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ABSTRACT
Matrix factorization on user-item rating matrices has achieved
significant success in collaborative filtering based recommen-
dation tasks. However, it also encounters the problems of
data sparsity and scalability when applied in real-world rec-
ommender systems. In this paper, we present the Localized
Matrix Factorization (LMF) framework, which attempts to
meet the challenges of sparsity and scalability by factorizing
Block Diagonal Form (BDF) matrices. In the LMF frame-
work, a large sparse matrix is first transformed into Recur-
sive Bordered Block Diagonal Form (RBBDF), which is an
intuitionally interpretable structure for user-item rating ma-
trices. Smaller and denser submatrices are then extracted
from this RBBDF matrix to construct a BDF matrix for
more effective collaborative prediction. We show formally
that the LMF framework is suitable for matrix factorization
and that any decomposable matrix factorization algorithm
can be integrated into this framework. It has the potential
to improve prediction accuracy by factorizing smaller and
denser submatrices independently, which is also suitable for
parallelization and contributes to system scalability at the
same time. Experimental results based on a number of real-
world public-access benchmarks show the effectiveness and
efficiency of the proposed LMF framework.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Filtering; H.3.5 [Online Information Services]: Web-
based services; G.1.6 [Mathematics of Computing]: Op-
timization

Keywords
Matrix Factorization; Collaborative Filtering; Block Diago-
nal Form; Graph Partitioning

1. INTRODUCTION
Latent factor model has been one of the most powerful

approaches for collaborative filtering. Some of the most suc-
cessful realizations of latent factor models are based on Ma-
trix Factorization (MF) techniques [17]. The fundamental
idea of these approaches is that user preferences can be de-
termined by a relatively small number of latent factors. A
variety of matrix factorization methods have been proposed
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and applied to various collaborative filtering tasks success-
fully, such as Singular Value Decomposition (SVD) [17, 33],
Non-negative Matrix Factorization (NMF) [18, 19], Max-
Margin Matrix Factorization (MMMF) [34, 23] and Proba-
bilistic Matrix Factorization (PMF) [26, 25].

However, MF approaches have also encountered a num-
ber of problems in real-world recommender systems, such
as data sparsity, frequent model retraining and system scal-
ability. As the number of ratings given by most users is
relatively small compared with the total number of items in
a typical system, data sparsity usually decreases prediction
accuracy and may even lead to over-fitting problems. In ad-
dition, new ratings are usually made by users continuously
in real-world recommender systems, leading to the need for
refactoring rating matrices periodically, which is time con-
suming for systems with millions or even billions of ratings,
and further restricts the scalability of MF approaches.

In this study, we propose a novel MF framework named
Localized Matrix Factorization (LMF), which is general and
intrinsically compatible with many widely-adopted MF algo-
rithms. Before problem formalization, we would like to use
an intuitional example to briefly introduce the matrix struc-
tures used in LMF. Figure 1(a) is a sparse matrix where
each row/column/cross represents a user/item/rating. By
permuting Row4, Row9 and Column7 to ‘borders’, the re-
maining part is partitioned into two ‘diagonal blocks’, which
results in a Bordered Block Diagonal Form (BBDF) [4] ma-
trix in Figure 1(b). By ‘recursively’ permuting the first di-
agonal block, we obtain a Recursive Bordered Block Diag-
onal Form (RBBDF) matrix in Figure 1(c). BBDF and
RBBDF structures are generalizations of Block Diagonal
Form (BDF) structure which has no ‘border’.

RBBDF structure is intuitionally interpretable in collabo-
rative filtering tasks. Consider movie recommendation as an
example. Different users may have different preferences on
movie genres, which form different communities, correspond-
ing to the diagonal blocks in the BBDF structure. However,
there does exist ‘super users’ whose interests are relatively
broad and thus fall into different communities. This type of
user is represented by row borders in the BBDF structure.
There are also some classical or hot movies widely known
and enjoyed by users from different communities, which are
‘super items’ making up column borders. The structure may
recurse at multiple finer-grained levels in a community, re-
sulting in the generation of RBBDF structures. As different
communities may have different rating patterns, it would be
better to factorize them independently.

The LMF framework transforms a sparse matrix into RBBDF
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structure and further extracts denser submatrices to con-
struct a BDF matrix. Factorization of the BDF matrix is
used to approximate the original sparse matrix. The frame-
work brings several attractive benefits to recommender sys-
tems: 1) Factorizing extracted dense submatrices instead of
the whole sparse matrix improves the prediction accuracy
of matrix factorization algorithms. 2) The locality property
of LMF makes it possible to refactorize only the recently-
updated submatrices rather than the whole matrix. 3) The
framework is suitable for parallelization, which further con-
tributes to the scalability of recommender systems.

In summary, the main contributions of this work are:

• The RBBDF structure of rating matrices is investi-
gated, which is intuitionally interpretable in CF tasks.

• A density-based algorithm is designed to transform a
sparse matrix into RBBDF structure.

• The LMF framework is proposed and its rationality is
shown through theoretical analyses.

• Through a comprehensive experimental study on four
benchmark datasets, both the efficiency and effective-
ness of the LMF framework is verified.

The remainder of this paper will be organized as follows:
Section 2 reviews some related work, and Section 3 presents
some preliminaries. In Section 4, the LMF framework is in-
troduced and investigated. Experimental results are shown
in Section 5. Some discussions will be made in Section 6,
and the work is concluded in Section 7.

2. RELATED WORK
Collaborative Filtering (CF) [35] techniques have been

known to have several attractive advantages over other rec-
ommendation strategies, such as Content-based Filtering
[22] in Personalized Recommender Systems [21]. Early CF
algorithms mainly focus on memory-based approaches such
as User-based [24] and Item-based [29] methods, which cal-
culate the similarities of users or items to make rating predic-
tions [21]. To gain better prediction accuracies and to over-
come the shortcomings of memory-based algorithms, model-
based approaches have been investigated extensively, which
estimate or learn a model on user-item rating matrices to
make rating predictions [35, 21].

