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ABSTRACT
Recommendation with multiple objectives is an important but dif-

ficult problem, where the coherent difficulty lies in the possible

conflicts between objectives. In this case, multi-objective optimiza-

tion is expected to be Pareto efficient, where no single objective can

be further improved without hurting the others. However existing

approaches to Pareto efficient multi-objective recommendation still

lack good theoretical guarantees.

In this paper, we propose a general framework for generating

Pareto efficient recommendations. Assuming that there are formal

differentiable formulations for the objectives, we coordinate these

objectives with a weighted aggregation. Then we propose a condi-

tion ensuring Pareto efficiency theoretically and a two-step Pareto

efficient optimization algorithm. Meanwhile the algorithm can be

easily adapted for Pareto Frontier generation and fair recommen-

dation selection. We specifically apply the proposed framework on

E-Commerce recommendation to optimize GMV and CTR simulta-

neously. Extensive online and offline experiments are conducted on

the real-world E-Commerce recommender system and the results

validate the Pareto efficiency of the framework.

To the best of our knowledge, this work is among the first to

provide a Pareto efficient framework for multi-objective recommen-

dation with theoretical guarantees. Moreover, the framework can

be applied to any other objectives with differentiable formulations

and any model with gradients, which shows its strong scalability.
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1 INTRODUCTION
Recommender systems are emerging as a crucial role in online

services and platforms, which prevent users from information over-

load. The recommendation algorithms (for example Learning To
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Figure 1: The trade-off between CTR and GMV. The Pearson
Correlation Coefficient is -0.343086, with p < 0.01.

Rank) generate personalized rankings of items and the top-ranked

items are recommended to users. Usually, the algorithms need very

careful designs to fulfill multiple objectives. However, it is diffi-

cult to optimize multiple objectives simultaneously, where the core

difficulty lies in the conflicts between different objectives. In E-

Commerce recommendation, CTR (Click Through Rate) and GMV

(Gross Merchandise Volume) are two important objectives that are

not entirely consistent. To validate this inconsistency, we collect

one-week online data from a real-world E-Commerce platform and

plot the trends of GMV when CTR . According to the trends re-

flected in Fig. 1, CTR is not entirely consistent with GMV , and

a CTR-optimal or GMV-optimal recommendation can be rather

sub-optimal or even bad in terms of the other objective.

Therefore, a solution is considered as optimal for two objectives

in the sense that no objective can be further improved without

hurting the other one. This optimality is widely acknowledged in

multiple objective optimization and named as Pareto efficiency or

Pareto optimality. In the context of Pareto efficiency, solution A

is considered to dominate solution B only when A outperforms B

on all the objectives. And the aim of Pareto efficiency is to find

solutions that are not dominated by any others.

Existing approaches for Pareto optimization can be categorized

into two categories: heuristic search and scalarization. Evolutionary

algorithms are popular choices in heuristic search approaches. How-

ever, heuristic search can not guarantee Pareto efficiency, it only

ensures the resulting solutions are not dominated by each other (but

still can be dominated by the Pareto efficient solutions) [45]. Unlike

heuristic search, scalarization transforms multiple objectives into a

single one with a weighted sum of all the objective functions. With

proper scalarization, the Pareto efficient solutions can be achieved

by optimizing the reformulated objective function. However, the

scalarization weights of objective functions are usually determined

https://doi.org/10.1145/3298689.3346998
https://doi.org/10.1145/3298689.3346998
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manually and Pareto efficiency is still not guaranteed. To summa-

rize, it is very difficult for existing evolutionary algorithms and

scalarization algorithms to find Pareto efficient solutions with a

guarantee. Recently, it is pointed out that the Karush-Kuhn-Tucker

(KKT) conditions can be used to guide the scalarization [11]. We

build our algorithm upon the KKT conditions and propose a novel

algorithmic framework that generates the scalarization weights

with theoretical guarantees.

Specifically, we propose a Pareto-Efficient algorithmic frame-

work "PE-LTR" that optimizes multiple objectives with an LTR

procedure. Given the candidate items generated for each user, PE-

LTR ranks the candidates so that the ranking is Pareto efficient

with respect to multiple objectives. Assuming that there exist dif-

ferentiable formulations for each objective correspondingly, we

adopt the scalarization technique to coordinate different objectives

into a single objective function. As stated before, the scalarization

technique can not guarantee Pareto efficiency unless the weights

are carefully chosen. Therefore, we first propose a condition for

the scalarization weights that ensures the solution is Pareto effi-

cient. The condition is equivalent to a constrained optimization

problem, and we propose an algorithm that solves the problem in

two steps. First we simplify the problem by relaxing the constraints

so that an analytic solution is achieved; then we get the feasible

solution by conducting a projection procedure. With PE-LTR as the

cornerstone, we provide methods to generate the Pareto Frontier

and a specific recommendation, depending on the needs of service

providers. To generate the Pareto Frontier, one can run PE-LTR

by evenly set the bounds of the objective scalarization weights. To

generate a specific recommendation, one can either run PE-LTR

once with proper bounds or generate the Pareto Frontier first and

choose a "fair" solution with specific fairness metric.

In this paper we apply this framework to optimize two important

objectives for E-Commerce recommendation, i.e. GMV and CTR.

