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ABSTRACT
When a user starts exploring items from a new area of an e-commerce

system, cross-domain recommendation techniques come into help

by transferring the abundant knowledge from the user’s familiar

domains to this new domain. However, this solution usually re-

quires direct information sharing between service providers on

the cloud which may not always be available and brings privacy

concerns. In this paper, we show that one can overcome these con-

cerns through learning on edge devices such as smartphones and

laptops. The cross-domain recommendation problem is formalized

under a decentralized computing environment with multiple do-

main servers. And we identify two key challenges for this setting:

the unavailability of direct transfer and the heterogeneity of the

domain-specific user representations. We then propose to learn and

maintain a decentralized user encoding on each user’s personal

space. The optimization follows a variational inference framework

that maximizes the mutual information between the user’s encod-

ing and the domain-specific user information from all her interacted

domains. Empirical studies on real-world datasets exhibit the effec-

tiveness of our proposed framework on recommendation tasks and

its superiority over domain-pairwise transfer models. The resulting

system offers reduced communication cost and an efficient infer-

ence mechanism that does not depend on the number of involved

domains, and it allows flexible plugin of domain-specific transfer

models without significant interference on other domains.

CCS CONCEPTS
• Information systems→ Recommender systems; Mobile in-
formation processing systems.
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Figure 1: Edge_CDR problem - indirect transfer of user in-
formation on user’s local device.

1 INTRODUCTION
Recommender system (RS) [1], as one of the principle information

retrieval (IR) tools, aims to find items (e.g. products and movies)

for users, fulfilling their demands for information search and explo-

ration. The most adopted and efficient solutions nowadays follow

the collaborative learning (CL) strategy, which includes collabora-

tive filtering [6, 30] and collaborative reasoning [4, 33]. Generally,

the CL-based methods benefit from more elaborate user profiles

and longer interaction histories, but they tend to face difficulties

when they only observe limited information of the user. An extreme

but common case is that a user comes into a new area/domain for

exploration with no preceding interaction record, known as the

user cold-start problem [29]. One distinguishable solution to this

problem is the Cross-Domain Recommendation (CDR) approach

[11, 19, 36], which transfers knowledge about the user from auxil-

iary RS data sources (domains) where abundant information and

interaction history of this user is available. For example, Kathryn

is a new customer for an e-book store. And in another app, she has

bought lots of horror and thrilling movies, then these preferences

can benefit the e-book store’s recommendation service to Kathryn.

To our knowledge, the CDR problem has been mostly researched

under centralized machine learning frameworks, which requires

direct user information sharing between different services/domains.

However, this is often not an option when domains distrust each

other. For example, two domains are in competition and does not

want to reveal sensitive information likemodel design. Furthermore,

this direct sharing scheme raises privacy concerns not only for the
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domains but also for users who may also deny the transfer in order

to protect its information [2, 43]. In this paper, we argue that one

can overcome these limitations by transfer learning on edge devices

and including both the domains and the users into the control of

the transfer. Specifically, a new CDR problem, denote as Edge-

CDR, is reformulated under a decentralized edge/mobile computing

environment along with multiple central server. In addition to

each service provider’s cloud space that provide domain-specific

centralized environments, each user is associated with a personal

space (e.g. mobile phones or laptops) whose data and computation

are locally maintained on the edge device.

We summarize the key constraints of Edge-CDR as follows: First,

direct transfer between domains becomes intermittently un-

available as previously mentioned. In contrast, Edge-CDR allows

direct transfer between a user’s personal space and any domain-

specific service, indicating a possible indirect transfer between

domains (Figure 1) where the user’s personal space serves as inter-

mediate controller. Secondly, Edge-CDR assumes heterogeneous
(user/model) representations across domains since real-world

services do not necessarily share the sameway of representing users

and generating recommendations, neither do they have to sacri-

fice their model configurations to support joint training with other

services. As a result, methods that involve fixed and complicated

transfer mechanism [9, 28] among domains becomes expensive or

even impractical. Thirdly, a straightforward assumption for each

edge device is the consistent user state across domains (e.g. it is

the same user using the same mobile phone). Therefore, methods

that deal with no-user-overlap scenarios [15] are no longer favor-

able. In general, we argue that the most natural Edge-CDR setting

is the user-overlap no-item-overlap (U-NI) setting. Following such

initiatives, the edge environment of users and cloud services of

domains should complement each other when solving the Edge-

CDR task, as shown in Figure 1. Specifically, each personal space

is unable to acquire the knowledge about other users but is well

suited for transferring knowledge across domains about the same

user; On the other hand, each domain service has difficulty retriev-

ing knowledge from other domains but is well suited for running

collaborative learning across users within its domain.

To overcome the aforementioned restrictions, we propose to

maintain a Decentralized User Encoding (DUE) on each personal

device to engage indirect user knowledge transfer, and the transfer

model is separable by domain so that each service can independently

manage its domain-specific user representations and its prediction

models. In summary, we list our contributions as the following:

• We formalize the Edge-CDR problem and show that main-

taining DUEs on edge/personal devices can overcome the

challenge of indirect transfer and heterogeneous cross-domain

user representations.

• We illustrate our solution as a federated variational inference

framework and empirically show its validity on large-scale

real-world datasets.

• We also show that our framework is efficient compared to

domain-pairwise transfer methods and is flexible for domain

plug-in/plug-out.

The remainder of this paper is organized as follows: we discuss the

scale of the Edge-CDR problem and its related areas in section 2.

In section 3, we first formulate the Edge-CDR problem as a user

embedding transfer learning problem and then illustrate the restric-

tions. In section 4 we present the DUE model and its optimization

framework. We elaborate our experimental settings and empiri-

cal results in section 5. Finally, section 6 concludes our study and

discusses its future expectations.

2 RELATEDWORK
We locate the scale of Edge-CDR in the joint research area of recom-

mender systems, transfer learning, and mobile computing systems.

To our knowledge, there is no existing work that accommodates

the Edge-CDR setting, but closely related topics can be found in the

joint area of two of the three fields, correspond to the CDR prob-

lem, the federated recommendation, as well as the more general

federated transfer-learning.