Latent Factor Models (LFM) based on Matrix Factor-
ization (MF) [36] techniques have been an important re-
search direction in model-based CF methods. Recently, MF
approaches have gained great popularity as they usually
outperform traditional methods [35, 12] and have achieved
state-of-the-art performance, especially on large-scale rec-
ommendation tasks [17]. A variety of MF algorithms have
been proposed and investigated in different CF settings, such
as Principle Component Analysis (PCA) [1], Singular Value
Decomposition (SVD) [16, 17, 33], Non-negative Matrix Fac-
torization (NMF) [18, 19], Max-Margin Matrix Factorization
(MMMF) [34, 23], and Probabilistic Matrix Factorization
(PMF) [26, 25]. They aim at learning latent factors from a
matrix, with which to make rating predictions.

According to the unified view of MF in [32], MF algo-
rithms are optimization problems over given loss functions
and regularization terms. Different choices of loss functions
and regularization terms lead to different MF methods.

However, MF approaches also suffer from a number of
problems in real-world recommender systems, such as data
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Figure 1: An example of (R)BBDF structure

sparsity, frequent model retraining and system scalability.
To overcome the problem of data sparsity, earlier systems
rely on imputation to fill in missing ratings and to make the
rating matrix dense [28]. However, imputation can be very
expensive as it significantly increases the amount of ratings,
and inaccurate imputation may distort the data consider-
ably [17]. The problem of frequent model retraining and
scalability results from the fact that the total number of
users and items is usually very large in practical systems,
and new ratings are usually made by users continuously.

Most efforts to improve system scalability focus on matrix
clustering techniques [38, 31, 10, 9, 37] or designing incre-
mental and distributed versions of existing MF algorithms
[30, 20, 11]. Usually, they can achieve only approximated
results compared with factorizing the whole matrix directly,
and many of them restrict themselves to one specific MF al-
gorithm. In contrast with these approaches, we demonstrate
that the LMF framework on a BDF matrix is theoretically
equal to factorizing the whole matrix directly, and that it is
compatible with any existing decomposable MF algorithm.

Another related research field is graph partitioning, as
permuting a sparse matrix into BBDF structure is equiva-
lent to conducting Graph Partitioning by Vertex Separator
(GPVS) on its corresponding bipartite graph [4]. Graph par-
titioning is known to be NP-hard [7], but this problem has
been investigated extensively, and many efficient and high-
quality heuristic-based methods have been proposed [15],
such as multilevel methods [14, 6], spectral partitioning [3]
and kernel-based methods [2]. It is verified both theoreti-
cally and experimentally that multilevel approaches can give
both fast execution time and very high quality partitions
[27, 4, 14, 6, 15], which guides us to choosing the multilevel
graph partitioning approach in this work.

3. PRELIMINARIES

3.1 Matrix Factorization
We take the unified view of MF proposed in [32], which is

sufficient to include most of the existing MF algorithms. Let
X ∈ Rm×n be a sparse matrix, and let U ∈ Rm×r, V ∈ Rn×r

be its factorization. An MF algorithm P = (f,DW , C,R)
can be defined by the following choices:

1. Prediction link f : Rm×n → Rm×n.

2. Optional data weights W ∈ Rm×n
+ , which if used must

be an argument of the loss function.

3. Loss function DW (X, f(UV T )) ≥ 0, which is a mea-
sure of the error when approximating X with f(UV T ).

4. Hard constraints on factors: (U, V ) ∈ C.
5. Regularization penalty: R(U, V ) ≥ 0.

For an MF model X ≈ f(UV T ) , X∗, we solve:

argmin
(U,V )∈C

[
DW (X, f(UV T )) +R(U, V )

]
. (1)
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The loss D(·, ·) is typically convex in its second argument,
and often decomposes into a (weighted) sum over elements
of X [32]. For example, the loss function of WSVD [33] is:

DW (X, f(UV T )) = ‖W � (X − UV T )‖2Fro (2)

where � denotes the element-wise product of matrices.
In this paper, we refer to X = UV T as an Accurate Matrix

Factorization of X, and refer to X ≈ f(UV T ) , X∗ as an
Approximate Matrix Factorization of X.

3.2 BDF, BBDF and RBBDF
We consider permuting the rows and/or columns of a

sparse matrix to reform its structure. X is a Block Diagonal
Form (BDF) matrix if:

X =


D1

D2

. . .

Dk

 , diag(Di) (3)

It is not always the case that a sparse matrix can be per-
muted into BDF, but usually it can be permuted into Bor-
dered Block Diagonal Form (BBDF) [4] shown in (4). Each

Di(1 ≤ i ≤ k) is a ‘diagonal block’. Rb , [R1 · · ·RkB] and

Cb , [CT
1 · · ·CT

k B
T ]T are row and column ‘borders’:

X =

[
D C

R B

]
=


D1 C1

. . .
...

Dk Ck

R1 · · · Rk B

 (4)

Any of the k diagonal blocks Di in (4) may be permuted
into BBDF structure recursively, resulting in Recursive Bor-
dered Block Diagonal Form (RBBDF). To avoid notational
clutter, we present the following example, where I∗ and J∗
denote the row and column index sets:

X =

J1 J2 JBD1 C1

D2 C2

R1 R2 B

 I1I2
IB

=

J11 J12 JB1
J2 JB

D11 C11

D12 C12

R11 R12 B1

C1
1

C2
1

C3
1

D2 C2

R1
1 R2

1 R3
1 R2 B


I11

I12

IB1

I2
IB

(5)

In (5), D1 is permuted into BBDF recursively. Note that
permuting rows and columns related to D1 affects R1 and
C1, but it only changes the order of the non-zeros therein.
Diagonal blocks D11, D12 and D2 may be further permuted
depending on certain stopping rules. This will be introduced
in our algorithm for constructing RBBDF structures.

3.3 Graph Partitioning by Vertex Separator
A sparse rating matrix can be equally represented by a

bipartite graph. Consider Figure 1(a) and Figure 2(a) as
examples. Each row or column of the matrix corresponds to
an R-node or a C-node in the bipartite graph.

GPVS partitions a graph into disconnected components
by removing a set of vertices (vertex separator) and their
incident edges. As demonstrated by [4], permuting a sparse
matrix into BBDF structure is equivalent to conducting GPVS
on its bipartite graph. For example, removing nodes R4, R9

and C7 in Figure 2(b) corresponds to permuting Row4, Row9
and Column7 to borders in Figure 1(b), and the two re-
sulting disconnected components correspond to two diagonal
blocks. GPVS is conducted recursively on the left compo-
nent, and the RBBDF matrix in Figure 1(c) is constructed.
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(b) GPVS on the bipartite graph

Figure 2: The bipartite graph for a sparse matrix
and graph partitioning by vertex separator on it.

