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Abstract

This paper proposes a discrete knowledge graph (KG) em-
bedding (DKGE) method, which projects KG entities and
relations into the Hamming space based on a computation-
ally tractable discrete optimization algorithm, to solve the
formidable storage and computation cost challenges in tra-
ditional continuous graph embedding methods. The conver-
gence of DKGE can be guaranteed theoretically. Extensive
experiments demonstrate that DKGE achieves superior accu-
racy than classical hashing functions that map the effective
continuous embeddings into discrete codes. Besides, DKGE
reaches comparable accuracy with much lower computational
complexity and storage compared to many continuous graph
embedding methods.

Introduction
A knowledge graph (KG) is a multi-relational graph, whose
nodes correspond to entities that represent objects or con-
cepts, and edges represent different types of relations be-
tween the connected nodes. Graph embedding refers to
learning a numerical feature representation for graph nodes
and edges. Existing KG embedding techniques typically
learn the node and edge feature in the continuous feature
space, which usually imposes formidable challenges in stor-
age and computation costs, particularly in large-scale ap-
plications. Take the widely used translation-based model
TransE (Bordes et al. 2013) as an example, even as a shallow
model, TransE requires about 33GB memory to store param-
eters when applied to Freebase (Bollacker et al. 2008) with
dimension of 200, which prohibits its application in limited
resource scenarios such as edge devices. Therefore, it is nec-
essary to learn more compact embeddings to solve the prob-
lems. Discrete code learning (hashing), which aims to map
the original high-dimensional data into a low-dimensional
discrete coding space with similarity preservation, has got
great gains in storage and computation. Due to the difficulty
of resolving discrete constraints, existing hashing methods
usually adopt a two-stage learning process: relaxed opti-
mization by discarding the discrete constraints first, and
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then binary quantization over the learned continuous embed-
dings. It has been argued that such a method will compro-
mise the performance of large-scale problem and result in a
large quantization loss (Zhang et al. 2016).

In this paper, we propose a novel discrete knowledge
graph embedding (DKGE) approach for learning more com-
pact representations through discrete optimization directly.
We use Hadamard product to represent the translation in
Hamming space, and after translation, the Hamming dis-
tance between the connected entities in the graph is smaller
than those unconnected entities. A computationally tractable
discrete optimization algorithm is introduced to solve the
learning objective through mixed-integer alternating opti-
mization (Zhang et al. 2016). The convergence of our al-
gorithm can be guaranteed theoretically. We conduct exper-
iments on the FB15k-237 and WN18RR datasets for the
link prediction task in KG, which show that DKGE achieves
lower computational complexity and storage than state-of-
the-art continuous KG embedding methods, while keeping
comparable accuracy. It also achieves superior accuracy than
directly hashing the effective continuous embeddings into
discrete codes through three classical hashing functions. We
also compare our method with another discrete knowledge
graph embedding method named B-CP (Kishimoto et al.
2019) and show that DKGE gives much better accuracy on
a more dense dataset.

Related Work
Knowledge graph models information in the form of entities
and relationships between them. KG embedding is to embed
entities and relations of a KG into vector spaces. Prominent
examples include the Translational Embedding (TransE)
model (Bordes et al. 2013) and its extensions such as TransH
(Wang et al. 2014), RESCAL (Nickel, Tresp, and Kriegel
2011), etc. Learning to hash aims to learn data-dependent
and task-specific hash functions, which can yield compact
discrete codes to achieve efficiency (Liu et al. 2011) and
search accuracy (Wang, Kumar, and Chang 2012). (Kishi-
moto et al. 2019) proposed a binary KG embedding method
based on CANDECOMP/PARAFAC (CP) tensor decompo-
sition, which binarizes continuous embeddings to discrete
embeddings based on a quantization function in each learn-



ing step. In this paper, however, we propose to learn binary
codes through solving discrete optimization directly, which
gives better efficiency and accuracy on dense datasets.

Discrete Knowledge Graph Embedding

In this section, we present our Discrete Knowledge Graph
Embedding (DKGE) method, which learns the discrete rep-
resentations of entities and relations for KG based on dis-
crete optimization.