For E-Commerce platforms, the primary objective is to improve

the GMV, but too much sacrifice of CTR may cause a severe de-

crease of daily active users (DAU) in the long term. Therefore we

aim to find Pareto efficient solutions with respect to both objec-

tives. We propose two differentiable formulations for GMV and

CTR respectively and apply the PE-LTR framework for generat-

ing Pareto-optimal solutions. We conduct extensive experiments

on a real-world E-Commerce recommender system and compare

the results with state-of-the-art approaches. The online and offline

experimental results both indicate that our solution outperforms

other baselines significantly and the solutions are nearly Pareto

efficient.

The contributions of this work are:

• We propose a general Pareto efficient algorithmic framework

(PE-LTR) for multi-objective recommendation. The framework

is both model and objective agnostic, which shows its great

scalability.

• We propose a two-step algorithm which theoretically guarantees

the Pareto efficiency. Despite the algorithm is built upon scalar-

ization technique, it differs from other scalarization approaches

with its theoretical guarantee and its automatic learning of scalar-

ization weights rather than manually assignment.

• With PE-LTR as the cornerstone, we present how to generate the

Pareto Frontier and a specific recommendation. Specifically, we

propose to select a fair recommendation from the Pareto Frontier

with proper fairness metrics.

• We use E-Commerce recommendation as a specification of PE-

LTR, and conduct extensive online and offline experiments on a

real-world recommender system. The results indicate that our

algorithm outperforms other state-of-the-art approaches signifi-

cantly and the solutions generated are Pareto efficient.

• We open-source a large-scale E-Commerce recommendation

dataset EC-REC, which contains the real records of impressions,

clicks and purchases. To the best of our knowledge, no public

dataset includes all three labels and enough features, this dataset

can be used for further studies.

2 RELATEDWORK
In this section, we provide a detailed introduction to the related

studies from the following aspects: recommendation with multiple

objectives, E-Commerce recommendation and learning to rank.

2.1 Recommendation with Multiple Objectives
We look at the studies on multi-objective recommendation from

two aspects, i.e. the objectives concerned and the approaches for

multi-objective recommendations.

Despite the recommendation accuracy is the main concern, some

studies argue that other characteristics such as the availability, prof-

itability, or usefulness should be considered simultaneously [15, 22].

Some studies attempt to model the trade-offs between relevance and

diversity in recommendation [14, 17, 41]. When multiple objectives

are concerned, it is expected to get a Pareto efficient recommenda-

tion [27, 28]. Recently, it is pointed out that somemultiple objectives

are related to users [7, 16, 23, 29]. On one hand, different objectives

are related to different user behaviors. For example, both clicks and

hides are considered in LinkedIn feeds [33]. On the other hand,

the objectives are related to different user statuses, for example

different stakeholders [8, 23].

The approaches on recommendation with multiple objectives

can be categorized into evolutionary algorithm [45] and scalar-

ization [38]. The evolutionary algorithm has been used for long-

tail recommendation [35], diversified recommendation [10], and

novelty-aware recommendation [28]. And it has also been used for

Pareto efficient hybridization [28] of multiple recommendation al-

gorithms. Scalarization technique is also used for recommendation

with multiple objectives [38]. However, existing studies mostly de-

pend on manually assigned weights for scalarization, whose Pareto

efficiency can not be guaranteed. Recently, the KKT conditions

are used for guiding scalarization techniques [11, 32]. However,

existing algorithms based on these conditions are limited to the

unconstrained cases and can not fit the requirements in real-world

scenarios.

2.2 E-Commerce Recommendation
E-Commerce recommendation is also a popular research topic.

Some studies adopt economic theory models and Markov chains for

recommendation [12, 19, 42, 43]. While some other studies focus on

other aspects in E-Commerce recommendation [1, 30, 34, 40], such
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as feature learning and diversification. It is pointed out that a good

practice in E-Commerce searching is learning to rank [18], which

also coincides with the motivation of our framework. Usually there

are multiple stages in E-Commerce recommendation, for example

clicks and purchases. Therefore the learning-to-rank algorithms

need to jointly optimize multiple stages [36]. Some studies focus on

the post-click stage in searching and recommendation. For example,

the bidding price and revenue are jointly considered with relevance

[26, 44]. Recently, two studies focus on the connection between

clicks and purchases in E-Commerce searching and advertising

[21, 36]. As optimizing clicks and purchases are not entirely con-

sistent, it is necessary to find a Pareto efficient trade-off between

them, which is not considered in previous studies on purchase

optimization [21, 36].

2.3 Learning to Rank
Learning To Rank (LTR) has been a popular research topic for quite

a long time. The studies on LTR can be categorized into point-wise,

pair-wise and list-wise approaches. The point-wise scheme [20]

predicts the individual instance separately; the pair-wise scheme

[4, 13] is approximated as a binary classification problem, which

focuses on the relative order of a pair of instances; while the list-

wise scheme [5, 6, 37, 39] directly optimizes the metric of a ranking

list. Usually, list-wise LTR achieves superior performances than

other schemes.

rankingmethods have been proposed, such as RankNet [4], Rank-

Boost [13], AdaRank [39], LambdaRank [5], ListNet [6] and Lamb-

daMART [37]. Due to the similarity between searching and rec-

ommendation in ranking, LTR approaches are widely used in both

scenarios. Recently, it is pointed out that LTR is a key component

in E-Commerce searching [18], which is able to exploit multiple

user feedback signals for relevance modeling, including clicks, add-

to-cart ratios, and revenue.

