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ABSTRACT
Basic economic relations such as substitutability and com-
plementarity between products are crucial for recommenda-
tion tasks, since the utility of one product may depend on
whether or not other products are purchased. For example,
the utility of a camera lens could be high if the user pos-
sesses the right camera (complementarity), while the utility
of another camera could be low because the user has already
purchased one (substitutability). We propose multi-product
utility maximization (MPUM) as a general approach to rec-
ommendation driven by economic principles. MPUM inte-
grates the economic theory of consumer choice with person-
alized recommendation, and focuses on the utility of sets of
product sets for individual users. MPUM considers what the
users already have when recommending additional products.
We evaluate MPUM against several popular recommenda-
tion algorithms on two real-world E-commerce datasets. Re-
sults confirm the underlying economic intuition, and show
that MPUM significantly outperforms the comparison algo-
rithms under top-K evaluation metrics.

Categories and Subject Descriptors
M.5.4 [Applied Computing]: Law, Social and Behavioral
Sciences- Economics; H.3.3 [Information Search and Re-
trieval]: Information Filtering

Keywords
Recommender Systems; Utility Maximization; Collaborative
Filtering; Computational Economics

1. INTRODUCTION
Recommender Systems (RS) [29, 11, 19] play a major role

in connecting producers to consumers in the burgeoning on-
line economy [35]. These systems discover the products that
might interest consumers by learning personalized consumer
preferences.
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So far, computer scientists have dominated the design and
interpretation of recommendation algorithms which, for ex-
ample, estimate various latent representations of user pref-
erences [18, 17, 38, 13], or make recommendations based on
content profiles [25, 19, 8], social relations [21, 20], knowl-
edge graphs [6], or user-generated comments [43, 22]. De-
spite their practical importance in the economy, RS have
seldom been designed (or interpreted) with economic prin-
ciples in mind.

In particular, consider the economic concept of substitutes
and complements [39]. Two products, A and B, are substi-
tutes for an individual if A is is less valuable once B is already
purchased; and they are complements if A is more valuable
if B is also purchased. Substitutability and complementar-
ity are basic product relations extensively investigated by
economists [39]. Identifying and leveraging such relation-
ships should bring major benefits. For example, the system
should better avoid recommending more SLR digital cam-
eras to a user if she has just purchased one, while instead
recommending the matching camera lenses or batteries could
be wise choices.

Consider also the economic concept of cardinal utility,
which can measure the monetary value of a product (or set
of products) to a consumer (e.g., [39] p. 166). Recommend-
ing the product set that brings highest utility to a user is the
goal, but multi-product utility modeling a non-trivial task.
For example, how much more utility would each lens product
give a particular consumer who has just purchased a partic-
ular camera? A principled approach is needed to quantify
the total utility of sets of products for a given consumer.

In this paper, we propose just such a measure, called
Multi-Product Utility Maximization (MPUM). Beginning
with the crucial economic idea of Marginal Rate of Substi-
tution (MRS)[39], we show how to construct pairwise util-
ity functions that generalize well beyond standard Cobb-
Douglas utility function [9]. Then we extend the pairwise
utility functions to cover product sets with more than two
products. Based on multinomial consumer choice modeling,
MPUM conducts parameter learning by maximizing the util-
ity of users’ historical purchasing records, and then provides
recommendations of the maximized total utility when com-
bined with previous items.

The rest of the paper is organized as follows: we review the
related work in Section 2, and introduce some basic defini-
tions and concepts in Section 3. In Section 4, we propose our
MPUM framework as well as the personalized transaction-
based recommendation strategy. We further present exten-
sive experimental results based on two different real-world
datasets in Section 5. We conclude, and note some of the
future research directions in Section 6.
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2. RELATED WORK
The advent of internet has resulted in large sets of user

behaviour records, which makes it possible for automatic
recommendation by collaborative filtering, content-based fil-
tering, or hybrid algorithms, etc.