4. LMF

4.1 Definitions and Theorems
We present some definitions, propositions and theorems in

this section, which will be the basis of the LMF framework.

4.1.1 Accurate Matrix Factorization
A matrix in BDF or (R)BBDF structure has some impor-

tant properties in terms of accurate matrix factorization.

Proposition 1. For a BDF matrix X = diag(Di) in (3),
if we have Di = UiV

T
i for each diagonal block Di; we then

have X = diag(Ui) · diag(V T
i ) as a factorization for X. �

This proposition shows the independence of diagonal blocks
from each other in a BDF matrix in terms of accurate ma-
trix factorization. As stated above, it is not guaranteed that
a sparse matrix can be permuted into BDF structure. How-
ever, we have the following proposition for a BBDF matrix.

Proposition 2. For a BBDF matrix X in (4), let:

X̃i ,

[
Di Ci

Ri B

]
= UiV

T
i =

[
Ui1

Ui2

] [
V T
i1 V T

i2

]
(7)

be a factorization of X̃i; thus, we have:

Di = Ui1V
T
i1 Ri = Ui2V

T
i1 Ci = Ui1V

T
i2 B = Ui2V

T
i2

and let:

U =


U11

U21

. . .
Uk1

U12 U22 · · · Uk2

 V =


V11

V21

. . .
Vk1

V12 V22 · · · Vk2


We then have:

UV T =


U11V

T
11 U11V

T
12

U21V
T
21 U21V

T
22

. . .
.
.
.

Uk1V
T
k1 Uk1V

T
k2

U12V
T
11U22V

T
21 · · · Uk2V

T
k1

k∑
i=1

Ui2V
T
i2

 =

D1 C1

. . .
.
.
.

Dk Ck
R1 · · · Rk kB



The only difference between UV T and X in (4) is that the
border cross B in matrix X is multiplied by the number of
diagonal blocks k. �

Proposition 2 is in fact factorizing a block diagonal form

matrix X̃ = diag(X̃i) = diag
([

Di Ci
Ri B

])
(1 ≤ i ≤ k), as

denoted in (7). According to Proposition 1, if X̃i = UiV
T
i ,

then we have X̃ = diag(Ui) · diag(V T
i ). By averaging the
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X =


X1

X2

. . .

Xk

 ≈ f
(
UV T

)
= f



U1

U2

...
Uk

 [ V T
1 V T

2 · · · V T
k

]
 = f



U1V T

1 U1V T
2 · · · U1V T

k
U2V T

1 U2V T
2 · · · U2V T

k
.
..

.

..
. . .

.

..
UkV

T
1 UkV

T
2 · · · UkV

T
k


 (6)

duplicated submatrices, for example, submatrix B in (4), the
original matrix X is reconstructed with the factorizations of
X̃i = UiV

T
i , where 1 ≤ i ≤ k.

This property can be generalized to an RBBDF matrix.
To avoid notational clutter, the example in (5) is again used
here. To transform X into BDF, diagonal block D1 is trans-
formed into BDF first, resulting in an intermediate matrix:

X̃int. =

J11 JB1
J12 JB1

J2 JB

D11 C11

R11 B1

C1
1

C3
1

D12 C12

R12 B1

C2
1

C3
1

D2 C2

R1
1 R3

1 R2
1 R3

1 R2 B



I11

IB1

I12

IB1

I2
IB

(8)

This is a BBDF matrix with 3 diagonal blocks. By con-
ducting the same procedure on X̃int., it is transformed into
a BDF matrix (X̃ij = 0 for i 6= j):

X̃ =

J11 JB1 JB J12 JB1 JB J2 JB

D11 C11 C1
1

R11 B1 C3
1

R1
1 R3

1 B
X̃12 X̃13

X̃21

D12 C12 C2
1

R12 B1 C3
1

R2
1 R3

1 B
X̃23

X̃31 X̃32
D2 C2

R2 B



I11

IB1

IB
I12

IB1

IB
I2
IB

(9)

, diag(X̃1, X̃2, X̃3)

Similarly, X̃1, X̃2 and X̃3 can be factorized independently,
and duplicated submatrices are averaged to reconstruct the
original matrix X in (5).

In fact, (9) can be derived from (5) directly without con-

structing intermediate matrices. Each diagonal block X̃i in
X̃ corresponds to a diagonal block Di in X. By piecing to-
gether Di with the parts of borders on the right side, down
side and right bottom side, X̃i can be constructed directly.
Additionally, permuting any Di into BBDF structure recur-
sively in (5) would not affect other block diagonals in X̃.

4.1.2 Approximate Matrix Factorization
In practical applications, approximate matrix factoriza-

tion algorithms formalized by (1) are used. Consider the
BDF matrix X = diag(Xi)(1 ≤ i ≤ k) in terms of the
approximate matrix factorization denoted by (6). For no-

tational clarity, the superscript ‘tilde’ of X̃ is removed in
this section. Decomposable properties will be investigated
in different aspects in detail in this section, as they are of
core importance with respect to what types of matrix fac-
torization algorithms the framework can handle.

In the following definitions and theorems, Xij =
{

Xi (i=j)
0 (i6=j)

is used to denote submatrices of X in (6), and Wij de-
notes the weight matrix of Xij . f(UV T )ij denotes the sub-
matrix in f(UV T ) that approximates Xij , namely, Xij ≈
f(UV T )ij . Specifically, f(UV T )i is used for f(UV T )ii, and
Wi is used for Wii when i = j.

Definition 1. Decomposable prediction link. A pre-
diction link f : Rm×n → Rm×n is decomposable if:

f(UV T )ij = f(UiV
T
j ) (1 ≤ i, j ≤ k) (10)

A large class of MF algorithms use element-wise prediction
links for each pair of element in Y = f(X), namely, yij =
f(xij). For example, the prediction link is f(x) = x in SVD,
and in NMF, f(x) = log(x). Element-wise link functions
lead to the decomposable property above naturally.