According to the previous studies, LambdaMART is one of the

best performing algorithms [36]. As focus of this paper is not about

ranking model, we choose a simple point-wise ranking model for

the proposed framework.

3 PROPOSED FRAMEWORK
In this section, we first provide a brief introduction to the concept

of Pareto efficiency. Then we introduce the details of the proposed

framework, i.e. Pareto-Efficient Learning-to-Rank (PE-LTR). Assum-

ing that there are differentiable loss functions formultiple objectives

correspondingly, we propose a condition that guarantees the Pareto

efficiency of the solution. We show that the proposed condition is

equivalent to a constrained Quadratic Programming problem. Then

we propose a two-step algorithm to solve this problem. Moreover,

we provide methods to generate both Pareto Frontier and specific

single recommendation with PE-LTR.

3.1 Preliminary
First, we provide a brief introduction to Pareto efficiency and some

related concepts. Pareto efficiency is an important concept in multi-

ple objective optimization. Given a system which aims to minimize

a series of objective functions f1, . . . , fK , Pareto efficiency is a state

when it is impossible to improve one objective without hurting

other objectives in terms of multi-objective optimization.

Definition 3.1. Denote the outcomes of two solutions as si =

(f i
1
, . . . , f iK ) and sj = (f

j
1
, . . . , f

j
K ), si dominates sj if and only if

f i
1
≤ f

j
1
, f i

2
≤ f

j
2
, . . . , f iK ≤ f

j
K (for minimization objectives).

The concept of Pareto efficiency is built upon the definition of

domination:

Definition 3.2. A solution si = (f i
1
, . . . , f iK ) is Pareto efficient

if there is no other solution sj = (f
j
1
, . . . , f

j
K ) that dominates si .

Therefore, a solution that is not Pareto efficient can still be im-

proved for at least one objective without hurting the others, and

it is always expected to achieve Pareto efficient solutions in multi-

objective optimization. It is worth mentioning that Pareto efficient

solutions are not unique and the set of all such solutions is named

as the “Pareto Frontier”.

3.2 Pareto-Efficient Learning to Rank
To achieve a Pareto efficient solution, we propose a Learning-to-

Rank scheme that optimizes multiple objectives with the scalar-

ization technique. Assuming that there are K objectives in a given

recommender system, a model F (θ ) needs to optimize these ob-

jectives simultaneously, where θ denotes the model parameters.

Without loss of generality, we assume that there exist K differen-

tiable loss functions Li (θ ), ∀i ∈ {1, . . . ,K} for the K objectives

correspondingly.

Given the formulations, optimizing i-th objective is equal to min-

imizing Li . However, optimizing theseK objectives simultaneously

is non-trivial, since the optimal solution to one objective is usually

sub-optimal for another one. Therefore, we use the scalarization

technique to merge multiple objectives into a single one. Specifi-

cally, we aggregate the loss functions Li with ωi , ∀i ∈ {1, . . . ,K}:

L(θ ) =
K∑
i=1

ωiLi (θ )

where

∑K
i=1 ωi = 1 and ωi ≥ 0, ∀i ∈ {1, . . . ,K}. In real-world

scenarios, the objectives may have different priorities. In our case,

we assume that the constraints added to the objectives are pre-

defined boundary constraints, i.e. ωi ≥ ci , ∀i ∈ {1, . . . ,K}, where

ci is a constant between 0 and 1, and

∑K
i=1 ci ≤ 1.

Despite the single-objective formulation, it is not guaranteed that

the solution to the problem is Pareto efficient, unless proper weights

are assigned. Then we derive the condition on the scalarization

weights that ensures the solution is Pareto efficient.

3.2.1 The Pareto Efficient condition. To get the Pareto efficient solu-

tions for multiple objectives, we attempt to minimize the aggregated

loss function. Consider the KKT conditions (Karush-Kuhn-Tucher

Conditions) [2] for the model parameters:

K∑
i=1

ωi = 1, ∃ωi ≥ ci , i ∈ {1, . . . , K }and

K∑
i=1

ωi ∇θ Li (θ ) = 0,

where ∇θLi (θ ) is the gradient of Li . Solutions that satisfy this

condition are referred to as Pareto stationary. The condition can be
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Table 1: Notations and Description

Notations Description

x The feature vector

y ∈ {0, 1} The click label

z ∈ {0, 1} The purchase label

Li (θ ) The loss function for i-th objective

F (θ ) The LTR model

θ The model parameters

η The learning rate of F (θ )
ωi The weight of i-th objective for scalarization

ci The boundary constraint for i-th objective

pricej The price of the item in instance x j
price

′
i The price of the item at i-th rank

∇θLi (θ ) The gradient of loss Li (θ ) with respect of θ
G The stacking matrix of the gradients ∇Li (θ )
e The vector whose elements are all 1

Algorithm 1 Pareto Efficient LTR:

1: Input: The loss functions of multiple objectives correspond-

ingly: Li (θ ), ∀i ∈ {1, . . . ,K}; The scalarization weights ini-

tialized uniformly: ωi =
1

K , ∀i ∈ {1, . . . ,K}; The bounds for

the objectives: ci , ∀i ∈ {1, . . . ,K};