Collaborative Filtering (CF) is based on the assump-
tion that users with similar tastes for previous items would
have similar preferences for new items, so the algorithm
tends to recommend the highly ranked items by those users
deemed similar to the current user [11, 38, 34, 33]. Such
algorithms fall into two main categories. Memory-based
CF predicts the unknown ratings for a user based on the
weighted aggregation of ratings from other (usually the top-
K most similar) users for the same item. Model-based CF
adopts the collection of ratings to fit model parameters, and
then makes predictions based on the fitted model, e.g., as-
pect models, flexible mixture models, or factorization mod-
els [4, 18, 24]. Content-based filtering adopts the information-
rich features (meta data, words in description, price, tags,
visual features, etc.) to describe the items that a user likes or
dislikes so as to estimate the user preferences [25, 19, 8]. It
usually recommends new items similar to previous items the
user liked. The underlying research focuses on estimating a
user’s profile from her explicit feedback on previous items.
Hybrid recommendation combines the advantages of col-
laborative filtering and content based filtering, and usually
performs better than either filtering method alone [43, 22,
29].

Most such recommendation methods predict individual
product scores for each user and rank the products accord-
ingly. One major problem is that the top ranked recom-
mendations might be very similar or even duplicated, which
usually is not desirable. To address this issue, researchers
proposed to diversify the recommendation results [15, 26,
19], and the diversification problem has been extensively
studied in different scenarios such as news, movies or music
recommendation [5][1]. A typical approach is to introduce
certain diversity measures such as the number of categories
in recommendations, the relative share of recommendations
above or below a certain popularity rank percentile [2], or
measures over product graphs [1]. Another approach is to
measure and achieve diversity indirectly, such as the risk of a
user portfolio of multiple products [36]. Although diversity
is not the main focus of this paper, the proposed method
indeed leads to diversity following the result of Diminishing
Marginal Utility.

Perhaps the most closely related work to ours is [16],
which seeks to classify product relationship into substitutes
and complements based on data associated to products. It
formulates the problem as supervised learning of the sub-
stitutes and complements relationship from observing co-
purchased and co-viewed products. Our MPUM approach
does not classify as such, but rather learns parameters of
flexible utility models.

Another line of related research concerns the next bas-
ket recommendation, which models the sequential pattern
of user purchases and recommends a set of items for user’s
next visit based on previous purchases. A series of meth-
ods have been developed for next basket recommendation
[28, 41, 14, 7, 42], among which the Hierarchical Represen-
tation Model (HRM) [42] represents the state of the art.
HRM combines general taste by conventional CF and infor-
mation from previous transaction aggregated by a nonlinear

function. Although our focus is not next basket recommen-
dation, the proposed multi-product utility model can be ap-
plied to solve this problem, by assuming the products that
the user purchased before as already in the basket, and to
recommend more products so as to optimize the total utility
for the user.

Several recent papers have tried in various ways to incor-
porate economics principles into E-commerce recommenda-
tion systems. In [40], the authors propose to adopt the law
of diminishing marginal utility at individual product level,
so that perishable and durable products are treated differ-
ently. In [45], the authors propose to estimate consumer’s
Willingness-To-Pay (WTP) in E-commerce setting, and the
estimated WTP is used to price the products at individual
level, so that seller’s profit is maximized. In [44], a total sur-
plus based recommendation framework is proposed to match
producers and consumers so that the total social benefit is
maximized. Our research falls into this direction and tries
to handle the multi-product recommendation problem based
on solid economics principles and practical recommendation
techniques.

In particular, recognition of product substitutability and
complementarity has been considered important to the study
the market demand of one product affected by other prod-
ucts [3, 31, 32, 37]. Our proposed research is motivated by
these existing and widely accepted economics principles.

3. BASIC COMPONENTS
We begin by introducting some key economic ideas that

will play a central role in later sections.

3.1 Utility
In economics, utility is a measure of a consumer’s prefer-

ences over alternative sets of goods or services. It is a basic
building block of rational choice theory [10]. A consumer’s
total utility for a given set of goods is the consumer’s satis-
faction experienced from consuming these goods as a whole.

Utility U(q) for a single good is a function of the con-
sumed quantity q. It typically obeys the Law Of Diminish-
ing Marginal Utility [30], which states that marginal utility,
i.e., U ′(q) > 0, is a decreasing function of the quantity con-
sumed, i.e., U ′′(q) < 0. For example, a very hungry person
may obtain huge satisfaction when consuming the first slice
of bread, but consuming an additional slice at some point
brings less additional satisfaction.