Definition 2. Decomposable loss function. A loss
function DW (X, f(UV T )) is decomposable if:

DW (X, f(UV T )) =

k∑
i=1

DWi(Xi, f(UV T )i) (11)

This property can be viewed in two aspects here.
First, a substantial number of MF algorithms restrict D

to be expressed as the sum of losses over elements, e.g.,
SVD[17, 33], NMF[19], MMMF[34] and PMF[26]. Vari-
ous decomposable regular Bregman divergences are the most
commonly used loss functions that satisfy this property [5].
The per-element effect gives the following property:

DW (X, f(UV T )) =
∑
i,j

DWij (Xij , f(UV T )ij) (11.1)

Second, rating matrices in CF tasks are usually incom-
plete and very sparse in practical recommender systems. A
‘zero’ means only that the user did not make a rating on the
corresponding item, rather than rating it zero. As a result,
many MF algorithms optimize loss functions on observed
ratings. Specifically, Wij = 0 (i 6= j) in a BDF matrix, and:

DWij (Xij , f(UV T )ij) = 0 (i 6= j) (11.2)

(11.1) and (11.2) gives the decomposable property of loss
functions in Definition 2.

Definition 3. Decomposable hard constraint. A hard
constraint C is decomposable if:

(U, V ) ∈ C iff. (Ui, Vi) ∈ C (1 ≤ i ≤ k) (12)

Many MF algorithms do not apply hard constraints to
target factorizations, but there are MF methods that require
(U, V ) to meet some special requirements.

Some commonly used hard constraints are non-negativity
(the elements of U ,V are non-negative), orthogonality (the
columns of U ,V are orthogonal), stochasticity (each row of
U ,V sums to one), sparsity (the row vectors of U ,V meet a
desired sparseness constraint) and cardinality (the number
of non-zeros in each row of U ,V satisfies a given constraint).

In this sense, non-negativity, stochasticity, sparsity and
cardinality constraints are decomposable hard constraints.
For example, each row of (U, V ) sums to one if and only if
the same property holds for any (Ui, Vi) (1 ≤ i ≤ k). How-
ever, orthogonality is not decomposable: the orthogonality
in (U, V ) does not ensure the orthogonality in each (Ui, Vi).
Our primary focus is on decomposable hard constraints.
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Definition 4. Decomposable regularization penalty.
A regularization penalty R(U, V ) is decomposable if:

R(U, V ) =

k∑
i=1

R(Ui, Vi) (13)

The most commonly used regularization penalty is the
`p-norm regularizer, which is decomposable:

R(U, V ) = λU‖U‖pp + λV ‖V ‖pp

=

k∑
i=1

(
λU‖Ui‖pp + λV ‖Vi‖pp

)
=

k∑
i=1

R(Ui, Vi)

The Frobenius norm is `p-norm where p = 2. The basic
MMMF algorithm takes the trace-norm ‖X‖Σ (the sum of
singular values of X) [34], which is unfortunately not a de-
composable regularizer. However, a fast MMMF algorithm
based on the equivalence ‖X‖Σ = min

X=UV T

1
2
(‖U‖2F + ‖V ‖2F )

is proposed in [23], which also takes `p-norm regularizers.

Definition 5. Decomposable matrix factorization. A
matrix factoirzation algorithm P = (f,DW , C,R) is decom-
posable if f,DW , C,R are decomposable. Namely, properties
(10)∼(13) hold. (U, V ) = P(X, r) denotes the factorization
of X by P using r factors.

It is necessary to point out that many commonly used MF
algorithms are decomposable, including some of the state-
of-the-art techniques, although they are required to satisfy
all these four decomposable properties, which seems to be
somewhat too strict. Some typical examples are SVD, NMF,
PMF, MMMF and their variations, which will be primarily
considered and investigated in this work.

Theorem 1. Suppose X is a BDF matrix in (6), and
P = (f,DW , C,R) is decomposable. Let (U, V ) = P(X, r)
and (Ui, Vi) = P(Xi, r)(1 ≤ i ≤ k). We have:

i. U = [UT
1 U

T
2 · · ·UT

k ]T , V = [V T
1 V

T
2 · · ·V T

k ]T

ii. Xij ≈ f(UiV
T
j ) (1 ≤ i, j ≤ k)

Proof. i. Consider the optimization problem defined in
(1) with decomposable properties of prediction link f , loss
function DW , hard constraint C, and regularizer R; we have:

(U, V ) = P(X, r)

= argmin
(U,V )∈C

[
DW (X, f(UV T )) +R(U, V )

]

= argmin
(U,V )∈C

k∑
i=1

[
DWi

(Xi, f(UV
T )i) +R(Ui, Vi)

]

= argmin
(U,V )∈C

k∑
i=1

[
DWi

(Xi, f(UiV
T
i )) +R(Ui, Vi)

]

=
k∧

i=1

{
argmin

(Ui,Vi)∈C

[
DWi

(Xi, f(UiV
T
i )) +R(Ui, Vi)

]}

=
k∧

i=1

{
P(Xi, r)

}
=

k∧
i=1

{
(Ui, Vi)

}
thus, U = [UT

1 U
T
2 · · ·UT

k ]T and V = [V T
1 V

T
2 · · ·V T

k ]T .
ii. This can be derived directly from the decomposable

property of prediction link f in (10):

Xij ≈ f(UV T )ij = f(UiV
T
j )

and it holds for any 1 ≤ i, j ≤ k, including zero submatri-
ces where i 6= j.

According to Theorem 1, each diagonal block can be fac-
torized independently, and the results can be used directly
to approximate not only the non-zero diagonal blocks but
also the zero off-diagonal blocks.

4.2 LMF for Collaborative Prediction
Consider predicting the missing values of an incomplete

sparse rating matrix through the LMF framework. A sparse
rating matrix is permuted into an RBBDF matrix (5) first
and further transformed into a BDF matrix (9). LMF is
then performed on the resulting BDF matrix to make rating
predictions for the original matrix.

Suppose an RBBDF matrix X is transformed into a BDF
matrix X̃ = diag(X̃i)(1 ≤ i ≤ k). XI∗∼J∗ and X̃I∗∼J∗ are

used to denote the submatrices in X and X̃ correspondingly.
For example, R12 = XIB1

∼J12 in (5), and it is duplicated

twice by X̃IB1
∼J12 in (9). The LMF framework approxi-

mates the original matrix X through the approximations of
X̃ with three steps:

i. For a decomposable matrix factorization algorithm P =
(f,DW , C,R), obtain the factorization (Ui, Vi) = P(X̃i, r)

of each diagonal block X̃i. Then:

X̃i ≈ f(UiV
T
i ) , X̃∗i , X̃

∗
ii (14)

where X̃∗i denotes the approximation of X̃i.

ii. Predict zero blocks X̃ij(i 6= j) in X̃ using factorizations

of X̃i and X̃j :

X̃ij ≈ f(UiV
T
j ) , X̃∗ij (15)

Now X̃∗ ,
{
X̃∗ij |1 ≤ i, j ≤ k

}
approximates X̃.

iii. Average duplicated submatrices in X̃∗ to approximate
the corresponding submatrix in X.