2: Output: The model parameters θ ;
3: Get the single aggregated objective function: L(θ ) =∑K

i=1 ωiLi (θ );
4: for each batch do
5: Update the model F (θ ) by optimizing L(θ ) with stochastic

gradient descent: θ = θ − η ∂L(θ )
∂θ ;

6: Run Alg. 2 to update ω1, . . . ,ωK = PECsolver(θ );
7: Aggregate the objectives: L(θ ) =

∑K
i=1 ωiLi (θ );

8: end for

transformed into the following optimization problem:

min .
 K∑
i=1

ωi ∇θ Li (θ )
2
2

s .t .
K∑
i=1

ωi = 1, ωi ≥ ci , ∀i ∈ {1, . . . , K }

(1)

It has been proven [32] that either the solution to this optimiza-

tion problem is 0 so that the KKT conditions are satisfied or the

solutions lead to gradient directions that minimizes all the loss

functions. If the KKT conditions are satisfied, the solution is Pareto

stationary and also Pareto efficient under realistic and mild con-

ditions [32]. Based on this condition, we propose an algorithmic

framework named PE-LTR, whose details are illustrated in Alg. 1.

The framework starts with uniform scalarization weights and

then updates the model parameters and the scalarization weights

alternatively. The core part of PE-LTR is the PECsolver, which

generates scalarization weights by solving the condition in Problem

(1). Note that the condition is a complex Quadratic Programming

problem, we present the detailed process of PECsolver in Alg 2.

It is worth mentioning that the algorithmic framework does not

rely on specific formulations of the loss functions or the model

structures. Any model and formulation with gradients can be easily

Algorithm 2 PECsolver:

1: Formulate the Pareto Efficient condition as Problem (1);

2: Solve the relaxed Quadratic Programming in Problem (3) with

Theorem 3.3;

3: Get the feasible solution by solving Problem (4);

applied to the framework. Despite the algorithms runs with stochas-

tic gradient descent in batches, the algorithm provides a theoretical

guarantee of convergence as gradient descent [11].

3.2.2 The Algorithm for Quadratic Programming. Denote ω̂i as
ωi − ci , the Pareto efficient condition becomes:

min . ∥

K∑
i=1

(ω̂i + ci )∇θ Li (θ ) ∥
2

2

s.t.

K∑
i=1

ω̂i = 1 −

K∑
i=1

ci , ω̂i ≥ 0, ∀i ∈ {1, . . . , K }

(2)

The Pareto-Efficient condition is equivalent to Problem 1, how-

ever, it is not a trivial task to solve this problem due to its quadratic

programming form. Therefore, we propose a two-step algorithm as

the Pareto efficient condition solver. The algorithm is illustrated in

Alg. 2. We first relax the problem by only considering the equality

constraints and solve the relaxed problem with an analytical solu-

tion. Then we introduce a projection procedure that generates a

valid solution from the feasible set with all the constraints.

When all the other constraints are omitted except the equality

constraints:

min . ∥

K∑
i=1

(ω̂i + ci )∇θ Li (θ ) ∥
2

2
s.t.

K∑
i=1

ω̂i = 1 −

K∑
i=1

ci (3)

The solution to the relaxed problem is given by Theorem 3.3.

Theorem 3.3. The solution to the equality constrained problem
(3) is given by ω̃ = ((MTM)−1Mz̃)[1 : K], where G ∈ RK×m is the
stacking matrix of ∇Li (θ ), e ∈ RK is the vector whose elements
are all 1, c ∈ RK is the concatenated vector of ci , z̃ ∈ RK+1 is the

concatenated vector of −GGT c and 1−
∑K
i=1 ci , andM is

[
GGT e
eT 0

]
.

The proof to this theorem is in the appendix.

However, the solution
ˆω∗

to problem 3 may not be valid since

the non-negativity constraints are omitted. Therefore, we conduct

the following projection step to get a valid solution:

min . ∥ω̃ − ω̂∗ ∥2
2
s.t.

K∑
i=1

ω̃i = 1, ω̃i ≥ 0, ∀i ∈ {1, . . . , K } (4)

This problem is exactly a non-negative least squares problem,

and can be solved easily with the active set method [3]. Due to

page limit, we omit the details of the algorithm to Problem 3
1
. The

complexity of Alg. 2 is mostly determined by the pseudo-inverse

operation, which relates to the number of objectives. Usually the

number of objectives is limited, therefore the running time of Alg.

2 is negligible and the online experiments have verified this

1
We will include the pseudo codes in a longer version of the paper.
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4 PARETO FRONTIER GENERATION AND
SOLUTION SELECTION

Multiple objective optimization can either be used to find a certain

Pareto solution, or be used to generate a set of solutions to construct

the Pareto Frontier. In this section, we introduce the details of

generating solutions with Alg. 1 for the two cases.

4.1 Pareto Frontier Generation
With Alg. 1, we can obtain a Pareto optimal solution given the

bounds of different objectives. However, there are cases when a

series of Pareto optimal solutions are expected, i.e. the Pareto Fron-

tier. This is straight-forward for the algorithmic framework, we can

set different values to the bounds of the objectives and perform Alg.

1 with different bounds respectively.