In terms of cross-domain recommendation, instead of re-

stricting the transfer scenario to U-NI, there are other scenarios

that share items or share both users and items across domains

[15]. There are also studies on how to transfer knowledge between

different data formats, for example: from knowledge graph or re-

view text to recommendation [10, 13, 41]. In this work, we focus

on category-level domain transfer where domains adopt the same

data type but differ in their item categories. Pioneer work of this

kind considers clustering-based methods [19] to find transferable

user/item patterns between domains. Others have shown alterna-

tives that extends the original user-item interaction matrix into a

user-item-domain tensor and apply factorization-based methods

[11, 36]. Recent developments further improve the state-of-the-

art solutions by not only sharing user representations but also

model parameters [5, 9, 28]. Though these methods are effective in

a centralized setting, they either require direct transfer or assume

homogeneous user/model representations between domains. We

consider the embedding and mapping approaches [14, 20, 24, 32, 40]
as the closest setting to Edge-CDR. This type of methods separates

the optimization process into a domain-independent embedding

learning phase and a cross-domain transfer learning phase so that

systems with different user embedding formats can exchange in-

formation without much negative influence on their performance.

However, they still require direct user embedding transfer. More-

over, most of these existing CDR models learn to transfer between a

pair of domains, but a mobile device in Edge-CDR setting typically

involves a large number of services/domains, which could induce

an excessive quadratic cost (section 5.5).

On the other hand, it has been an increasing interest [17, 21, 34]

to migrate centralized algorithms into personal devices since—with

sufficient computational power—the decentralized workload can

reduce the computation of the central server and can offer faster

updates and responses [27] on edge devices. In terms of designing

RS model with distributed data and computation, local training

on personal devices and cross user collaboration are necessary,

which is often referred as horizontal federated RS [3, 17]. And

[39] shows the convergence rate for the general federated gradient-

based optimizations. We believe that, with the development of

ubiquitous personal smart agents and the internet of things (IoT)

infrastructures, this migration will become a necessity in the near

future for not only recommendation tasks but also many other



Symbol Description

D,D (𝑢) set of domains and its subset interacted by user 𝑢

𝐷 total number of domains

𝑑,𝑑 ′, 𝑑𝑡 domain identifiers, the last one is target domain

I𝑑 item set of domain 𝑑

U,U (𝑑) set of user and its subset interacted by domain 𝑑

𝑀 total number of user

𝑢, 𝑖 user and item identifiers

𝑟, 𝑟 ground truth and predicted user response

𝑓𝑑 domain-specific CF model

U(𝑑)𝑢 user 𝑢’s embedding in domain 𝑑

𝐿𝑑 user embedding size in domain 𝑑

𝐿𝑐 embedding size of DUE

𝑔 the transfer model that maps user embeddings

S𝑑 domain’s service space on the cloud

E𝑢 user’s personal space on device

E𝑑,𝑢 domain’s service space on device

z𝑢 |E𝑢 DUE of user 𝑢

z𝑢 |U(𝑑)𝑢 DUE inferred by domain 𝑑

ENC𝑑 ,DEC𝑑 encoder and decoder of domain 𝑑

𝝁𝑑 ,𝝈𝑑 variational output of domain-specific encoder

𝝁𝑢 ,𝝈𝑢 variational information stored on E𝑢
Θ𝑑 ,Φ𝑑

model parameters of domain-specific

decoder and encoder

Table 1: Notations

web services. In contrast with horizontal federated learning across

users, there is a vertical federated learning problem where the

data is localized by features or domains [21, 23, 37, 42], which is

also closely related to domain transfer problems. In this paper, we

regard Edge-CDR as a federated transfer learning problem [42]

that requires a solution that is both horizontally separated by user

and vertically separated by domains. Additionally, in systematic

perspective, researchers have also put efforts into improving the

privacy guarantee [25, 35] and robustness [31] of the federated

learning system. We consider these ideas as complementary to ours

while we focus the algorithmic aspects of the Edge-CDR problem.

3 PROBLEM FORMULATION
In this section, we give the Edge-CDR problem definition analog

to that of centralized CDR and then describe the restrictions when

migrating it to an edge computing environment.

3.1 Edge-CDR with U-NI Scenario
Assume that recommendations services are separately provided in

a set of 𝐷 domains D = {𝑑1, . . . , 𝑑𝐷 } each of which corresponds to

an item category (e.g. Movies, Books, Games, etc). For each domain

𝑑 ∈ D, denote the set of items as I𝑑 (of size 𝑁𝑑 ). As defined in

U-NI setting, there is no item overlap between domains such that

∀𝑑, 𝑑 ′ ∈ D, 𝑑 ≠ 𝑑 ′,I𝑑 ∩ I𝑑′ = ∅. Since we assume consistent

user identifier on the same device, denote a universal set of user

U (of size 𝑀) across domains. Note that a domain 𝑑 may only

engage with a subset of users U (𝑑) ⊆ U and a user 𝑢 ∈ U may

only engage with a subset of domains D (𝑢) ⊆ D. The observed

domain data can be expressed as a set of triplets Ω𝑑 = {(𝑢, 𝑖, 𝑟 ) |𝑢 ∈

U, 𝑖 ∈ I𝑑 , 𝑟 ∈ R𝑑 } where R𝑑 is the domain-specific response space

(e.g. {1-5} if ratings, {0,1} if click signal). Typically, each domain

separately owns and maintains its CF model 𝑓𝑑 which is a function

that predicts the response of a given user-item pair (𝑢, 𝑖) within its

knowledge: 𝑟𝑢,𝑖,𝑑 = 𝑓𝑑 (U
(𝑑)
𝑢 , 𝑖), where U(𝑑)𝑢 ∈ R𝑀×𝐿𝑑 denotes the

user’s embedding in domain 𝑑 and 𝐿𝑑 is the dimension size of the

user vector. In Edge-CDR setting, 𝑓𝑑 along with U(𝑑) are pretrained
by a domain-specific objective L (CF)

𝑑
and then serve as part of the

training environment for the cross-domain transfer model.

The ultimate goal is to provide recommendations for a cold-

start user in the target domain 𝑑𝑡 ∈ D with the user’s embedding

transferred from other source/auxiliary domains. Similar to [24],

given pre-trained 𝑓𝑑𝑡 as environment and the user information

across domains as training data, the problem becomes learning the

user representation transfer model 𝑔 : R𝐿𝑑1+𝐿𝑑2+···+𝐿𝑑𝐷 → R𝐿𝑑𝑡
that maps user information from all domains to 𝑑𝑡 :

Û(𝑑𝑡 )𝑢 = 𝑔(X𝑢 ) (1)

where both 𝑓𝑑 and the user representations𝑋𝑢 = [U(𝑑1)𝑢 , . . . ,U(𝑑𝐷 )𝑢 ]
are assumed fixed during the optimization and inference. In other

words, the transfer model is agnostic to the design of 𝑓𝑑 and L (CF)
𝑑

.

The problem is trivial if all domains collaboratively train a shared 𝑔

on a centralized environment, but as mentioned in section 1, there

arises additional restrictions such as unavailable direct transfer and

heterogeneous user representations in Edge-CDR setting. In general,

we regard this problem as a federated collaborative transfer learning

task that requires both federation of multiple domain services and

the collaboration between user spaces.