Preliminaries

Given a knowledge graph consisting of n entities and m re-
lations, we can represent it as a set S of triplets {(h, r, t)},
which is composed of a head entity h ∈ E , a tail entity t ∈ E ,
and a relation r ∈ R connecting them, where E is the set of
all the entities andR is the collection of all the relations. We
use bold uppercase and lowercase letters to represent matri-
ces and vectors, respectively. In particular, we use e as the
entity vector, including head entity vector h and tail entity
vector t, and use r as the relation vector. E = [e1, . . . , en]
represents the matrix of all the entities and R = [r1, . . . , rm]
is the matrix consisting of all the relations in KG. We denote
tr(·) as the trace of a matrix, sgn(·): R→ {±1} as the round-
off function, and ‖ · ‖F represents the Frobenius norm of a
matrix.

In DKGE, the embeddings h, t and r take discrete val-
ues as {±1}k. E = [e1, . . . , en] ∈ {±1}k×n and R =
[r1, . . . , rm] ∈ {±1}k×m are the matrices of k-length entity
and relation discrete codes, respectively. Here, we propose
to use the Hadamard product of h and r, which still maps
the discrete codes h and r into the Hamming space, to rep-
resent the translation of the head entity under this relation.
Intuitively, the translation from the head embedding h to its
tail embedding t connected by relation r imitates “jumping”
along the axis in the direction of r indicates.

The Hamming distance between t and the Hadamard
product of h and r is defined as:

d(h× r, t) =
k∑

i=1

I((h× r)i 6= ti)

=
1

2
(k +

k∑
i=1

(I((h× r)i 6= ti)− I((h× r)i = ti)))

=
1

2
(k −

k∑
i=1

((h× r)Ti ti) =
1

2
(k − (h× r)Tt)

(1)

where I(·) denotes the indicator function that returns 1 if
the statement is true and 0 otherwise. We also design the
scoring function of DKGE to imply the Hamming distance
between h × r and t. Given a fact (h, r, t), t should be the
nearest neighbor of h× r. Therefore, the problem of DKGE
is formulated as:

argmin
E,R

∑
(h,r,t)∈S

∑
(h′,r,t′)∈S′

[γ − [(h× r)Tt− (h′ × r)Tt′]]+

s.t. E ∈ {±1}k×n,R ∈ {±1}k×m;

E1 = 0,R1 = 0︸ ︷︷ ︸
Balanced Partition

, EET = nI,RRT = mI︸ ︷︷ ︸
Decorrelation

,

(2)
where γ is a margin hyper-parameter, [x]+ denotes the hinge
loss, S′(h,r,t) = {(h

′, r, t)|h′ ∈ E}
⋃
{(h, r, t′)|t′ ∈ E} is the

set of corrupted triplets, where either the head or the tail
entity of each training triplet is replaced by a random en-
tity. Since the regularizers ‖E‖2F and ‖R‖2F are constants
given a fixed dimension under discrete codes, so we do not
need to consider them here. Besides, to hash the entities and
relations in a more informative and compact way, we need
to impose two additional constraints called Balanced Parti-
tion and Decorrelation (Weiss, Torralba, and Fergus 2009) to
maximize the information entropy of the bits, which requires
each bit to split the dataset as balanced and uncorrelated as
possible to remove the redundancy among the bits.

Learning Model
Actually, it is challenging to solve DKGE in Eq.(2), since it
is in general an NP-hard problem (Håstad 2001). In this sub-
section, we introduce a learning model that solves DKGE
in a computationally tractable manner by softening the bal-
ance partition and decorrelation constraints (Zhang et al.
2016). Denote X = {X ∈ Rk×n|X1 = 0, XXT = nI},
Y = {Y ∈ Rk×m|Y1 = 0, YYT = mI}, as well as
distances d(E,X ) = minX∈X ‖E − X‖F and d(R,Y) =
minY∈Y ‖R− Y‖F , Eq.(2) can be relaxed as:

argmin
E,R,X,Y

∑
(h,r,t)∈S

∑
(h′,r,t′)∈S′

[γ − [(h× r)Tt− (h′ × r)Tt′]]+

+ αd2(E,X ) + βd2(R,Y)
s.t. E ∈ {±1}k×n,R ∈ {±1}k×m,

(3)
where α > 0 and β > 0 are tuning parameters. Actually, we
can further simplify the above Eq.(3) as the following form:

argmin
E,R,X,Y

∑
(h,r,t)∈S

∑
(h′,r,t′)∈S′

[γ − [(h× r)Tt− (h′ × r)Tt′]]+

− 2αtr(ETX)− 2βtr(RTY)

s.t. E ∈ {±1}k×n,R ∈ {±1}k×m,
X1 = 0,XXT = nI; Y1 = 0,YYT = mI

(4)
Now we have Eq.(4) as our learning model for DKGE,

which allows a certain discrepancy between the discrete
codes and the corresponding continuous values. Therefore,
it is formalized as a joint mix-integer optimization problem,
which can be solved by the four subproblems in (Zhang et
al. 2016). Moreover, the convergence of DKGE can also be
guaranteed theoretically similar to (Zhang et al. 2016).



Dataset WN18RR FB15k-237
Evaluation MR MRR Hit@1 Hit@3 Hit@10 MR MRR Hit@1 Hit@3 Hit@10
DistMult* 7000 0.444 41.2 47.0 50.4 512 0.281 19.9 30.1 44.6
ComplEx* 7882 0.449 40.9 46.9 53.0 546 0.278 19.4 29.7 45.0
TransE* 2300 0.243 4.3 44.1 53.2 323 0.279 19.8 37.6 44.1
ConvE* 4464 0.456 41.9 47.0 53.1 245 0.312 22.5 34.1 49.7
ConvKB* 1295 0.265 5.8 44.5 55.8 216 0.289 19.8 32.4 47.1
R-GCN* 6700 0.123 8.0 13.7 20.7 600 0.164 10.0 18.1 30.0
TransE+sign 2635 0.129 0.9 19.2 35.3 429 0.214 14.6 23.6 33.9
TransE+equal 12315 0.073 0.9 10.7 18.3 6883 0.024 2.1 2.4 2.7
TransE+Lloyd 8649 0.100 0.6 15.5 27.0 5716 0.011 0.6 1.1 1.7
DistMult+sign 8513 0.023 1.1 2.4 4.1 3021 0.015 0.7 1.2 2.5
DistMult+equal 27787 0.000 0.0 0.0 0.0 6229 0.004 0.1 0.3 0.6
DistMult+Lloyd 15627 0.001 0.0 0.0 0.2 6231 0.006 0.4 0.5 0.7
B-CP(D=128) - 0.413 38.5 43.1 46.1 - 0.214 15.2 22.7 33.7
B-CP(D=256) - 0.453 43.5 46.0 48.7 - 0.268 18.8 29.2 42.7
B-CP(D=512) - 0.444 42.5 45.2 48.0 - 0.284 19.3 31.4 46.7
DKGE(D=128) 5217 0.369 31.6 40.1 46.8 551 0.342 28.9 36.6 43.3
DKGE(D=256) 5225 0.392 34.0 42.4 49.5 464 0.416 36.8 43.2 50.7
DKGE(D=512) 5469 0.403 35.0 43.3 50.6 474 0.396 34.5 41.4 48.7

Table 1: The results for link prediction task. * indicates the results are transcribed from (Nathani et al. 2019). MR is the lower
the better, while MRR and Hits are the higher the better. Sign, equal, and Lloyd are three quantization methods (Lloyd 1982).
The best results are in bold. The dimension of TransE and DistMult continuous embeddings are 64, meanwhile the quantizer
use 8 bits to represent one continuous value.

Experiments
Experiment Setting
To show the feasibility of our discrete model, we test our
model on two benchmark datasets: WN18RR and FB15k-
237. For evaluation, we test our approach on the link pre-
diction task, which aims to predict a triplet with head or tail
entity missing. Specifically, we replace the head or tail entity
with every other entity to compute the scores for each triplet
and sort the scores to record the correct rank. Similarly to
previous work (Nguyen et al. 2017; Dettmers et al. 2018),
to get more reliable results, we report the performance on
the filtered setting, i.e, remove the triplets that present in the
training and validation set during the evaluation. We report
mean rank (MR), mean reciprocal rank (MRR) and the hit
rate in the topN forN = 1, 3, 10, which are classical evalu-
ating indicators used in KG embedding models. We test our
model with embedding dimension {32,64,128,256,512}, γ
is tuned in {32,64,128,256,512,1024}, and the trade-off pa-
rameters α, β are tuned in {1e-7,1e-5,1e-3,0.1,1}. We report
the performance with the best setting.