To get a Pareto Frontier, we conduct Alg. 1 for several times,

and the solution generated with proper bound in each run yields a

Pareto optimal solution. We choose the bounds properly so that the

evenly distributed Pareto points make a good evenly distributed

approximation of the Pareto Frontier.

4.2 Solution Selection
In cases when a single recommendation is expected, we need to

select one certain Pareto optimal solution. When the priorities of

different objectives are available, we can obtain a proper Pareto-

efficient recommendation by setting a proper bound for the objec-

tives and conduct a single run of Alg. 1.

When the priorities are not available, we can first generate the

Pareto Frontier and select a solution that is “fair” for the objectives.

There are several definitions of fairness in both economic theories

and recommendation system context [38]. One of the most intuitive

metrics is Least Misery, which focuses on the most “miserable” ob-

jective, in our case, a “Least Misery” recommendation is to minimize

the highest loss function of the objectives:

minmax{L1,L2, . . . ,LK } (5)

Another frequently used measure is fairness marginal utility, i.e.,

to select a solution where the cost of optimizing one objective is

almost equal to the benefit of the other objectives:

min.∥∂(L1 · L2 · . . .LK )/∂θ ∥2 (6)

Given the generated Pareto Frontier, the solution with minimum

values of Eqn. 5 or Eqn. 6 is selected as the final recommendation,

depending on the choice of fairness.

5 SPECIFICATION ON E-COMMERCE
RECOMMENDATION

Given the algorithmic framework of PE-LTR, we introduce the

details of its specification on E-Commerce recommendation. Two

of the most important objectives in E-Commerce recommendation

are GMV and CTR. For E-Commerce platforms, GMV is usually the

primary objective. However, CTR is a crucial metric for evaluating

user experiences thus affects the scale of the platform in the long

term. Therefore, we aim to find a recommendation that is Pareto-

Optimal with respect to these two objectives.

Considering that in real-life environments, the LTR models take

streaming data as input and updates its parameters in an online fash-

ion. Therefore, the online LTR model usually follows the point-wise

ranking scheme. We formulate the problem as a binary classifica-

tion problem and two differentiable loss functions are designed for

the two objectives correspondingly.

In E-Commerce recommender systems, user feedbacks can be

roughly categorized into three types: the impressions, the clicks and

the purchases. Denote the instances as (x j , yj , zj ), ∀j ∈ [1, . . . ,N ],

given a point-wise ranking model F (θ ), we propose to optimize

these two objectives, i.e. CTR and GMV. For CTR optimization, we

aim to minimize:

LCTR (θ, x , y, z) = −
1

N

N∑
j=1

loд(P (yj |θ, x j ))

For GMV optimization, we aim to minimize:

LGMV (θ, x , y, z) = −
1

N

N∑
j=1

h(pr icej ) · loд(P (zj = 1 |θ, x j ))

= −
1

N

N∑
j=1

h(pr icej ) · (loд(P (yj = 1 |θ, x j )) + loд(P (zj = 1 |yj = 1)))

= −
1

N

N∑
j=1

h(pr icej ) · (loд(P (yj = 1 |θ, x j ))) + д(pr icej )h(pr icej )

where h(pricej ) is a concave monotone non-decreasing function

with respect to pricej , pricej denotes the price of the item in x j . In
our formulation, we chooseh(pricej ) = log(pricej ). And we assume

P(zj = 1|yj = 1) is irrelevant of the model parameters θ . There-
fore, given a model F (θ ) and the formulation of LCTR (θ ,x ,y, z)
and LGMV (θ ,x ,y, z), the E-Commerce recommendation problem

becomes:

min .
{
LCTR (θ, x , y, z), LGMV (θ, x , y, z)

}
s .t .θ ∈ Rm

Note that the proposed framework does not rely on specific

model structure or the formulations of the losses, it works as long

as the model has gradients. Thus the formulations of CTR and

GMV losses are not the focus of this paper, and more carefully

designed formulations can be acommodated into this framework.

Meanwhile we do not focus on a specific LTR model but use three

different typical models for comparison, i.e. Logistic Regression

(LR), Deep Neural Network (DNN) and Wide&Deep (WDL). The

DNN model is a three-layer MLP and has a same structure with

the deep component in the Wide&Deep model. For all the neural

network components, we choose tanh as the activation function for

each hidden layer while the final layer employs the linear function

as the output. The comparison between three different models is

illustrated in Fig 5 in the experiments.

6 EXPERIMENTS
In this section, we introduce the details of experiments which are

designed to answer the following research questions:

• How does the framework perform in comparison with state-

of-the-art CTR/GMV oriented approaches and multiple ob-

jective recommendation algorithms?

• How is the Pareto efficiency of the proposed framework in

terms of the single recommendation and Pareto Frontier?
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• How is the scalability of the proposed framework in terms

of model selection?

To answer these research questions, we conduct extensive experi-

ments on real-world datasets on a popular E-Commerce website,

including online and offline experiments.

6.1 Datasets
To the best of our knowledge, there is no publicly available E-

Commerce dataset that contains important features such as price

and the labels of impression, click and purchase at the same time.