Suppose that XI∗∼J∗ is duplicated k times in X̃, and
the tth duplication is in block X̃itjt , whose approxima-

tion is X̃
∗(itjt)
I∗∼J∗

. Then the approximation of XI∗∼J∗ is:

X∗I∗∼J∗ =
1

k

k∑
t=1

X̃
∗(itjt)
I∗∼J∗

(16)

To make it easier to understand, take R12 = XIB1
∼J12 in

(5) as an example. XIB1
∼J12 is duplicated twice in (9): one

in X̃12 and the other in X̃22. As a result:

X∗IB1
∼J12

=
1

2
(X̃
∗(12)
IB1
∼J12

+ X̃
∗(22)
IB1
∼J12

)

Approximation X∗I∗∼J∗ is constructed for each submatrix
XI∗∼J∗ in X. By piecing them together, approximation
X∗ = {X∗I∗∼J∗} is finally achieved for X.

4.3 Algorithm for RBBDF Permutation
As shown in Section 3.3, permuting a matrix into (R)BBDF

structure is equivalent to performing GPVS (recursively) on
its bipartite graph. In this work, both the performance and
efficiency of graph partitioning algorithms are concerned, as
the datasets to experiment on are huge1. As a result, mul-
tilevel graph partitioning approach is chosen. Perhaps the

1One of the four datasets used is Yahoo! Music from KD-
DCUP 2011, containing approximately 1m users and 0.6m
items, which is the largest in present-day datasets.
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most widely known and used package for graph partitioning
is Metis [13] by Karypis, which is based on multilevel ap-
proach. The core routine for GPVS in Metis is Node-based
Bisection, which partitions a graph into two disconnected
components by a vertex separator.

A density-based algorithm to permute sparse matrices into
RBBDF structure is designed, as dense submatrices or sub-
graphs are usually interpreted as communities, which is widely
used in community detection and graph clustering problems

[8]. The density of a matrix X is defined as ρ(X) = n(X)
s(X)

,

where n(X) is the number of non-zeros in X, and s(X) is the
area of X. The average density of k matrices X1X2 · · ·Xk is

defined as ρ̄(X1X2 · · ·Xk) =
∑k

i=1 n(Xi)∑k
i=1 s(Xi)

. Note that the den-

sity of a matrix is equal to the density of its corresponding
bipartite graph [8].

For an RBBDF matrixX with k diagonal blocksD1D2 · · ·Dk

(e.g., the matrix in (5) has 3 diagonal blocks: D11D12 and
D2, and the original rating matrix is viewed as a single di-
agonal block), X̃ = diag(X̃1X̃2 · · · X̃k) is used to denote its
corresponding BDF matrix (e.g., the matrix in (9)). Algo-
rithm 1 shows the procedure, followed by more detailed ex-
planations and analyses. RBBDF(X, ρ̂, 1) is called to start
the procedure.

Algorithm 1 RBBDF(X, ρ̂, k)

Require:
User-item rating matrix: X
Average density requirement: ρ̂
Current number of diagonal blocks in X: k

Ensure:
Matrix X be permuted into RBBDF structure
BDF matrix X̃ which is constructed from X

1: ρ← ρ̄(X̃1X̃2 · · · X̃k)
2: if ρ ≥ ρ̂ then
3: return X̃ � Density requirement has been reached
4: else
5: [Ds1Ds2 · · ·Dsk ] ← Sort

(
[D1D2 · · ·Dk]

)
� Sort diag-

onal blocks by size in decreasing order
6: for i← 1 to k do
7: [D1

siD
2
si ] ← MetisNodeBisection(Dsi) � Partition

Dsi into 2 diagonals using core routine of Metis

8: if ρ̄(X̃s1 · · · X̃si−1X̃
1
siX̃

2
siX̃si+1 · · · X̃sk ) > ρ then

9: X ′ ← Permute Dsi into [D1
siD

2
si ] in X

10: RBBDF(X ′, ρ̂, k + 1) � Recurse
11: break � No need to check the next diagonal
12: end if
13: end for
14: return X̃ � No diagonal improves average density
15: end if

Algorithm 1 requires a ‘density requirement’ ρ̂ as input,
which is the expected average density of submatrices X̃1 · · · X̃k

in the final BDF matrix X̃. In each recursion, the algorithm
checks each diagonal block Di of X in decreasing order of
matrix areas. If the average density of extracted submatri-
ces can be improved by partitioning a diagonal block, then
the algorithm takes the partitioning and recurses, until ρ̂
is reached or none of the diagonal blocks can improve the
average density any more.

Note that, to gain a high efficiency, a fundamental heuris-
tic is used in this algorithm, which is the area of diagonal
blocks, and we explain its rationality here.

D
i

D
i

D
2

i

1

(a) X̃i for Di

!"# $!"%

D
i

D
i

!&'

1 2

(b) X̃1
i and X̃2

i for D1
i and D2

i

Figure 3: Partition a diagonal block, rearrange its
corresponding borders, and extract new submatri-
ces. The shaded areas represent non-zero blocks.

Figure 3(a) shows a diagonal block Di along with its cor-
responding borders. Note that this figure is, in fact, the
submatrix X̃i in X̃ corresponding to Di. Two new subma-
trices X̃1

i and X̃2
i are constructed when Di is partitioned

into D1
i and D2

i , which are boxed by dotted lines in Figure
3(b). One can see that the area boxed by solid lines in Fig-

ure 3(b) constitutes the original submatrix X̃i. As a result,

transforming X̃i to X̃1
i and X̃2

i is essentially removing the
two zero blocks and replacing them with some duplicated
non-zero blocks.

Let s =
∑k

t=1 s(X̃t) and n =
∑k

t=1 n(X̃t); let ∆s1 be
the total area of removed zero blocks, ∆s2 be the total area
of duplicated non-zero blocks, and ∆n be the number of
nonzeros in ∆s2. The increment of average density after
partitioning Di is:

∆ρ = ρ′ − ρ =
n+ ∆n

s−∆s1 + ∆s2
− n

s
=
s∆n+ n∆s

s(s−∆s)
(17)

where ρ and ρ′ are the average densities of diagonal blocks
in X̃ before and after partitioning Di, and ∆s , ∆s1−∆s2.