Economists have several standard functional forms for util-
ity, including Cobb-Douglas utility, Constant Elasticity of
Substitution (CES) utility, and quasilinear utility. As each
utility function has its own assumptions and limitations, it
seems worthwhile to explain and motivate our choice of the
utility functional form.

3.2 Indifference Curves
In economics, Indifference curves are used to describe the

preference relationship between a desirable pair of products,
e.g., how increasing consumption of one product affects the
relative marginal utilities of both products. As illustrated
in Figure 1, each indifference curve represents the quantities
of two given products that give the same level of utility.
By definition, indifference curves for two goods possess the
following properties,

• Any two points of the same curve give the same utility.
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(c) Perfect complementary products

Figure 1: Illustrative indifference curves for common product pairs, perfect substitute product pairs, and perfect complemen-
tary product pairs. The utilities of the three illustrative curves satisfy I1 < I2 < I3.

• Curves do not intersect.

• The tangent to any point on the curve has negative
slope because, to keep total utility unchanged, increas-
ing of quantity for one desirable product requires a
decrease in the quantity of the other product.

Let qj , qk denote the consumed quantity of product j and
product k, respectively. Since points of the same curve have
the same utility, the total derivative at any point should be
0, we have:

dU(qj , qk) =
∂U

∂qj
dqj +

∂U

∂qk
dqk

= U ′qj dqj + U ′qkdqk = 0 (1)

Let h(qj , qk) =
dqj
dqk

denote the Marginal Rate of Substi-

tution (MRS) at point (qj , qk). Then by Eq. (1) we have

h(qj , qk) =
dqj
dqk

= −
U ′qk
U ′qj

(2)

Intuitively, the larger |h(qj , qk)|, the more consumption of
product j is needed to compensate for a given decrease of
the consumption of product k.

Economists have long recognized that the MRS function
(2) completely captures the ordinal properties (the shape
of the indifference curves) of a utility function. Figure 1
illustrates some of the possibilites. Figure 1a shows the
generic case where MRS gets closer to zero smoothly as x in-
creases. Figure 1b shows perfect substitutes where the MRS
is a constant. In this case, a consumer is willing to ex-
change two products a fixed rate everywhere, for example,
two kinds of pens that differ only in color, for a consumer
who doesn’t care about color. Figure 1c shows perfect com-
plements where the utility is determined by the minimum of
the two product quantities, for example left and right shoes.
Given, say, 2 left shoes, the utility will not change by having
more than 2 right shoes, and vice versa. The MRS of perfect
complements is discontinuous — it changes from infinity to
zero at certain point. Except in the limit of perfect comple-
ments, we can model the substitutes and complements via
a differentiable MRS function.

4. MULTIPLE PRODUCT UTILITY MAXI-
MIZATION (MPUM) FRAMEWORK

In this section, we put the aforementioned ingredients to-
gether in a particular way.

Table 1: Choices of h(qk, qj) and its corresponding utility
function. z(·) denotes any monotone function.

Polynomial Exponential

h(qj , qk)
− a

1−a (
qj
qk

)b − a
1−a e

b(qj−qk)

0 < a < 1, b ≥ 0 0 < a < 1, b ≥ 0

U(qj , qk) z
(

(1 − a)q1−b
j + aq1−b

k

)
z
(
(1 − a)e−bqj + ae−bqk

)
4.1 Modeling Marginal Rate of Substitution

The first step is to find a proper utility functional form
for U(qj , qk) so that it can capture all possible products
relationships shown in Figure 1. However, the right form for
the utility function is not obvious, and it is not practical for
us to try all possible alternatives of U(qj , qk) by testing them
against the cases in Figure 1. Since product substitutes and
complements are better illustrated by MRS, we propose to
find a proper functional form for MRS, and then to recover
the utility function by solving differential equations.