Therefore, we collect a real-world dataset EC-REC
2
from a popular

E-Commerce platform. Due to the huge amount of online data, we

collect one-week data and sample over seven million impressions

for offline experiments, and the dataset will be released to the public

to support future studies. Meanwhile, we use PE-LTR to serve the

users and conduct A/B test for online experiments. The features are

from the user profiles and item profiles, for example the purchasing

power of users and the average number of purchases of items.

6.2 Experimental Settings
We conduct both offline and online experiments to validate the ef-

fectiveness of the proposed framework. state-of-the-art approaches

are selected for comparison.

6.2.1 Baselines. We select the state-of-the-art recommendation

approaches for comparison and the baselines can be categorized

into the three kinds: the typical approaches (CF, LambdaMART),

the GMV-oriented approaches (LETORIF, MTL-REC), and the ap-

proaches that optimize both objectives (CXR-RL, PO-EA).

• ItemCF: Item-based Collaborative Filtering [31].

• LambdaMART [37] is a state-of-the-art learning-to-rank

approach. A MARTmodel is used to optimize a differentiable

loss for NDCG. However, LambdaMART only concerns with

clicks relevance, while purchase is not considered.

• LETORIF [36] is a recent learning-to-rank approach for

GMV maximization and adopts price*CTR*CVR for ranking,

where CTR and CVR are predictions from the two separate

models.

• MTL-REC: MTL-REC [21] adopts multi-task learning tech-

niques for training both CTR and CVR models. Two models

share same user and item embeddings and similar neural net-

work structures. The ranking model is also price*CTR*CVR.

• CXR-RL : CXR-RL [24] is a recent value-aware recommen-

dation algorithm that optimizes CTR and CVR simultane-

ously. CXR is designed as a combination of CTR and CVR.

CXR-RL uses reinforcement learning techniques to optimize

CXR, thus achieving a trade-off between CTR and CVR.

• PO-EA: PO-EA [28] is a state-of-the-art multi-objective rec-

ommendation approach which aims to find Pareto efficient

solutions. PO-EA assumes that different elementary algo-

rithms have different advantages on the objectives. It aggre-

gates the scores given bymultiple elementary algorithms and

the weights are generated with an evolutionary algorithm.

The elementary algorithms include LETORIF-CTR, LETORIF,

2
https://drive.google.com/open?id=1rbidQksa_mLQz-V1d2X43WuUQQVa7P8H, the

codes will be released if the paper is accepted.

CXR-RL, PE-LTR-CTR, and PE-LTR-GMV. LETORIF-CTR

refers to the CTR model in LETORIF. Both PE-LTR-CTR

and PE-LTR-GMV are PE-LTR models whose boundary con-

straints are added to optimize CTR and GMV correspond-

ingly. The two LTRmodels are used as elementary algorithms

for a fair comparison with PE-LTR.

• PO-EA-CTR, PO-EA-GMV: two solutions generated by

PO-EA, which focus on CTR and GMV respectively.

• PE-LTR-CTR, PE-LTR-GMV: two solutions generated by

PE-LTR, which focus on CTR and GMV respectively.

6.2.2 Experimental Settings. We adopt two typical IR metrics for

CTR evaluation, i.e. NDCG and MAP. Meanwhile, we propose two

GMV variants for both metrics:

G-AP@K =
1

K

K∑
n=1

∑n
i=1 payi

n
; G-MAP@K =

1

|QR |

∑
q∈QR

G-AP@K

G-DCG@K =

K∑
i=1

price
′
i ·

2
payi − 1

log
2
(i + 1)

; G-NDCG@K =
G-DCG@K

G-IDCG@K

where QR denotes the set of purchased items, payi = 1/0 denotes

the whether the item at i-th rank is purchased or not, price′i denotes
the price of the item at i-th rank, G-IDCG@K denotes the maxi-

mum possible value of G-DCG@K. G-NDCG considers the position

biased GMV in the list, and prefers higher-ranking items that are

purchased, while G-MAP considers the number of purchases in

the recommendation list. For users without purchase records, the

values of two metrics are both 0.

6.3 Offline Experimental Results
6.3.1 Comparison with baselines. To answer the first research ques-
tion, we present the comparison on NDCG, MAP and the GMV-

related metrics in Table 2. PE-LTR is the model selected from Pareto

Front with fairness marginal utility and PO-EA is a PO-EA model

with comparable CTR metrics with PE-LTR. As shown in the table,

PE-LTR outperforms other approaches on all GMV related metrics

and a comparable performance with LambdaMART on CTR re-

lated metrics. Compared with Item-CF and LambdaMART, PE-LTR

achieves much higher G-NDCG and G-MAP. This is reasonable

since PE-LTR jointly optimize the GMV and CTR while GMV is

not optimized in Item-CF and LambdaMART. Meanwhile, PE-LTR

achieves comparable NDCG and MAP with LambdaMART. In pre-

vious observations on benchmark studies of web search, Lamb-

daMART is usually the best performing method [36, 37]. This indi-

cates the effectiveness of our framework, which not only optimizes

GMV but also guarantees a high CTR.

Compared with LETORIF, MTL-REC, CXR-RL and PO-EA, PE-

LTR achieves higher G-NDCG and G-MAP, and at a much lower

cost of CTR. There are several reasons behind this:

First, compared with LETORIF and MTL-REC, PE-LTR jointly

learns both objectives with a single model, which allows the model

to learn clicks and purchases simultaneously; While in LETORIF

and MTL-REC, two separate models or components are designed

for clicks and purchases, which may cause some inconsistency.