3.2 Unavailable Direct Transfer
The domain-specific environment 𝑓𝑑 as well as the domain-specific

user embeddings U(𝑑) cannot be directly shared with other do-

mains, as mentioned in section 1. Formally, the system defines

three data/model space with different level of accessibility:

• S𝑑 : the domain service space on the cloud (where 𝑓𝑑 and

U(𝑑) are stored).
• E𝑢 : the user’s own space on device. Any domain should

request for permission to access its data.

• E𝑑,𝑢 : the domain’s service space on user’s personal device. It

can synchronize with S𝑑 to acquire user’s information and

communicate (if permitted) with the user space E𝑢 when

exchanging information.

As shown in Figure 1, this setting prohibit direct information trans-

fer between {S𝑑 , E𝑑,𝑢 } and {S𝑑′, E𝑑′,𝑢 } for any pair of domain

(𝑑, 𝑑 ′). However, we assume that encoded information can be ex-

changed between the user’s personal space E𝑢 and any domain’s

space E𝑑,𝑢 on edge. This indicates that the users’ personal spaces

should serve as intermediate agents that coordinate an indirect

transfer framework, and the learning goal must be simultaneously

separable by users and separable by domains.

3.3 Heterogeneous User Representation
As described in section 3.1, one domain’s user embeddings U(𝑑) are
assumed independent from those from other domains, so both the

user vector size 𝐿𝑑 and the semantic meaning of each factor could
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Figure 2: GraphModel forDUE framework. Each domain dis-
tribute its auto-encoders to all interacted users, and its en-
coding is regulated users’ stored encoding 𝒛𝑢 on edge. Each
user’s domain-specific information U(𝑑)𝑢 is used to train the
domain-specific encoders and decoders and does not directly
require knowledge from other domains.

vary according to each domain 𝑑 . We regard this as the vertical

heterogeneity of user representations. Intuitively, one can simply

learn a mapping function for each pair of domains like that in [24].

Yet, this domain-pairwise transfer scheme would not only violate

the constraint of unavailable direct transfer but also become com-

putationally heavy as the number of domain grows. What we need

is a framework that can effectively deal with this semantic het-

erogeneity and its computation should be efficient with respect to

|D|. On the other hand, users representations are also horizontally

heterogeneous since people typically have different demands and

interest, thus, may engage with different subset of domains, where

∀𝑢 ∈ U, 1 ≤ |D (𝑢) | ≤ |D|. In reality, users demands are usually

limited, so including more domains induces a higher chance of

seeing less common users between a pair of domains, especially

for domains that are extremely sparse (in terms of the observed

user-item interaction). This would result in a further downgraded

performance of domain-pairwise transfer, as we will show in sec-

tion 5.2. Moreover, in a user’s view, she may add new domains or

stop visiting previous domains, so the solution should also provide

the flexibility of domain plug-in and pull-off mechanism without

significant interference to the transfer model 𝑔 on other domains.

4 LEARN DECENTRALIZED USER ENCODINGS
4.1 Overall Framework
We design our solution as a modified Variational Auto-Encoder

(VAE)[16], which is not only a horizontal collaboration framework

of users, but also a vertical federation framework across domains.

It consists of a set of domain-specific partial encoders and decoders,

and each user’s personal space E𝑢 maintains a Decentralized User

Encoding (DUE) z𝑢 ∈ R𝐿𝑐 which is a latent vector of size 𝐿𝑐 that

integrates user representations from all interacted domains. Specif-

ically, we break down the variational model into a set of domain-

specific VAEs 𝑔𝑑 ,∀𝑑 ∈ D. As shown in figure 2, for a given domain

𝑑 , 𝑔𝑑 consists of an encoder ENC𝑑 : R𝐿𝑑 → R𝐿𝑐 (with parameters

Φ𝑑 ) that infer z𝑢 based on domain-specific representation U(𝑑) , and
a decoder DEC𝑑 : R𝐿𝑐 → R𝐿𝑑 (with parameters Θ𝑑 ) that generate

U(𝑑) based on z𝑢 . The objective of the system is to learn a set of

decentralized z𝑢 for each user that contains “complete user informa-

tion” from all domains, so that each domain-specific DEC𝑑 (·) can
extract accurate U(𝑑)𝑢 that contains sufficient information for later

recommendation services. On one hand, each domain needs to learn

its own decoder and encoder, so it can keep its user embedding

format without modifying the design of its CF model 𝑓𝑑 and the

transfer models of other domains, solving the heterogeneous user

representation. On the other hand, the only auxiliary information

for each domain is the encoded z𝑢 that is maintained by E𝑢 from

all interacted domains, so this mechanism avoids direct access of

other domains for their user features, representation format, and

model configurations.

4.2 Learning Separable Model and DUEs
The overall objective of this transfer framework is to maximize

the data log likelihood of each user’s representations X𝑢 from all

observed domains: ∑
𝑢

log 𝑝 (X𝑢 ) (2)

which is already horizontally separable by user. Then one can as-

sumes that the observed user representation X𝑢 is generated from

the same latent “complete” information z𝑢 of that user:

𝑝𝑋 |𝑍 (X𝑢 |z𝑢 ) =
∏
𝑑

𝑝𝑋 |𝑍 (U
(𝑑)
𝑢 |z𝑢 ) (3)

Note that this formulation also indicates conditional independence

between domain-specific user information given latent encoding,

and mechanically, 𝑝𝑋 |𝑍 (U
(𝑑)
𝑢 |z𝑢 ) and 𝑝𝑋 |𝑍 (U

(𝑑′)
𝑢 |z𝑢 ) are modeled

by decoders from corresponding domains 𝑑 and 𝑑 ′.
Similar to the reasoning of VAE, one can simultaneously optimize

the decoder Eq.(3) and learn to infer the encoding z𝑢 through an

encoder 𝑞𝑍 |𝑋 (z𝑢 |X𝑢 ) which serves as an approximation of the

true intractable posterior. Then, the goal of maximizing the data

log-likelihood is lower bounded by:

log 𝑝 (𝑋𝑢 )

≥ − 𝐷KL (𝑞𝑍 |𝑋 (z𝑢 |X𝑢 ) | |𝑝 (z𝑢 ))+
∑
𝑑

E
∼𝑞𝑍 |𝑋

[
log 𝑝𝑋 |𝑍 (U

(𝑑)
𝑢 |z𝑢 )

]
(4)

where 𝐷KL is the Kullback-Leibler divergence between the user’s

encoding distribution given by the encoder and the (cross-user)

prior distribution 𝑝 (z𝑢 ). And the second term describes a recon-

struction loss of user informationX𝑢 through the encoder 𝑞𝑍 |𝑋 and

decoder 𝑝𝑋 |𝑍 . According to [8], using a reconstruction objective

like this guarantees the amount of mutual information between

latent z𝑢 and the observed user embeddings X𝑢 .