By the Implicit Function Theorem, from the equation for
an indifference curve (U(qj , qk) = const.), we can alterna-
tively express qj as a function of qk, i.e., qj = f(qk), and the
MRS defined in Eq. (2) becomes,

dqj
dqk

= f ′(qk) = h(qj , qk) (3)

where h is the chosen MRS function.
When choosing h, we are mainly concerned about two as-

pects: mathematical convenience and flexibility. Thus we
propose to consider two functional forms in Table 1: poly-
nomial and exponential.

Regardless of the specific form of h, the problem of re-
covering U(qj , qk), or f(qk), boils down to solving the dif-
ferential differential Eq.(3) for f(·). Table 1 summarizes the
solutions for each alternative of h, as we now shall explain.

4.1.1 Polynomial Case
A preliminary question is whether h is expressive enough,

e.g., whether it can cover the three cases shown in Figure
1. For the polynomial entry it is easy to see that, when
b = 0, the MRS is constant at a

1−a ; thus h covers the case

of perfect substitutes. When b gets very large (→ +∞),
h is large when

qj
qk

> 1 and immediately drops to near 0

when
qj
qk

< 1, corresponding to the perfect complements

case; when 0 < b < 1, the MRS is for the general case shown
in Figure 1a.
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After applying standard differential function solution tech-
niques (separation of variables and integrating) to Eq. (3),
we reach the following equation,(

(1− a)q1−b
j + aq1−b

k

)
= const. (4)

Let’s remind ourselves that MRS is defined when utility
is set to unknown constant. The above equation suggests
that the utility function is some monotone function of the
left side of the above equation, namely,

U(qj , qk) = z
(

(1− a)q1−b
j + aq1−b

k

)
(5)

where z(·) is any monotone increasing function such as log

and power. In particular, when z(x) = x
1

1−b , we obtain the
well known Constant Elasticity Substitution (CES) utility
function. Here s = 1

b
is called the Elasticity of Substitu-

tion, and denotes the degree of substitutability between a
pair of products. Specifically, the utility function models
(perfect) complement product pairs when s is sufficiently
large (towards +∞), and (perfect) substitute pairs when s
is sufficiently small (towards 0).

4.1.2 Exponential Case
A similar analysis applies to the exponential function form

in Table 1). When b = 0, the MRS is constant a
1−a ; when

b goes to ∞, the MRS goes to infinity when qj > qk and
drops to zero when qj < qk. This suggests that the expo-
nential functional form also can capture complements and
substitutes.

Solving the differential equation Eq. (3) now yields:

ae−bqk + (1− a)e−bqj = const, (6)

so the corresponding utility function is:

U(qj , qk) = z
(
ae−bqk + (1− a)e−bqj

)
. (7)

Here it is convenient to set the monotone function to be
z(x) = − 1

b
log(x), to ensure that utility increases with an

increase in the goods quantities. Using L’Hospital’s rule,
one can verify that we get perfect substitutes in the the
limit b ↓ 0.

Recall that we want to get perfect complements in the
limit b → +∞, so the limit function should depend on the
minimum of the two product quantities, namely,

U(q1, q2) = U (min(q1, q2),min(q1, q2)) (8)

Like the polynomial function, the larger the b parameter,
the better Eq. (7) can approximate the perfect complemen-
tary utilities, but which is a better approximation for finite
b? Figure 2a shows the fitting errors (Root Mean Squared
Error) of utility function defined in Eq. (5) and (7), respec-
tively, and Figure 2b shows the indifference curves for poly-
nomial and exponential utility function with b = 5. It can
be seen that exponential function is closer to the “L” shape
as shown in Figure 1c, and generally has smaller fitting er-
ror. On the other hand, the CES function is more familiar
and seems better at approximating close substitutes (which
are more common in our data), so we will rely on the poly-
nomial utility function defined in Eq. (5) in the rest of the
paper.

4.2 Multi-product Utility Modeling
In practice, it is very common that there are more than

two products in a single transaction/order, and it is desirable
for us to represent the utility of an arbitrary number of
products. Let Ωit be the set of products purchased by user
i at time t. We consider the utility of Ωit as the sum of the
utility of all product pairs within Ωit, namely,

U(Ωit) = 1
|Ωit|−1

∑
j,k∈Ωit,j 6=k

U(qj , qk)

= 1
|Ωit|−1

∑
j,k∈Ωit,j 6=k

(
ajkq

1−bjk
j + (1− ajk)q

1−bjk
k

) 1
1−bjk

(9)
where aij and bij are specific parameters regarding a prod-

uct pair, and |Ωit| is the number of products in set Ωit. The
denominator is |Ωit|−1 because we want to count each prod-
uct (not each product-pair) once when obtaining the total
utility for the product set.