Second, compared with CXR-RL and PO-EA, PE-LTR coordinates

two objectives in a Pareto efficient way. CXR-RL optimizes both

objectives, yet in a non-Pareto efficient way. Meanwhile, although

PO-EA attempts to find Pareto efficient solutions, it only guarantees

https://drive.google.com/open?id=1rbidQksa_mLQz-V1d2X43WuUQQVa7P8H
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Table 2: Comparison between PE-LTR and other baselines in offline experiments, the values are relative improvements over
ItemCF. The highest and second highest values are highlighted. All results are statistically significant with p < 0.01.

Approaches G-NDCG@10 G-NDCG@ALL G-MAP@10 G-MAP@ALL NDCG@10 NDCG@ALL MAP@10 MAP@ALL

ItemCF - - - - - - - -

LambdaMART 0.7357 -0.0324 -0.0982 -0.0869 0.1602* 0.0849* 0.1503* 0.1531*
LETORIF 0.1360 0.0660 0.1310 0.1108 -0.0327 -0.0189 -0.0357 -0.0283

MTL-REC 0.1092 0.0491 0.0952 0.0803 -0.0318 -0.0191 -0.0370 -0.0286

CXR-RL 0.0851 0.0443 0.0971 0.0796 0.0969 0.0538 0.0965 0.0945

PO-EA 0.0539 0.0246 0.0541 0.0435 0.0941 0.0510 0.0918 0.0914

PO-EA-GMV 0.3328 0.1890 0.3912 0.3368 0.0620 0.0319 0.0505 0.0596

PO-EA-CTR 0.0203 0.0052 0.0142 0.0102 0.1349 0.0744 0.1315 0.1318

PE-LTR 0.2707 0.1588 0.3292 0.2867 0.1150 0.0617 0.1080 0.1109

PE-LTR-GMV 0.3629* 0.2088* 0.4311* 0.3747* 0.0620 0.0306 0.0509 0.0589

PE-LTR-CTR 0.0268 0.0100 0.0231 0.0189 0.1412 0.0772 0.1351 0.1367
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Figure 2: The left figure is the comparison between mod-
els generated by PO-EA and PE-LTR; The right figure is the
Pareto front of CTR and GMV traning losses in PE-LTR.

that the final solution is selected from a series of solutions that are

not dominated by each other. We further plot the NDCG versus

G-NDCG curve of PO-EA and PE-LTR in Fig 2 (Due to page limit,

we just plot G-NDCG and NDCG in the figures of the paper, and

the results are similar for MAP and G-MAP). As the figure shows,

any solution generated by PO-EA is not dominated by the other

one from PO-EA; and the case is same with PE-LTR. However, we

observe that the curves of PE-LTR are above the curves of PO-EA,

which means the solutions from PO-EA are dominated by those

generated by PE-LTR. Note that two PE-LTR algorithms are already

used as the elementary components in PO-EA, the comparison

indicates that the proposed framework is more capable to generate

Pareto efficient solutions.

Moreover, the real-world data in E-Commerce platforms may

not follow the typical i.i.d. assumption. And scalarization weights

are adjusted every batch in PE-LTR, which allows it to adjust to the

training data dynamically during the training process. Meanwhile,

PO-EA requires several well-trained algorithms for aggregation,

which makes it more difficult to meet the requirements of online

learning environments.

We further compare the quality of recommendations at the top of

the ranking list. Since users usually focus more on the top-ranked

items, the metrics at the top are more important in recommendation.

The results are presented in Fig 3 . As shown in the figures, PE-

LTR outperforms the other baselines on GMV related metrics, and

at a low cost of CTR. This illustrates the importance of Pareto

efficiency in real-world recommender systems. Optimizing a single

objective alone may hurt the other objectives severely. Therefore it

is necessary to jointly consider multiple objectives simultaneously

and a Pareto efficiency recommendationmakes it possible to achieve

high GMV at a low cost of CTR.

6.3.2 The Pareto Efficiency of PE-LTR. To answer the second re-

search question, we first generate the Pareto Frontier of CTR and

GMV losses by running Alg. 1 with different bounds and plot the

Pareto Frontier in Fig 2. It can be observed that the losses under

different constraints basically follow Pareto efficiency, i.e. no point

achieves both lower CTR and GMV losses than other points. When

the model focuses more on CTR, CTR loss is lower and GMV loss

is higher, and vice versa. This coincides with the Pareto efficient

scalarization scheme of the proposed framework.

1 2 3 4 5 6 7 8

0.1

0.15

0.2

0.25

0.3

K

N
D
C
G
@
K

LambdaMART

PE-LTR

CXR-RL

PO-EA

MTL-REC

LETORIF

Item-CF

1 2 3 4 5 6 7 8

0

0.001

0.002

0.003

0.004

0.005

K

G
-
N
D
C
G
@
K

PE-LTR

LETORIF

MTL-REC

PO-EA

CXR-RL

Item-CF

LambdaMART

Figure 3: Comparison between the performances of PE-LTR
and other baselines at the Top.