Because s−∆s > 0, we have the following:

∆ρ > 0↔ s∆n+ n∆s = s∆n+ n(∆s1 −∆s2) > 0 (18)

If ∆s > 0, then (18) holds naturally. Otherwise, the fol-
lowing is required:

n

s
<

∆n

∆s2 −∆s1
(19)

Although not guaranteed, (19) can usually be satisfied as
the following property usually holds:

n

s
<

∆n

∆s2
<

∆n

∆s2 −∆s1
(20)

Intuitionally, (20) means that the density of duplicated
non-zero blocks after partitioning is usually greater than the
original average density of k submatrices X̃1X̃2 · · · X̃k, as
the latter contains many zero blocks. Additionally, a large
∆s tends to yield a large density increment ∆ρ according
to (17), which leads to adopting areas of diagonal blocks
as heuristics. It will be verified experimentally that this
heuristic improves the average density at the first attempt
nearly all the time.

The time complexity of Node-based bisection in Metis is
O(n), where n is the number of non-zeros in a matrix [14].
Suppose that matrix X is permuted into an RBBDF struc-
ture which has k diagonal blocks (k � n) in the end, and
the algorithm chooses the largest diagonal block for parti-
tioning in each recursion; then, the height of the recursion
tree will be O(lg k) and the total computational cost in each
level of the tree is O(n). As a result, the time complexity of
Algorithm 1 is O(n lg k).
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5. EXPERIMENTS

5.1 Datasets Description
A series of experiments were conducted on four real-world

datasets: MovieLens-100K, MovieLens-1M, DianPing and
Yahoo!Music. The MovieLens dataset is from GroupLens
Research. We also collected a year’s data from a famous
restaurant rating web site DianPing2 from Jan. 1st to Dec.
31st 2011 and selected those users with 20 or more ratings.
The ratings also range from 0 to 5. The Yahoo!Music dataset
is from KDD Cup 2011, and its ratings range from 0 to 100.
Statistics of these datasets are presented in Table 1.

Table 1: Statistics of four datasets

ML-100K ML-1M DianPing Yahoo!Music
#users 943 6,040 11,857 1,000,990
#items 1,682 3,952 22,365 624,961
#ratings 100,000 1,000,209 510,551 256,804,235
#ratings/user 106.045 165.598 43.059 256.550
#ratings/item 59.453 253.089 22.828 410.912
average density 0.0630 0.0419 0.00193 0.000411

These datasets are chosen as they have different sizes and
densities. Besides, two of them have more users than items,
and the others are the opposite. We expect to verify how our
framework works on datasets of different sizes and densities.

5.2 Algorithms and Evaluation Metrics
Four popular and state-of-the-art matrix factorization al-

gorithms are the subject of experimentation in this work:
SVD: The Alternating Least Squares (ALS) algorithm in

[17] is used for SVD learning.
NMF: The NMF algorithm based on divergence cost in

[19] is used. We also use F-norm regularizer, similar to SVD.
PMF: The Bayesian PMF by Markov Chain Monte Carlo

method in [25] is used.
MMMF: The fast version of MMMF in [23] is used.
For easier comparison with previous proposed methods in

the literature, we use Root Mean Square Error (RMSE) to
measure the prediction accuracy in this work.

For N rating-prediction pairs 〈ri, r̂i〉:

RMSE =

√∑N
i=1(ri − r̂i)2

N

Five-fold cross validation is conducted to calculate the av-
erage RMSE for MovieLens and DianPing. The Yahoo! Mu-
sic dataset itself is partitioned into training and validation
sets, which are used for training and evaluation, respectively.

5.3 Analyses of RBBDF Algorithm

5.3.1 Number of diagonal blocks
The only parameter to be tuned in the RBBDF algorithm

is the average density requirement ρ̂. Intuitionally, a low
density requirement gives less and larger diagonal blocks in
X̃, and vice versa. The relationship between the number
of diagonal blocks k and the density requirement ρ̂ on four
datasets is shown by red solid lines in Figure 4.

We see that the number of diagonal blocks increases faster
and faster with an increasing density requirement. To inves-
tigate the underlying reason, a more straightforward view is
given by the relative density increment in Figure 5. Suppose
that the current number of diagonal blocks is k; the average

2http://www.dianping.com

density of X̃1X̃2 · · · X̃k is ρ̄k, and the average density goes
to ρ̄k+1 after partitioning a diagonal block. Then, the rel-
ative density increment is ∆ρ/ρ1 = (ρ̄k+1 − ρ̄k)/ρ̄1, where
the constant ρ̄1 is the density of the whole original matrix.

Experimental results show that the relative density incre-
ment becomes lower and lower as the number of diagonal
blocks increases. As a result, it is relatively easy to improve
the average density at the beginning, as partitioning a large
diagonal block Di gains a large density increment ∆ρ. How-
ever, this process tends to be more and more difficult when
diagonal blocks become small. The experimental result is
in accordance with the analysis in (17)∼(20). These results
partially verify the heuristic used in Algorithm 1.
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Figure 5: Relationship between the Relative Den-
sity Increment ∆ρ/ρ1 and the Current number of
diagonal blocks k on four datasets.

5.3.2 Verification of heuristic
The First Choice Hit Rate (FCHR) is used to verify the

heuristic used in the RBBDF algorithm, as we expect the
average density to be improved by partitioning the first diag-
onal block Ds1 in the sorted list [Ds1Ds2 · · ·Dsk ], in which
case there is no need to check the remaining diagonal blocks.

FCHR =
# recursions where Ds1 is chosen

# recursions in total

One can see that FCHR = 1 means that average density
can always be improved by partitioning the largest diagonal
block directly. The relationships between FCHR and density
requirement on four datasets are shown by blue dotted lines
in Figure 4. On all of the four datasets, FCHR = 1 at the
beginning and begins to drop when density requirement is
high enough, which is also in accordance with the analysis
in Section 4.3. As a result, by taking the areas of diagonal
blocks as a heuristic, only one diagonal block is partitioned
in each recursion, and there is no redundant computation
when an appropriate density requirement is given.

