
[28] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In Proceedings of the

International Conference on Machine Learning. 1188–1196.
[29] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval 3, 3

(March 2009), 225–331.
[30] Xin Luo, Ye Wu, and Xin-Shun Xu. 2018. Scalable supervised discrete hashing for large-scale search. In Proceedings

of the 2018 World Wide Web Conference on World Wide Web. International World Wide Web Conferences Steering
Committee, 1603–1612.

[31] Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: Understanding rating dimensions with
review text. In Proceedings of the 7th ACM Conference on Recommender Systems. ACM, 165–172.

[32] Xuying Meng, Suhang Wang, Huan Liu, and Yujun Zhang. 2018. Exploiting emotion on reviews for recommender
systems. In Proceedings of the AAAI Conference on Artificial Intelligence.

[33] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in
vector space. arXiv:1301.3781.

[34] Weike Pan, Qiang Yang, Wanling Cai, Yaofeng Chen, Qing Zhang, Xiaogang Peng, and Zhong Ming. 2019. Transfer to
rank for heterogeneous one-class collaborative filtering. ACM Transactions on Information Systems 37, 1 (Jan. 2019),
Article 10, 20 pages.

[35] Štefan Pero and Tomáš Horváth. 2013. Opinion-driven matrix factorization for rating prediction. In International

Conference on User Modeling, Adaptation, and Personalization. Springer, 1–13.
[36] Steffen Rendle. 2010. Factorization machines. In Proceedings of the 2010 IEEE International Conference on Data Mining.

IEEE Computer Society, 995–1000.
[37] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized

ranking from implicit feedback. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. AUAI
Press, 452–461.

[38] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model for automatic indexing. Communica-

tions of the ACM 18, 11 (1975), 613–620.
[39] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:

A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15, 1 (2014),
1929–1958.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

Attentive Aspect Modeling for Review-Aware Recommendation 28:27

[40] Jiwei Tan, XiaojunWan, Hui Liu, and Jianguo Xiao. 2018. QuoteRec: Toward quote recommendation for writing.ACM
Transactions on Information Systems 36, 3 (2018), 34:1–34:36.

[41] Yunzhi Tan, Min Zhang, Yiqun Liu, and Shaoping Ma. 2016. Rating-boosted latent topics: Understanding users and
items with ratings and reviews. In Proceedings of the 25th International Joint Conference on Artificial Intelligence. AAAI
Press, 2640–2646.

[42] ShuaiqiangWang, Shanshan Huang, Tie-Yan Liu, Jun Ma, Zhumin Chen, and Jari Veijalainen. 2016. Ranking-oriented
collaborative filtering: A listwise approach. ACM Transactions on Information Systems 35, 2 (2016), 10:1–10:28.

[43] Xiang Wang, Xiangnan He, Fuli Feng, Liqiang Nie, and Tat-Seng Chua. 2018. TEM: Tree-enhanced embedding model
for explainable recommendation. In Proceedings of the 2018 World Wide Web Conference (WWW’18). International
World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 1543–1552.

[44] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. 2017. Attentional factorization ma-
chines: Learning the weight of feature interactions via attention networks. In Proceedings of the 26th International

Joint Conference on Artificial Intelligence. AAAI Press, 3119–3125.
[45] Yinqing Xu, Wai Lam, and Tianyi Lin. 2014. Collaborative filtering incorporating review text and co-clusters of hid-

den user communities and item groups. In Proceedings of the 23rd ACM International Conference on Conference on

Information and Knowledge Management. ACM, 251–260.
[46] Longqi Yang, Cheng-KangHsieh, Hongjian Yang, John P. Pollak, Nicola Dell, Serge Belongie, Curtis Cole, andDeborah

Estrin. 2017. Yum-Me: A personalized nutrient-based meal recommender system. ACM Transactions on Information

Systems 36, 1 (2017), 7:1–7:31.
[47] Wei Zhang and Jianyong Wang. 2016. Integrating topic and latent factors for scalable personalized review-based

rating prediction. IEEE Transactions on Knowledge and Data Engineering 28, 11 (2016), 3013–3027.
[48] Yongfeng Zhang, Qingyao Ai, Xu Chen, and W. Bruce Croft. 2017. Joint representation learning for top-N recom-

mendation with heterogeneous information sources. In Proceedings of the 2017 ACM on Conference on Information

and Knowledge Management. ACM, 1449–1458.
[49] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping Ma. 2014. Explicit factor models for

explainable recommendation based on phrase-level sentiment analysis. In Proceedings of the 37th International ACM

SIGIR Conference on Research and Development in Information Retrieval. ACM, 83–92.
[50] Yongfeng Zhang, Haochen Zhang, Min Zhang, Yiqun Liu, and Shaoping Ma. 2014. Do users rate or review?: Boost

phrase-level sentiment labeling with review-level sentiment classification. In Proceedings of the 37th International

ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 1027–1030.
[51] Lei Zheng, Vahid Noroozi, and Philip S. Yu. 2017. Joint deep modeling of users and items using reviews for recom-

mendation. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining. ACM, 425–434.

Received September 2018; revised December 2018; accepted January 2019

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 28. Publication date: March 2019.