4.3 CF-based Re-Parameterization
As seen from Eq. (9), there are two unknown parameters

ajk, bjk for product j and k. In general, we can reparamter-
ize ajk and bjk as below,

ajk = f( ~xjk, ~θjk) (10)

bjk = g( ~xjk, ~ηjk) (11)

where ~xjk represents information related to product j and

k, and ~θjk, ~ηjk are function parameters. ~xjk can be anything
such as product category, brand, reviews, etc. In [16], the
authors propose to predict product substitutes and comple-
ments links using product information. It is possible for us
to adopt similar idea as [16]. But for simplicity, we apply
Collaborative Filtering (CF) to model ajk and bjk, sharing
the same spirit of modeling ratings between user and item.

ajk = σ
(
α+ βj + βk + ~xTj ~xk

)
(12)

bjk = exp
(
µ+ γj + γk + ~pTj ~pk

)
(13)

~xj , ~pj ∈ Rd, βj , γj , α, µ ∈ R

where σ(·) is Sigmoid function that ensures 0 < ajk < 1
and exponential function ensures bij > 0. Under CF repre-
sentation, the parameters now are Θ = {~xj , ~pj , βj , γj , α, µ}.
Clearly, CF is a special case of f and g, as in which ~xjk is
empty.

4.4 Discrete Choice Modeling
In economics, discrete choice models characterize and pre-

dict consumer’s choices between two or more alternatives,
such as buying Coke or Pepsi, or choosing between differ-
ent hotels for traveling. In this paper, at each time point
t, consumer chooses product set Ωit over other unobserved
alternative product sets – g(Ωit). Let Πit = {Ωit, g(Ωit)}
represent all product sets and its k-th element is Πk

it. Re-
searchers in economics have developed random utility models
(RUMs) for the discrete choice problem [23]. RUMs attach
each alternative utility with a random value:

Ũi(Π
k
it) = Ui(Π

k
it) + εk (14)

where εk is a random variable that follows a certain proba-
bility distribution. The probability that a consumer chooses
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Π1
it (i.e. Ωit) over other alternatives is:

P
(
Ũi(Π

1
it) > Ũi(Π

k
it)
)

=P
(
εk − ε1 < Ui(Π

1
it)− Ui(Πk

it)
)

(15)

where k = 2, . . . , |Πit|. If ε1 and εk follow iid extreme value
distribution, it can be shown that the probability of choosing
Π1
it is the following multinomial logistic model (MNL):

P (yit = 1) =
exp

(
Ui(Π

1
it)
)∑|Πit|

k=1 exp
(
Ui(Πk

it)
) (16)

Alternatively, if εk follows a Gaussian distribution, then
P (yit) turns into a Probit model [23]. In the rest of this pa-
per, we adopt the frequently used multinomial logistic model
as in Eq.(16).

At each time point for a given user, the system usually
observes a chosen product set (e.g. an order with multiple
products, or a wishlist) Ωit. The alternative product sets
g(Ωit), however, are not observed. We can simply view Ωit
and g(Ωit) as positive and negative training records, respec-
tively. Generation of negative samples will be introduced in
Section 4.6.

4.5 Budget Constraint
The theory of consumer choice in microeconomics [12] con-

cerns how consumers maximize their utility of consumption
subject to their budget constraint. The utility of consump-
tion is determined by consumer preferences and their corre-
sponding utility functions as explained in Section 4.2. The
consumer choice problem is thus formalized as the following

constrained economic optimization problem,

argmax
{q1,q2,...,qN}

Uit(q1, q2, . . . , qN )

s.t.
∑N

j=1
pj × qj ≤Wit (17)

where pj is the price of product j, qj is the consumed quan-
tity of product j, and Wit is the consumer’s budget. Eq.(17)
can be solved by standard constraint optimization methods
if the quantity variables qj are real numbers. However, qj
are discrete numbers in most of the cases, this turns the
above optimization problem into an integer programming
problem that is NP hard. Due to the exponential computa-
tional complexity, it is not feasible to consider all possible
product combinations for the objective function in Eq.(17).
As a result, we only generate a sample of candidate sets Πit

for each observed chosen product set Ωit when training the
utility model.