In order to avoid the direct transfer of model parameters and

allow heterogeneous user embeddings, we also replace the origi-

nal encoder of 𝑞𝑍 |𝑋 (z𝑢 |X𝑢 ) with domain-specific encoders, each

of which models the corresponding posterior 𝑞𝑍 |𝑋 (z𝑢 |U
(𝑑)
𝑢 ) for

certain domain 𝑑 . In other words, each domain now has its own

encoder and decoder, and the only information that is shared across

domains is the latent encoding z𝑢 maintained on each user’s per-

sonal space E𝑢 . With this model, we modify the original VAE goal
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Figure 3: Model Overview. S𝑑 (horizontally) aggregate user
updates of 𝑔𝑑 . The domain-specific CF prediction mecha-
nism is kept private in each domain. E𝑑,𝑢 is distributed to
the personal device, but cannot reach E𝑑′,𝑢 of any other do-
main 𝑑 ′ ∈ D (𝑢) . User’s personal space E𝑢 serves as the inter-
mediate transfer agent that learns and (vertically) aggregate
user information across domains.

into a separable transfer loss with respect to domains:

L
transfer

= L
dec
+ Lenc (5)

L
dec

=
∑

𝑑∈D (𝑢)

(
1

|D (𝑢) |
𝐷KL (𝑞𝑍 |𝑋 (z𝑢 |E𝑢 ) | |𝑝 (zu))

− E
∼𝑞𝑍 |𝑋 (z𝑢 |E𝑢 )

[
log𝑝𝑋 |𝑍 (U

(𝑑)
𝑢 |z𝑢 )

] )
Lenc =

∑
𝑑∈D (𝑢)

𝑊2 (𝑞𝑍 |𝑋 (z𝑢 |U
(𝑑)
𝑢 ), 𝑞𝑍 |𝑋 (z𝑢 |E𝑢 ))

where L
dec

comes from the original VAE loss (Eq.4), only that the

encoding distribution is directly given by 𝑞𝑍 |𝑋 (z𝑢 |E𝑢 ) that stored
in E𝑢 rather than the output of the encoder. The second loss term

Lenc uses Wasserstein distance to bring close the distribution be-

tween the output of any domain-wise encoder and the𝑞𝑍 |𝑋 (z𝑢 |E𝑢 ).
This allows the encoding proposed by different domains become

aligned with z𝑢 |E𝑢 , while z𝑢 |E𝑢 learns to aggregate partial informa-

tion from all interacted domains and thus represents the integrated

posterior 𝑞𝑋 |𝑍 (z𝑢 |X𝑢 ) in Eq.4.

Combining the two parts of the transfer loss Eq.(5), each per-

sonal space will store the variational information of z𝑢 |E𝑢 which

will serve as an intermediate checkpoint that separates the en-

coder loss and decoder loss. Note that the encoders only appear

in Lenc and the decoders only appear in L
dec

. The separation of

the encoder-decoder loss also separate the gradient computation

between decoders and encoders as shown in figure 2-c. Consider

that if it instead directly passes to the decoders with the mean of

the proposed encoding (mean𝑑 (z𝑢 |U
(𝑑)
𝑢 )) rather than the stored

z𝑢 |E𝑢 , the resulting computation would be quadratic with respect

to |D (𝑢) |. In contrast, our design only induces linear gradient com-

putational cost (with respect to D (𝑢) ) because the gradient from
decoders does not pass to encoders through z𝑢 |E𝑢 .

4.3 Shared Protocol of DUE
Since z𝑢 |E𝑢 of users are decentralized, the framework requires a

shared protocol of the z𝑢 ’s format and its prior distribution 𝑝 (z𝑢 )
across all users and domains to regulate the optimization. Here we

adopt the simple and widely used assumption of isotropic stan-

dard Gaussian distribution. Specifically, we let 𝑞𝑋 |𝑍 (z𝑢 |E𝑢 ) ∼

N (𝝁𝑢 ,𝝈2

𝑢 ) where the variational information 𝝁𝑢 and 𝝈𝑢 are user

specific and are optimized on E𝑢 , and the prior 𝑝 (z𝑢 ) ∼ N (0, I) is
shared by all users. In order to apply back-propagation for encoders,

we adopt the reparametrization trick for the posterior𝑞𝑍 |𝑋 (z𝑢 |U
(𝑑)
𝑢 ):

𝝁𝑑 ,𝝈𝑑 = ENC𝑑 (U
(𝑑)
𝑢 )

𝜖 ∼ N(0, I)

z𝑢 |U(𝑑)𝑢 = 𝝁𝑑 + 𝝈𝑑 × 𝜖

where the encoder ENC𝑑 outputs the variational information (means

and standard deviation) of z𝑢 |U(𝑑)𝑢 . Then the loss Eq.(5) breaks

down into domain-wise losses:

L (𝑑)
dec

= − 1

2|D (𝑢) |

𝐿𝑐∑
𝑗=1

(
− log𝝈𝑢,𝑗 + 𝝈2

𝑢,𝑗 + 𝝁
2

𝑢,𝑗 − 1
)

− E
∼𝑞𝑍 |𝑋 (z𝑢 |E𝑢 )

[
log𝑝𝑋 |𝑍 (U

(𝑑)
𝑢 |z𝑢 )

]
(6)

L (𝑑)
enc

= −1
2

𝐿𝑐∑
𝑗=1

(
∥𝝁𝑑,𝑗 − 𝝁𝑢,𝑗 ∥2 + ∥𝝈𝑑,𝑗 − 𝝈𝑢,𝑗 ∥2

)
(7)

In terms of 𝑝𝑋 |𝑍 , we have assumed conditional independence be-

tween domain-specific decoders in section 4.2, which means that

each domain is allowed to define its own decoder loss in Eq.(6). But

for simplicity, we again define a Gaussian kernel:

𝑝𝑋 |𝑍 (U
(𝑑)
𝑢 |z𝑢 ) =

1√
2(𝜋𝜎)𝐿𝑑

𝑒
− ∥Û

(𝑑 )
𝑢 −U(𝑑 )𝑢 ∥2

2𝜎
𝐿𝑑 (8)

where Û(𝑑)𝑢 = DEC𝑑 (z𝑢 ) and the variance 𝜎 is fixed as a common

setting in our framework. Taking the logarithm of this formulation

would simplify the reconstruction part of Eq.(6) into a square loss

optimization. The details of the symbols are listed in table 1.