When the density requirement is high, we have FCHR <
1, and redundant computation will be introduced: we might
partition a diagonal block without improving the average
density. However, we would like to note that it does not mat-
ter very much in practice. First, when considering the O(n)
complexity of the Node-based Bisection, it will be faster and
faster to partition diagonal blocks as they become smaller.
Second, there is no need to split a matrix into hundreds or
even thousands of diagonal blocks in practice. According
to our experiments in the following sections, it is sufficient
to gain both high prediction accuracy and computational
efficiency by partitioning a matrix into a small number of
diagonal blocks, in which case we have FCHR = 1.

5.3.3 Computational Time of RBBDF Algorithm
Experiments were conducted on an 8-core 3.1GHz linux

server with 64G RAM. We tuned the density requirement ρ̂
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Figure 4: Number of Diagonal Blocks (#DB, solid lines) and First Choice Hit Rate (FCHR, dotted lines)
under different density requirements ρ̂. The tuning steps of ρ̂ are 0.01, 0.01, 0.0008 and 0.0004, respectively.

to achieve the expected number of diagonal blocks k. The
run time of the RBBDF algorithm is shown in Table 2.

In the experiments, we see that the run time increases
along with the number of diagonal blocks, and it takes less
time to partition a submatrix as they become smaller. More-
over, the time used by the RBBDF algorithm is much less
than that used for training an MF model on matrix X. We
will show the results on model training time in Section 5.5.

Table 2: Computational time of the RBBDF algo-
rithm with different numbers of diagonal blocks k.
k 5 10 15 20 50 100 150 200
ML-100K / ms 160 180 196 208 224 340 422 493
ML-1M / s 4.45 5.61 6.25 6.76 8.31 9.51 10.25 10.74
DianPing / s 6.01 9.69 11.61 12.84 14.64 15.06 16.18 16.95
Yahoo! / min 8.03 9.54 10.95 12.08 17.67 21.83 23.35 24.73

5.4 Prediction Accuracy

5.4.1 Number of latent factors
The number of latent factors r plays an important part in

MF algorithms. It would be insufficient for approximating
a matrix if r is too low, and would be computationally ex-
pensive if r is too high. As the diagonal blocks in X̃ and the
original matrix X are of different sizes, it’s important to in-
vestigate how to choose a proper r in practical applications.

We use MovieLens-1M to test the impact of r in the LMF
framework. The density requirement is ρ̂ = 0.055, and ma-
trix X is permuted into an RBBDF structure with 4 diag-
onal blocks; then, X̃ = diag(X̃1, X̃2, X̃3, X̃4) is constructed.

Some statistical information about X̃ is shown in Table 3.

Table 3: Statistics of the four diagonal blocks
X̃1 X̃2 X̃3 X̃4

#users 1,507 1,683 1,743 1,150
#items 2,491 3,108 3,616 3,304
#ratings 118,479 259,665 462,586 192,267
density 0.0316 0.0496 0.0734 0.0506

We tuned r from 5 to 100, with a tuning step of 5. It’s
necessary to note that r is required to be comparable with
min(m,n) in MMMF, where m and n are the numbers of
users and items in X. However, it would be time consuming
to train a model using thousands or even millions of factors.
Fortunately, according to [23], it’s sufficient to use much
smaller values of r to achieve satisfactory performance in
practice (r = 100 is used in [23] for ML-1M). As a result,
the tuning range of 5 ∼ 100 is also used for MMMF.

For each of the four MF algorithms, two sets of experi-
ments were conducted. First, we approximate the original
matrixX using r factors directly, and record the RMSE. Sec-
ond, predictions are made by the LMF framework in Section

4.2 using the four diagonal blocks in X̃, each with r factors.
Cross-validation is performed on X to find the best regular-
ization parameters for each MF method. In SVD and NMF,
λ is set to 0.065; in PMF, λU and λV are both 0.002; and in
MMMF, the regularization constant C is set to 1.5. RMSE
v.s. the number of latent factors r is shown in Figure 7.

Experimental results show that better performance in terms
of RMSE can be achieved in the LMF framework. Further-
more, the improvement tends to be more obvious when the
number of latent factors r is relatively small. This result
could arise because, in such cases, r is not sufficient to ap-
proximate the original matrix X, while it is sufficient to
approximate relatively small submatrices in X̃. We view
this as an advantage of the LMF framework, as better per-
formance can be achieved with fewer factors, which benefits
the model complexity and training time.

5.4.2 Different density requirements
The final number of diagonal blocks k in X̃ is different

under different density requirements ρ̂. We experimented
RMSE with different density requirements. The number of
latent factors r is set to 60, as we find it sufficient to smooth
the performance improvement on the datasets. The regu-
larization coefficients are the same: λ = 0.065 for SVD and
NMF, λU = λV = 0.002 for PMF, and C = 1.5 for MMMF.

The RMSE versus different choices of ρ̂ on all of the four
datasets are plotted in Figure 6. In each subfigure, the four
curves correspond to the four MF methods used, which are
SVD, NMF, PMF and MMMF. The density requirement
on the first point of each curve is the average density of the
corresponding dataset; as a result, RMSE on this point is the
baseline performance for the matrix factorization algorithm.
Thus, points below the beginning point of a curve indicate
an improvement on prediction accuracy, and vice versa.

Experimental results show that our LMF framework helps
decomposable MF algorithms to gain better prediction ac-
curacies if appropriate density requirements are given, but
might bring negative effects if ρ̂ is not appropriately set.
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Figure 7: RMSE v.s. different numbers of latent fac-
tors. Solid/dotted lines are results of approximating
X directly/through the LMF framework.
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Figure 6: RMSE on four datasets using the LMF framework under different density requirements. Dotted
lines in each subfigure represent baseline performance of the corresponding matrix factorization algorithm.

Here, by ‘appropriate’, we mean that ρ̂ is not too high. Ac-
cording to the experimental results on four datasets, better
prediction accuracies are achieved along with an increasing
ρ̂ (and also the number of diagonal blocks k) at the begin-
ning, but the performance tends to drop when ρ̂ is set too
high. In our view, this is not surprising because many small
scattered diagonal blocks are extracted when a high den-
sity requirement is set, which would bring negative effects
to MF algorithms. Table 4 presents the average number of
users and items in the diagonal blocks of X̃ under different ρ̂
on MovieLens-1M. We see that the average number of users
goes to only a hundred or less when ρ̂ ≥ 0.1.