Results and Discussions
DKGE vs. Continuous Models: In this part, we compare
the performance of DKGE with some continuous methods,
including classical approaches such as TransE (Bordes et al.
2013), DistMult (Yang et al. 2014) and ComplEx (Trouil-
lon et al. 2016), as well as some state-of-the-art methods
such as ConvE (Dettmers et al. 2018), ConvKB (Nguyen et
al. 2017) and R-GCN (Schlichtkrull et al. 2018). We report
the results in Table 1. We can see that our DKGE model
can achieve comparable performance against continuous ap-
proaches with much lower computational complexity and
storage on both of the two datasets, and it is better on at least

one measure. To illustrate the memory saving of our DKGE
model more rigorously, we compare the performance of our
approach with continuous models within the same memory
cost, as shown as Fig 1. Besides, by representing the enti-
ties and relations as discrete codes, we can conduct faster
computation with bitwise operations among discrete vector
representations, which greatly reduces the running time of
DKGE required to achieve various tasks on KG.

DKGE vs. Hashing functions: In this part, we use three
classical hashing functions to directly hash the continu-
ous embeddings obtained by TransE and Distmult into dis-
crete codes, and compare the performance of those embed-
dings with our learned DKGE embedding. The first hash-
ing method is discretizing the continuous embedding with
sign function; the second one is discretizing the representa-
tions by equally divided intervals, specifically, we divide the
range of the embedding values into n intervals evenly, and
use a binary vector of length m to represent each interval.
Then we can discretize the d-dimension continuous embed-
ding into a (m ∗ d)-dimension binary embedding; the third
one is using Lloyd-Max Algorithm (Lloyd 1982), which is a
typical quantization algorithm commonly used in data com-
pression and digitizing continuous-valued signals. The key
difference of the last two approaches is that we divide the
range of the embedding values into n intervals according to
a more complex distribution but not evenly. Overall, we can
see that our discrete optimization model obtains much bet-
ter performance than discretizing the continuous embedding
values, which shows the advantage of our discrete learning
approach against traditional quantization algorithms based
on continuous-valued embeddings.

DKGE vs. B-CP: Different from the above methods that
conducts quantization after the whole continous optimiza-
tion procedure has concluded, B-CP (Kishimoto et al. 2019)



(a) WN18RR (b) FB15k-237 (c) WN18RR (d) FB15k-237
Figure 1: The performance within same memory. The memory is just used to store the embedding value of entities and relations.

conducts quantization during each iteration of the continu-
ous optimization procedure. Our DKGE approach, however,
moves one step further by conducting discrete optimization
directly. Besides, we use only one vector to represent each
entity and relation, while B-CP learns two vectors for each
entity (for head and tail, respectively), and two vectors for
each relation (relation and its inverse vector). As a result, our
memory consumption is only half of B-CP under the same
embedding dimension. As for the performance, we can see
that our model performs much better than B-CP on FB15k-
237 with only half of their memory space. On WN18RR,
DKGE gets better Hit@10, the less favorable performance
of DKGE on other metrices implies that discrete optimiza-
tion tends to perform better on dense datasets, where each
relation only needs to translate a small group of entities for
better discrimination in the discrete embedding space.

Conclusions
This paper focuses on the challenging problem of seeking
compact representations for knowledge graphs by discrete
optimization. We propose a novel hashing approach called
discrete knowledge graph embedding (DKGE) to embed en-
tities and relations of KG into discrete codes, which helps
to solve the formidable challenges of storage and computa-
tion cost in continuous embeddings. We design a Hamming
distance-based scoring function, and develop an efficient al-
gorithm to learn the discrete embeddings directly through
discrete optimization, which can be solved in a computa-
tionally tractable manner by an alternating optimization al-
gorithm. Moreover, the convergence of the proposed method
can be theoretically guaranteed. We operate a series of ex-
periments to show that DKGE is able to achieve satisfac-
tory accuracy while enjoying both computational and mem-
ory efficiency than those classical and even state-of-the-art
continuous knowledge graph embedding methods. In the fu-
ture, we will explore other translational operations beyond
Hadamard product for discrete embedding, as well as dis-
entangled embeddings in the discrete space for intepratable
knowledge graph embedding.
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