4.4 Federated Optimization
During training, we adopt stochastic optimization based on Eq.(6),

Eq.(7), and Eq.(5) that simultaneously updates all decoders, en-

coders, and the DUE until convergences. Since each user typically

trains on its own personal space, the derived losses are optimized

user-wise and the mini-batch size will always be one. Algorithm 1

elaborates the optimization steps using federated averaging for mit-

igation. The updates of line 19-21 are horizontal federation steps

across users within each domain, and line 16 correspond to the

vertical mitigation of DUE across domains on the personal space.

Figure 3 illustrates part of its mechanism in the view of a domain.

Empirically, compared to centralized training, horizontal federated

averaging across devices still provides convergence guarantee only

with slower convergence rate [39]. And it is trivial to prove that

calculating the average of z′𝑢 |𝑑 on the device (line 16 in algorithm

1) is identical to the update z′𝑢 ← z𝑢 − 𝛼 𝜕
𝜕z𝑢 Ltransfer

. In this pa-

per, we assume that every personal space has an equal chance of

sending updates to S𝑑 (one aggregation step per gradient step) and

always agree on the same learning rate, only that some devices

may sometimes drop-out during a training epoch (as simulated

by line 6). And here we remind the readers that there exist other

mitigation strategies that deal with more complicated scenarios



like heterogeneous objectives [38] and heterogeneous devices [22],

which could complement our work.

4.5 Inference from DUE
For any cold-start user of a target domain 𝑑𝑡 , we aim to do the

prediction based on the transferred user embedding from auxiliary

domains. Suppose that our training framework stabilizes, then the

user encoding z𝑢 |E𝑢 should contain information of the user across

all interacted domains, and the decoder DEC𝑑𝑡 is already well-

learned collaboratively by other users in𝑑𝑡 . Thus, we can extract the

domain-specific user information then pass it to the later prediction:

𝑟𝑢,𝑖,𝑑𝑡 = 𝑓𝑑𝑡 (DEC𝑑𝑡 (z𝑢 |E𝑢 ), 𝑖) (9)

where z𝑢 is given by the personal space E𝑢 rather than a calculated

encoding from auxiliary domains. This allows the target domain

to acquire necessary information without directly acquiring in-

formation from other domains even if they have gone offline or

have been blocked. Note that our framework only trains the DECs,

ENCs, and DUEs, and they are agnostic to the design of 𝑓 , so the

evaluation of 𝑓𝑑𝑡 is also domain-specific. For simplicity, we assume

all domains either simultaneously deploy rating prediction services

or simultaneously rank their items.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. Our main experiments uses the Amazon rating data [26]

which consists user-item-rating triplets for 29 different domains. To

observe the effect of number domains on the model performance,

we picked 4 of its most populated domain (Books, Electronics, Home,

and Clothing) and denote this subset as Amazon-4 and denote the

entire dataset as Amazon-Full. We filter the original data so that

each domain has at least 10-core. We also include an additional

MovieLens1M dataset [7] to observe how the amount of common

users affects our model. We use the movie genres as item domains

and preprocess the original data into 18 separate domain datasets.

In this data, one item may appear in multiple domains, and we

regard the same item ID that appeared in different domains as

different items since we assume U-NI scenario where items are

non-overlapping. We also picked 4 of its domains Comedy, Drama,

Action, and Thriller with the most number of common users and

denote this dataset as ML1M-4 while the original dataset with all

domains as ML1M-Full. And the statistical properties for these

datasets are summarized in table 2.

Environment. We use the biased matrix factorization model

[18] for 𝑓𝑑 of each domain. During pretraining of these environ-

ment models, we adopt BPR loss with 2 random negative samples

per record if it is the top-k recommendation task, and mean squared

error loss for the rating prediction task. In the environment of the

Amazon dataset, we set 𝐿𝑑 = 32 for all domains, batch size = 2048.

And for MovieLens dataset, we set 𝐿𝑑 = 8 and batch size = 128.

For both environments, we found the best learning rate around

0.001 and the L2 regularization coefficient around 0.001. The envi-

ronment models are initialized by the default setting of PyTorch

and optimized by Adam optimizer. We terminate the pretraining of

these environment models when their performance converge on

the validation set. During the training of transfer models, the only

Algorithm 1 Learning DUE with Mitigation Of Mapping (MOM)

1: procedure MOM

2: Input: Pretrained U(1) , . . . ,U(𝐷) from S1, . . . ,S𝐷
respectively

3: Initialize z𝑢 ∼ N(0, I) in each E𝑢 .
4: Initialize Θ𝑑 and Φ𝑑 on S𝑑 . ⊲ ∀𝑑 ∈ D
5: while Not Converge do
6: Sample a subset of userU

subset
⊆ U

7: for 𝑢 ∈ U
subset

do
8: Copy Θ𝑑 ,Φ𝑑 to apace E𝑑,𝑢 .
9: for 𝑑 ∈ D (𝑢) do ⊲ In space E𝑑,𝑢
10: Θ′

𝑑
|𝑢 ← Θ𝑑 − 𝛼 𝜕

𝜕Θ𝑑
L (𝑑)
dec

11: Φ′
𝑑
|𝑢 ← Φ𝑑 − 𝛼 𝜕

𝜕Φ𝑑
L (𝑑)
enc

12: Upload proposed Θ′
𝑑
|𝑢,Φ′

𝑑
|𝑢 to cloud space S𝑑

13: z′𝑢 |𝑑 ← z𝑢 − 𝛼 𝜕
𝜕z𝑢 L

(𝑑)
transfer

14: Send proposed z′𝑢 |𝑑 to user space E𝑢
15: end for
16: z𝑢 ← 1

|D (𝑢) |
∑
𝑑∈D (𝑢) z

′
𝑢 |𝑑 ⊲ In Space E𝑢

17: end for
18: Mitigation of mapping in each domain:

19: for 𝑑 ∈ D do ⊲ In each space S𝑑
20: Θ𝑑 ← 1

|U
subset

|
∑
𝑢∈U

subset

Θ′
𝑑
|𝑢

21: Φ𝑑 ← 1

|U
subset

|
∑
𝑢∈U

subset

Φ′
𝑑
|𝑢

22: end for
23: end while
24: end procedure

training data comes from the user representations X𝑢 . The evalua-

tion is conducted on a single-CPU machine in order to observe the

total running time during inference.