Thenwe compare the solution of PE-LTR under different solution

selection strategies. We predefine two series of bounds for ctr and

gmv: (ωctr ≥ 0, omeдaдmv ≥0.8) and (ωctr ≥ 0.8,omeдaдmv ≥

0.0), and get two PE-LTRs (PE-LTR-GMV and PE-LTR-CTR) which

focus on GMV and CTR respectively. Then we choose two PE-LTRs

(PE-LTR-LM and PE-LTR-MU) from the Pareto Frontier with LM

fairness and MU fairness. We plot the comparison between these

PE-LTRs in Fig 4.

The performances of PE-LTR-CTR and PE-LTR-GMV are consis-

tent with the constraints added to the objectives. Therefore when

the priority of GMV and CTR are available (i.e. GMV or CTR is

preferred), the recommendation can be achieved by setting the

bounds correspondingly. When the priorities are not available, a

fair solution can be achieved by selecting from Pareto Frontier with

highest fairness. Despite the performance of selected PE-LTR (PE-

LTR-LM and PE-LTR-MU) is not the best on all metrics, it achieves
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Figure 4: Comparison between different recommendation
selection strategies in PE-LTR.

a relatively good trade-off between the two objectives. Comparing

PE-LTR-LM with PE-LTR-MU, we find the two recommendations

selected with LM and MU fairness are relatively balanced. PE-LTR-

MU outperforms PE-LTR-LM in GMV while PE-LTR-LM is slightly

better in CTR.

6.3.3 The Scalability of PE-LTR. To answer the third research ques-

tion, we conduct experiments to show the scalability of PE-LTR in

terms of model selection. We use LR, DNN and WDL as the model

in PE-LTR framework, and the details of the models can be found

in Section 5. We set same bounds for the models and the results are

plotted in Fig 5.
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Figure 5: Comparison between different models with PE-
LTR framework.

Judging from the results, we observe that the model selection has

an important impact on the performance of PE-LTR. Among the

three PE-LTR variants, PE-LTR-WDL outperforms the rest and PE-

LTR-DNN outperforms PE-LTR-LR. This is reasonable since neural

networks capture more complex relationships between features

than linear models. And Wide&Deep model combines both neural

networks and linear models into a single model, which enables

better generalization and memorization for recommendation [9].

Therefore, PE-LTR is able to accommodate with varies kinds of

models and stronger models can lead to better performances. This

also illustrates the potential of PE-LTR, whose performance can be

further enhanced by more carefully designed models.

6.4 Online Experimental Results
The online experiments are conducted on the real-world E-Commerce

platform for three days. For online experiments, CTR-only ap-

proaches hurt GMV severely. Therefore, the approaches that only

concern with CTR are not included in the online experiments.

We concern with four metrics in the online experiments, i.e. CTR

(Click Through Rate), IPV (Individual Page View), PAY (number of

payments) and GMV (Gross Merchandise Volume). We compute

Table 3: Comparison between PE-LTR and other baselines
in online experiments, the values are the relative improve-
ments over LETORIF in percentage. All results are statisti-
cally significant with p < 0.01.

Approaches CTR IPV PAY GMV

CXR-RL 13.68 20.60 -1.027 -3.197

PO-EA 4.442 8.957 3.399 -3.038

PE-LTR 13.80* 23.76* 20.09* 3.623*

the average performances of three days and present the results in

Table 3. Due to the large number of users, the results are statistically

significant.We use LETORIF as the baseline, and present the relative

improvements of compared approaches on LETORIF in the table.

From the results we observe that our approaches outperform

other baselines on all the four metrics. This basically coincides

with the offline experimental results. Note that PE-LTR achieves

significant improvements on GMV with a high CTR, this illustrates

the advantage of Pareto efficient recommendation. Meanwhile, PO-

EA requires offline models for aggregation and can not learn the

weights online, making it less effective in the experiments.

7 CONCLUSIONS
In this paper, we concern with the problem of recommendation with

multiple objectives. We propose a general algorithmic framework

that generates Pareto efficient solutions with theoretical guarantees.

We propose a theoretical condition ensuring the Pareto efficiency,

and a two-step algorithm which can be further accommodated with

constraints on the objectives. We specifically apply this framework

on E-Commerce recommendation to optimize both GMV and CTR

simultaneously. Extensive experiments have been conducted on a

real-world E-Commerce recommender system. The experimental

results validate the effectiveness of the proposed framework. Mean-

while, the framework is model and objective agnostic, which shows

its strong scalability.

A APPENDIX
A.1 The Proofs of Two Theorems

Proof. The problem in Theorem 3.3 can be written as:

min .
1

2

ω̂TGGT ω̂ + cTGGT ω̂ +
1

2

cTGGT c

s .t . eT ω̂ = 1 − eT c

We apply the Lagrange multipliers and get the Lagrangian:

L(ω̂, λ) =
1

2

ω̂TGGT ω̂ + cTGGT ω̂ + λ(eT ω̂ − 1 + eT c )

The solution to the problem is given by:

∇ω̂L(ω̂, λ) = 0, and ∇λL(ω̂, λ) = 0,

therefore the solution can be achieved by solving the linear system:[
GGT e
eT 0

] [
x
λ

]
= M

[
x
λ

]
=

[
−GGT c
1 − eT c

]
. And according to the study on Moore-Penrose inverse [25], the

solution to this system is[
x
λ

]
= (MMT )−1M

[
−GGT c
1 − eT c

]
□
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