4.6 Generate Negative Samples
To reduce the number of combinations for Eq.(17), we only

consider products from observed product set Ωit. Doing this
greatly reduces the size of negative samples. In addition, we
further require the total price of each negative sample equals
to that of Ωit, namely,∑

j∈Ωit

pj × qj = Wit. (18)

As the product quantity can not be fractional, it is very
likely that we can only find very few or even none solutions
for Eq.(18). To overcome this issue, we relax Eq.(18) as,

|
∑
j∈Ωit

pj × qj −Wit| ≤ εWit. (19)
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where 0 < ε < 1. It is easy to prove that the solution of
Equation 19 can be effectively obtained through dynamic
programming at O(Wit ∗ |Ωit|) running time complexity.
|Ωit| is the number of products in Ωit. As we shall see in
Table 3, |Ωit| is about 10 in average. In the mean time, as
Wit is bounded, it can be replaced by a constant number.
Thus, the running time complexity of generating g(Ωit) is
constant.

4.7 Model Parameter Learning
Given the observed transactions/orders and the consumer

discrete choice modeling framework, the model parameters
Θ can be optimized by maximizing the following Log-Likelihood
(``) of training data:

argmax
Θ

``(D; Θ)

=
∑

i,t:Ii,t=1

log (P (yit = 1))− η||Θ||2 (20)

where D is the training dataset, Iit = 1 if user i places an
order at time t, and P (yit) is the multinomial logistic regres-
sion model described in Eq.(16). η ∈ R+ is the regulariza-
tion coefficient which is determined using cross validation.

There is no closed form solution to Eq.(20), and the op-
timal model parameters can be found using gradient based
methods such as stochastic gradient descent.

4.8 Multi-Product Recommendation
The objective of our recommendation algorithm is to rec-

ommend a set of products that give the maximum util-
ity without violating the budget constraint, as defined in
Eq.(17). As we will see later, once we have learned the util-
ity functions with Eq.(20), we can use the principle of utility
maximization to predict the purchase quantity of each prod-
uct for a given user. Here Eq.(17) takes the form

argmax
Ωit

U({qj |j ∈ Ωit}) (21)

s.t.
∑
j∈Ωit

pj × qj ≤Wit (22)

where Ωit is a subset of all products. In practice, it is rea-
sonable to limit |Ωit| based on the typical size of an order.
Due to the large search space of candidate products, it is not
computationally feasible to evaluate all product sets exhaus-
tively. Thus, we adopt greedy strategy which extends Ωit
incrementally by adding a product that gives the maximum
incremental utility.

5. EXPERIMENT
We investigate the proposed framework based on two real-

world E-commerce datasets. In this section, we report the
experimental design, empirical results, and further analyses.

5.1 Dataset Description
The following two real-world datasets are used in our ex-

periments:

Table 3: Basic statistics of the two datasets
Dataset #Transactions#ProductsAverage SizeTrain/Test

Shop.com 86k 370k ∼ 8
80%/20%

Amazon 7.8k 18k ∼ 12

Shop.com Data: Each record in the dataset is a purchase
transaction with consumer ID, product(s) price, product(s)

quantity, and the purchasing time. Key data statistics are
summarized in Table 3. We treat each transaction as a pos-
itive training data point for Eq.(20), except that we omit
transactions with less than two products, since we are fo-
cusing on multiple products.

Amazon Baby Registry Data: Amazon’s Baby Registry1

allows consumers to add and manage products for babies.
Each registry is a wishlist containing a list of products the
list owner wants to purchase. As the lists are publicly avail-
able, we crawled the lists and their products to generate
this data set. Each product comes with title, price, brand,
and category information. Some of the key statistics of the
dataset is also summarized in Table 3. We treat each wishlist
as a positive training point for Eq.(20).