Model and Baselines. We use algorithm 1 as the training pro-

cedure, and we consider the original VAE model and a variation

that reduces to a simple auto-encoder (by ignoring all 𝜎, 𝜎𝑑 , and

𝜎𝑢 ). Denote the model as DUE_VAE and its auto-encoder version

as DUE_AE. Though there is no existing work that can provide

a valid solution in the Edge-CDR setting, we still include the EM-

CDR [24] framework to observe how effective our framework can

be compared to a centralized solution. EMCDR also separates the

domain-specific CF model from the transfer model learning phase

but it still involves the direct transfer between domains and has to

learn a mapping function for each pair of domains. We modify the

model by applying user embedding averaging when multiple do-

mains transfer their user embedding to the same target domain. We

include two variants of this model based on the design of the cross-

domain mapping function: EMCDR_Linear uses linear mapping

and EMCDR_MLP uses multi-layer perceptron (MLP).

Evaluation Protocol: For each evaluation, we pick one target

domain and hold out 10% of its users along with their records as the

cold-start test set, and for each domain, we hold out another 10%

of its user for validation. We consider the top-k recommendation

task as the main experiment so we choose metrics including F1@K
score and the Normalized Discounted Cumulative GainNDCG@K
[12] of the top-K ranked items with all items as candidates. For both



metrics, we regard it as a “hit” if the recommended item in the list

of size K appeared in the user history, and positive improvements

of their value mean better model performance. Additionally, we

also include rating prediction task and estimate how much each

model reduces the RMSE between the predicted and the ground

truth rating for cold-start users. Note that we are evaluating how

the transferred user embedding works for the given 𝑓𝑑 , instead of

directly evaluating the transfer model 𝑔. We train each transfer

model until its performance converges on the validation set and

evaluate the model on the test set. To achieve significant estimation

(with 𝑝 < 0.05), we repeat each experiment for five rounds with

different randomized splits of data and report the average results.

5.2 Recommendation for Cold-start Users
We provide the performance results of cold-start user recommen-

dation (ranking task) in table 3 and table 4. When training DUE

models, we set the user dropout rate as 30% for each epoch. For

DUE frameworks, each encoder and decoder is set to an MLP with

2 layers, each with size 512 and ReLU activation (no dropout and

normalization). As described in section 4.4, during training, we

assume that each personal device is capable of providing one ag-

gregation step in each training epoch, then the entire simulation

is approximately a stochastic gradient descent with a batch size

of one only with occasional user dropout. One approach this op-

timization on a GPU machine, but we observe similar speed to

CPU-based training. Note that EMCDR represents a centralized

model and it trains on the common users for each pair of domains,

so we tune the batch size to 512 and used GPU acceleration. For all

transfer models, we apply grid search and found the best learning

rate around 0.0003 and an L2 regularization coefficient of 0.001.

During inference, EMCDR models need to average the transferred

embeddings from each auxiliary domain like the mitigation step

of MOM (line 16 of algorithm 1). For each experiment, we include

the option No_Transfer which only uses the randomly initialized

embedding for the cold-start user as an additional baseline to show

the improvement induced by transfer learning.

In all experiments, transfer learning models (both DUE-based

models and EMCDR-based models) effectively improve F1 score

and NDCG of recommendation over the “No_Transfer” baseline.

Compared with EMCDR models, our proposed framework (both

DUE_AE and DUE_VAE) show superior performance. This improve-

ment of recommendation performance is consistent over different

list sizes as shown in table 3, and is also consistent over different

choices of target domains as shown in table 4. And in most cases,

we observe slightly better performance from DUE_VAE compared

to DUE_AE which ignores variation, but VAE-based DUE models

usually exhibit less stable behavior.

Note that EMCDR still requires a direct transfer between do-

mains, and we have found no existing solutions that accommodate

Edge-CDR setting as mentioned in section 2. In contrast, the DUE

framework can effectively solve the Edge-CDR problem without

violating the restrictions. Rather than directly probing other do-

mains, each domain only interact with the public personal space

E𝑢 which only maintains encoded information of the user, and

the only information it has to offer is its updates for this encoding

(line 13 of algorithm 1). As illustrated in figure 3, both the raw

user information U(𝑑)𝑢 and its auto-encoder 𝑔𝑑 are private to the

domain 𝑑 and cannot be accessed by outside services even if it is on

the personal device. In the most extreme cases where the gradient

of z𝑢 |𝑑 is exposed to privacy attacks and a highly risk-sensitive

domain service still wants to protect its user information, the do-

main can simply take away those sensitive features from U(𝑑)𝑢 to

avoid these attacks, otherwise, it has to apply privacy-preserving

techniques[35, 43].

5.3 Dealing with Heterogeneity
As explained in section 3.3, users may have different representation

format across domains, and may have different interaction domain

subset D (𝑢) . Though in the previous section we have shown re-

sults for independent domain-specific user embeddings, we would

like to observe how the transfer models behave differently when

the setting becomes more heterogeneous. Specifically, we follow

the same experimental procedure as in the previous section but

manually assign different domain embedding size 𝐿𝑑 for domains.

Details of the environment setting are provided in table 5 and the

corresponding results can be seen in table 5. For both Amazon-4(𝑑𝑡 :

Books) and Amazon-4(𝑑𝑡 :Electronics) data, with heterogeneous 𝐿𝑑 ,

all transfer models appear to be more effective compared to that

in table 3 and table4 where 𝐿𝑑 is the same across domains. This

indicates that the heterogeneous embedding sizes, if well-picked,

may naturally improve each domain’s 𝑓𝑑 and user representations

no matter the choice transfer model. However, EMCDR becomes

less stable and less effective on the Amazon-Full dataset when using

heterogeneous embedding sizes, as shown in table 5. In contrast,

DUE models continue to prove their effectiveness and achieve simi-

lar or better results than its counterpart in table 3. We argue that

the simplified view of each domain potentially reduces the chance

of overfitting, especially when the number of domains involved is

large. Each domain solely needs to deal with its auto-encoder and

needs no aggregation of transferred information from all domains.