Table 4: Average number of users and items in diag-
onal blocks of X̃ under different ρ̂ on MovieLens-1M.
ρ̂ 0.045 0.052 0.060 0.069 0.081 0.102 0.129 0.160
k 2 4 8 16 32 64 128 256
Avg #users 3020 1520 779 409 220 128 82 61
Avg #items 3170 3129 3055 3064 3015 3007 3015 3030

However, better performance is achieved given appropri-
ate density requirements. By combining this observation
with the experimental results in Section 5.3, it is neither rea-
sonable nor necessary to use high density requirements that
result in hundreds or even thousands of diagonal blocks.

Table 5 shows the best RMSE achieved on each dataset for
each MF method. To calculate the average RMSE on each
dataset, five-fold cross-validation was conducted on Movie-
Lens and DianPing, and experiments were conducted five
times on Yahoo! Music. The standard deviations were ≤
0.002 on MovieLens and DianPing, and were ≤ 0.01 on Ya-
hoo! Music. We see that, in the best cases, MF algorithms
benefit from the LMF framework in terms of RMSE on all
of the four datasets. Specifically, the sparser a matrix is, the
higher RMSE increment LMF tends to gain.

5.5 Speedup by Parallelization
An important advantage of LMF is that, once the BDF

matrix X̃ = diag(X̃i) is constructed, diagonal blocks X̃i can
be trained in parallel. According to the decomposable prop-
erty in Theorem 1, sub-problems of learning different (Ui, Vi)
are not coupled; as a result, there is no need to implement
rather complicated parallel computing algorithms. In fact,
simple multi-threading technique is adequate for the task,
which contributes to the scalability of recommender systems
while, at the same time, keeps system simplicity.

The experiment comprises three stages. In the first stage,
X is permuted into an RBBDF structure, and a BDF matrix
X̃ = diag(X̃i)(1 ≤ i ≤ k) is constructed. As we have 8 cores,
the density requirement is tuned on each dataset to con-
struct X̃ with 8 diagonal blocks. In the second stage, each
diagonal block is factorized independently with a thread,
and (Ui, Vi) is achieved. In the last stage, (Ui, Vi) from all of

the diagonal blocks are used to approximate the original ma-
trix X by LMF. The computational time consumed in each
stage is recorded (in the second stage, the time recorded is
the longest among all of the diagonal blocks). Finally, the to-
tal time of the three stages is adopted to evaluate the overall
efficiency. The number of factors and the regularization co-
efficients are the same as those in Section 5.4.2. The results
are shown in Table 6, where ‘Base’ represents the computa-
tional time of factorizing X directly, ‘LMF’ is the time used
by the LMF framework, and ‘Speedup’ is ‘Base/LMF’.

Table 6: Computational time and speedup by multi-
threading with 8 diagonal blocks.

Method
MovieLens-100K MovieLens-1M

Base LMF Speedup Base LMF Speedup
SVD 23.9s 7.7s 3.10 184.9s 43.4s 4.26
NMF 8.7s 3.9s 2.23 86.6s 22.1s 3.92
PMF 43.8s 11.6s 3.78 265.1s 60.1s 4.41
MMMF 19.6min 4.71min 4.16 1.73h 21.5min 4.83

Method
DianPing Yahoo!Music

Base LMF Speedup Base LMF Speedup
SVD 143.7s 35.7 4.03 6.22h 1.21h 5.14
NMF 64.4s 16.6s 3.88 4.87h 1.05h 4.64
PMF 190.5s 44.1s 4.32 7.91h 1.48h 5.34
MMMF 48.5min 10.2min 4.75 38.8h 6.22h 6.24

Experimental results show that the LMF framework helps
to save a substantial amount of model training time through
very simple multithreading parallelization techniques. This
is especially helpful when learning large magnitude datasets,
which is important in real-world recommender systems.

6. DISCUSSIONS
Unlike benchmark datasets, rating matrices in real-world

recommender systems usually change dynamically as new
ratings are made by users continuously. A typical way to
settle this problem in practice is to retrain MF models peri-
odically or when a predefined prediction accuracy threshold
(say RMSE) is reached. However, it would be time consum-
ing to refactorize large rating matrices as a whole and to do
so frequently. In the LMF framework, however, it is possi-
ble to only refactorize those submatrices whose prediction
accuracies have reached a predefined threshold, rather than
refactorize the whole matrix, which further benefits system
scalability. This potential advantage that LMF might bring
about will be investigated both by simulation and in practi-
cal real-world recommender systems in future work.

7. CONCLUSIONS
In this paper, we explored the BDF, BBDF and RBBDF

structures of sparse matrices and their properties in terms
of matrix factorization. The LMF framework is proposed,
and to explicitly indicate the scope of matrix factorizations

1519



Table 5: Best performance achieved in LMF with corresponding density requirement ρ̂ and number of diagonal
blocks k. Bold numbers indicate improvements that are ≥ 0.01 on MovieLens and DianPing or ≥ 0.2 on
Yahoo!Music. The standard deviations are ≤ 0.002 on MovieLens and DianPing and ≤ 0.01 on Yahoo!Music.

Method
MovieLens-100K MovieLens-1M DianPing Yahoo!Music

baseline ρ̂ k RMSE baseline ρ̂ k RMSE baseline ρ̂ k RMSE baseline ρ̂ k RMSE
SVD 0.9249 0.08 3 0.9165 0.8487 0.05 3 0.8423 0.9244 0.0036 3 0.9145 22.713 0.0044 13 22.519
NMF 0.9138 0.08 3 0.9102 0.8461 0.05 3 0.8388 0.9376 0.0044 4 0.9267 23.538 0.0052 21 23.335
PMF 0.9598 0.08 3 0.9534 0.8741 0.05 3 0.8664 0.9636 0.0044 4 0.9575 22.312 0.0028 6 22.121

MMMF 0.9807 0.08 3 0.9703 0.8810 0.06 9 0.8740 0.9457 0.0036 3 0.9352 23.218 0.0036 9 23.007

that the framework can handle, decomposable properties of
matrix factorization algorithms were investigated in detail.
Based on graph partitioning theories, we designed a density-
based algorithm to permute sparse matrices into RBBDF
structures, and studied its algorithmic properties both for-
mally and experimentally. Experimental results show that
LMF helps the matrix factorization algorithms we studied to
gain better performance and, at the same time, contributes
to system scalability by simple parallelization techniques.
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