5.4 Dataset Characteristics
In order to observe how dataset characteristics affect the models’

performances, we include the MovieLens dataset where domains

have much larger proportion of common users as illustrated in table

2. We also include an additional rating prediction task with RMSE

as evaluation metrics in order to observe the effect of different

data types. We summarize the results in Table 6. Except for a slight

improvement of RMSE in the ML1M-4 dataset, the overall recom-

mendation performances (F1 and NDCG) of the DUE framework

and EMCDR baselines are usually indistinguishable on ML1M-4

and ML1M-Full, unlike that in Amazon datasets. We argue that

this is related to the fact that pairwise transfer model like EMCDR

trains on the common user between domains. As shown in table

2, compared to Amazon datasets, the probabilities of sharing com-

mon users between a random pair of domains in both ML1M-4 and

ML1M-Full datasets are over 70% with respect to the total number

of user, which are much higher than that in Amazon dataset. This

indicates that the EMCDR can perform well when they can learn

from the majority of the users and they are expected to provide

better generalization performances than it is trained with a smaller

portion of users. However, in a realistic Edge-CDR setting, datasets



Dataset |U| |D| |I𝑑 | |Ω𝑑 | avg(sparsity) 𝑃 (shared user)
between 𝑑𝑖 ,𝑑 𝑗

𝑃 (unique
users
)

Amazon-4 276,120 4 24,343 - 31,453 - 33,610 1,520,760 - 1,573,695 - 3,428,087 0.0644% 22,72% 19.77%

Amazon-Full 366,710 29 321 - 12,137 - 33,610 7,057 - 490,070 - 3,428,087 0.1176% 6.23% 2.76%

ML1M-4 2,871 4 380 - 597 - 815 150,793 - 237,067 - 279,122 14.84% 88.50% 0.54%

ML1M-Full 3,082 18 40 - 177 - 815 6,166 - 58,588 - 279,122 14.54% 72.05% 0.15%

Table 2: Dataset Summary. (min-median-max) values are provided for |I𝑑 | and |Ω𝑑 |. Last two columns gives the average prob-
ability of shared user between a pair of domain and the average probability of a user is unique in a domain.

Models

Amazon-4(𝑑𝑡 :Books) Amazon-Full(𝑑𝑡 :Books)

F1 NDCG Inference

time(s)

F1 NDCG Inference

time(s)@1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

No_Transfer 0.0010 0.0041 0.0049 0.0048 0.0074 0.0085 — 0.0011 0.0040 0.0050 0.0079 0.0099 0.0101 —

EMCDR_Linear 0.0015 0.0057 0.0074 0.0099 0.0113 0.0126 4254 0.0010 0.0052 0.0069 0.0094 0.0120 0.0127 31814

EMCDR_MLP 0.0018 0.0057 0.0076 0.0099 0.0111 0.0123 4460 0.0011 0.0050 0.0071 0.0094 0.0117 0.0127 37233

DUE_AE 0.0025 0.0060 0.0082 0.0118 0.0123 0.0141 2122 0.0011 0.0064 0.0089 0.0092 0.0146 0.0155 2712

DUE_VAE 0.0024 0.0057 0.0078 0.0115 0.0117 0.0133 2230 0.0010 0.0067 0.0094 0.0094 0.0150 0.0160 3121

Table 3: Cold-start user recommendation performance on Amazon datasets.

Models

Amazon-4(𝑑𝑡 :Books) Amazon-4(𝑑𝑡 :Electronics) Amazon-4(𝑑𝑡 :Home) Amazon-4(𝑑𝑡 :Clothing)

F1 NDCG F1 NDCG F1 NDCG F1 NDCG

@1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10

No_Transfer 0.0010 0.0049 0.0048 0.0085 0.0015 0.0087 0.0145 0.0143 0.0006 0.0037 0.0040 0.0059 0.0006 0.0028 0.0029 0.0042

EMCDR_Linear 0.0015 0.0074 0.0099 0.0126 0.0024 0.0115 0.0223 0.0192 0.0015 0.0054 0.0093 0.0093 0.0006 0.0041 0.0035 0.0061

EMCDR_MLP 0.0018 0.0076 0.0099 0.0123 0.0024 0.0118 0.0227 0.0198 0.0016 0.0053 0.0094 0.0093 0.0006 0.0041 0.0035 0.0060

DUE_AE 0.0025 0.0082 0.0118 0.0141 0.0029 0.0131 0.0314 0.0223 0.0016 0.0056 0.0099 0.0100 0.0013 0.0050 0.0061 0.0075
DUE_VAE 0.0024 0.0078 0.0115 0.0133 0.0029 0.0138 0.0315 0.0233 0.0016 0.0056 0.0097 0.0102 0.0016 0.0045 0.0061 0.0074

Table 4: Cold-start user recommendation performance on different target domains.

Models

Amazon-4(𝑑𝑡 :Books) Amazon-4(𝑑𝑡 :Electronics) Amazon-Full(𝑑𝑡 :Book)

F1 NDCG F1 NDCG F1 NDCG

@1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10

No_Transfer 0.0007 0.0051 0.0038 0.0079 0.0009 0.0085 0.0077 0.0129 0.0010 0.0057 0.0077 0.0103

EMCDR_Linear 0.0016 0.0080 0.0087 0.0130 0.0026 0.0132 0.0247 0.0215 0.0011 0.0065 0.0077 0.0116

EMCDR_MLP 0.0016 0.0082 0.0086 0.0132 0.0025* 0.0130* 0.0237* 0.0214* 0.0010* 0.0066* 0.0077* 0.0118*

DUE_AE 0.0036* 0.0077* 0.0182* 0.0150* 0.0028* 0.0140* 0.0314* 0.0240* 0.0016* 0.0088* 0.0142* 0.0162*

DUE_VAE 0.0026 0.0080 0.0134 0.0147 0.0029 0.0138 0.0314 0.0233 0.0015* 0.0090* 0.0146* 0.0171*
Table 5: Recommendation performance with heterogeneous user embedding size. Entries with “*” indicates direct result of
one round instead of an averaged result.

have a similar taste to Amazon where the common user sharing

between a pair of domains is rather rare (23% in Amazon-4 and

6% in Amazon-Full). In such scenarios, common users with other

domains are less representative of the remaining majority of users.

And compared to the Amazon-4 dataset, we observe an even larger

performance gap from EMCDR to DUE on Amazon-Full, as the

latter has an even smaller sharing probability of user. Differently,

in the DUE framework, each domain-specific transfer model learns

its mapping models on the intermediate z𝑢 , which exists as long as

the user has interacted with at least one auxiliary domain. In other

words, the only users that are outside of the transfer learning are

those who interact with only a single domain. As shown in table 2,

the average probability of a user to be unique to a specific domain

is always below 20% in all datasets. This means that for all datasets,

each domain-specific transfer model in the DUE framework trains

with more than 80% of the domain’s users.

Besides, we observe that the number of domains used in the

training also affects the performance in multiple ways. Specifically,

compared to results on ML1M-4 and Amazon-4, using the full set

with all the domains consistently generate better NDCG values

but sometimes exhibit worse F1 score (as shown in table 3, table 5,

and table 6). This phenomenon is observed in both MovieLens data

(from ML1M-4 to ML1M-Full) and Amazon data (from Amazon-4 to

Amazon-Full). Thus, we provide a detailed view for different recom-

mendation list size in Table 3, where we find a different trend for

the top-1 recommendation: the first item usually performs worse

when models are trained on the full domain dataset instead of the

domain subset. This may due to the fact that, when more domains

are involved in the training, transfer models will mitigate more

transferred embeddings for each user, thus become averaged to-

wards a better cluster of ranked items and less likely to pin-point

the best item. In the case of rating prediction, the RMSE of all mod-

els (including the No_Transfer baseline) on the full set of domains

is usually worse than that on the subset (for both MovieLens and

Amazon data), possibly an indicator of a reduced regression accu-

racy for predicting user ratings because of the noise introduced by

extra auxiliary domains.



Models

ML1M-4(𝑑𝑡 :Action) ML1M-Full(𝑑𝑡 :Action) Amazon-4(𝑑𝑡 :Books) Amazon-Full(𝑑𝑡 :Books)

F1@5 NDCG@5 RMSE F1@5 NDCG@5 RMSE F1@5 NDCG@5 RMSE F1@5 NDCG@5 RMSE

No_Transfer 0.0932 0.6240 0.9619 0.0894 0.6560 1.0025 0.0041 0.0074 0.8543 0.0040 0.0099 0.8617

EMCDR_Linear 0.0951 0.6524 0.9493 0.0924 0.6710 0.9792 0.0057 0.0113 0.8430 0.0052 0.0120 0.8430

EMCDR_MLP 0.0975 0.6572 0.9458 0.0931 0.6759 0.9789 0.0057 0.0111 0.8413 0.0050 0.0117 0.8426

MoM_AE 0.0955 0.6497 0.9437 0.0935 0.6735 0.9796 0.0057 0.0123 0.8413 0.0064 0.0146 0.8420

MoM_VAE 0.0957 0.6521 0.9442 0.0941 0.6793 0.9791 0.0060 0.0132 0.8405 0.0067 0.0150 0.8419
Table 6: Performance on both Amazon and MovieLens data with both ranking and rating prediction tasks.

𝑑 |U𝑑 | |I𝑑 | |Ω𝑑 | 𝐿𝑑
Beauty 4,160 321 6,491 8

Magazine 4,336 346 7,261 8

Gift_Cards 7,001 337 10,176 8

Fashion 9,641 783 13,669 8

Appliances 22,947 1,612 31,672 8

Software 19,776 1,358 36,018 8

Luxury 28,073 2,561 64,697 8

Music 19,003 4,229 82,499 8

Prime_Pantry 17,379 3,647 102,773 16

Instruments 34,637 6,408 158,864 16

Industrial 93,537 7,709 187,970 16

Arts 53,485 8,475 226,155 16

Games 76,690 9,851 337,293 16

CDs 40,150 10,935 399,296 16

Toys 85,088 16,355 451,197 16

Automotive 129,625 12,137 473,938 32

Garden 146,962 16,615 516,752 32

Grocery 103,223 13,537 518,263 32

Phones 76,297 27,992 601,192 32

Office 173,377 16,509 615,947 32

Kindle 53,628 17,062 722,651 32

Tools 166,843 19,760 795,454 32

Pet 123,513 14,511 826,764 32

Sports 122,283 28,192 883,248 32

Movies 68,299 17,764 1,214,837 48

Home 169,704 31,257 1,387,462 48

Clothing 208,654 24,343 1,441,081 48

Electronics 92002 31,648 1,486,594 48

Books 71,104 33,610 3,332,789 48

Table 7: Embedding size setting for heterogeneous test.

5.5 Efficient Star-Shape Transfer
For models like EMCDR that learns a mapping for each pair of

domains, it will result in an undesirable quadratic 𝐷 (𝐷 − 1) cost
with respect to the number of domains. In contrast, our DUE frame-

work reduces the number of required mapping functions to 2𝐷 (𝐷

encoders and 𝐷 decoders) and forms a star-like transfer scheme as

shown in Figure 4. In terms of complexity, this means reduced stor-

age, reduced computation, and reduced communication overheads:

each domain only needs to maintain a mapping of size𝑂 (𝐿𝑑𝐿𝑐 ) (or
𝑂 (𝐿𝑑𝐻 +𝐻2 +𝐻𝐿𝑐 ) if using MLP where 𝐻 is the hidden layer size),

while domain-pairwise transfer model like EMCDR has to keep

mappings for each of the other domains inducing a cost in the order

of𝑂 (𝐿2
𝑑
𝐷) (or𝑂 (𝐿𝑑𝐻𝐷+𝐻2𝐷) if MLP). Though 𝐿𝑐 is usually larger

than 𝐿𝑑 , we typically set it to be much smaller than 𝐿𝑑𝐷 which

means that the cost of the DUE-based model is much smaller than

a) b)

Figure 4: Transfer schema of 6 domains. a) domain-pairwise
transfer; b) Using DUE as intermediate representation

that of a domain-pairwise transfer model. We list the inference time

of the transfer models in table 3, and the corresponding DUE size

𝐿𝑐 = 64 and domain-specific embedding size 𝐿𝑑 = 32. Compared to

the domain pairwise model EMCDR whose running time depends

on the number of domains involved, the inference time of the DUE

model is almost the same level no matter the size of D. In the case

of mobile phones, users typically interact with lots of services (e.g.

10 mobile apps every day, 30 every month
1
) and the number of

domains is even larger considering the potential sub-domains in

each service. One would observe an even larger efficiency boost

of DUE in such cases. Note that each domain has to communicate

the transfer model 𝑔𝑑 in addition to its prediction model, but it is a

necessary cost for transfer learning and the cost is much smaller

than domain-pairwise models as previously discussed.

6 CONCLUSION AND DISCUSSION
In this paper, we present the Edge-CDR as a federated collaborative

learning task, which restricts the direct transfer of user embeddings

and assumes heterogeneous user representations across domains.

By maintaining a decentralized user embedding on each user per-

sonal space and optimize them with a federated VAE, the proposed

solution can effectively solve cross-domain rating prediction and

recommendation for cold-start users, and it is more effective and ef-

ficient than domain-pairwise transfer models when users typically

interact with a large number of domains. A major point for future

work is to figure out the standard representation format of DUE

since it requires agreement from all domains and users. And the

problemmay become evenmore challenging when user content and

environmental context information are encoded on the personal

space, or when heterogeneous objectives (e.g. between rating and

ranking) and heterogeneous devices are taken into consideration.

1
http://files.appannie.com.s3.amazonaws.com/reports/1705_Report_Consumer_App_

Usage_EN.pdf
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