Each dataset involved can be viewed as a collection of
transactions. Each transaction holds a set of products the
consumer purchased or wanted at certain time. The trans-
actions are randomly split into two subsets - 80% of them
are used for model training and the rest 20% is for perfor-
mance evaluation. For each testing transaction, a portion
(also 20%) of the products are randomly masked and they
are predicted by recommendation algorithm based on other
observed products in the same transaction.

For the training transactions, we generate negative train-
ing data (i.e. product sets not chosen by a user) for each
positive set, which are required in Eq.(20) for model learn-
ing. Negative samples are generated as described in Section
4.6. For computational efficiency, we limit the size of Πit to
10 when selecting negative sets from g(Ωit).

5.2 Evaluation Metric
Precision and recall at top-K are the most widely-adopted

ranking evaluation metrics in practice, so we shall employ
them here. Let Γi be the masked items in the i-th testing
transaction and let Γ′i be the list of items recommended by
the algorithm under consideration. The metrics are defined
as follows:

Precision@K =
1

N

N∑
i=1

|Γ′i ∩ Γi|
K

Recall@K =
1

N

N∑
i=1

|Γ′i ∩ Γi|
|Γi|

F1-measure@K =
2× Precision× Recall

Precision + Recall

(23)

where K is the length of the recommendation list, and N is
the number of testing transactions.

5.3 Experimental Results
We investigate the performance of our MPUM framework

for the task of product recommendation for a transaction.
For performance comparison, we consider the CF-based al-
gorithm described in Section 4.3 and the Bayesian Person-
alized Ranking (BPR) [27] method, which are typical and
state-of-the-art rating and ranking based recommendation
approaches, respectively. In both of these comparison algo-
rithms, the transactions are treated as “users”, and recom-
mendation is modeled as predicting purchasing quantity di-
rectly for each “user” (transaction). In order to recommend

1https://www.amazon.com/babyregistry
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Table 2: Evaluation results for Top-K recommendation performance on Precision, Recall, and F1-measure. All bolded
improvements are statistically significant on 0.01 level in two-tailed t-test.

Dataset Amazon Baby Registry Transactions
@K 1 5 10

Method CF BPRMF MPUM CF BPRMF MPUM CF BPRMF MPUM
Precision (%) 0.092 0.117 0.275 0.437 0.473 0.609 0.262 0.513 0.669

Recall (%) 0.074 0.112 0.103 0.761 0.866 1.279 1.178 1.150 2.844
F1-measure (%) 0.082 0.114 0.150 0.555 0.612 0.825 0.429 0.710 1.083

Dataset Shop.com Transactions
@K 1 5 10

Method CF BPRMF MPUM CF BPRMF MPUM CF BPRMF MPUM
Precision (%) 0.022 0.076 0.470 0.012 0.038 0.286 0.012 0.026 0.160

Recall (%) 0.017 0.003 0.465 0.035 0.013 1.390 0.073 0.185 1.531
F1-measure (%) 0.019 0.006 0.467 0.018 0.019 0.474 0.021 0.046 0.290

for testing“users”, it is necessary to learn their profile during
the training stage. Towards this end, for each testing “user”,
80% of its products are included in the training dataset, and
the remaining 20% is used for performance evaluation. |Πit|
in Eq.(16) is set to 10 and SGD learning rate is set to 0.01.
For the comparison algorithms, latent vector dimension and
regularization coefficient are set to 10 and 0.01, as they give
best performance in a 10-fold cross validation setting. For a
fair comparison, our method adopts the same parameters.

The evaluation results on Amazon and Shop.com datasets
are reported in Table 2, and the largest value on each dataset
and for each evaluation measure is significant at 0.01 level.

It can be seen from the results that our proposed MPUM
algorithm outperforms the comparison algorithms in nearly
all the cases, and in particular, the performance advantage
is more pronounced on Shop.com dataset. A possible reason
is that Shop.com dataset has much lower density (0.00205%)
than Amazon dataset (0.0655%). Our method is less sensi-
tive to low density than CF and BPR because they both
introduce latent vectors for users (i.e., transactions in our
problem) and products, and then learn the vectors through
user-product interaction pairs; while our MPUM algorithm
only concerns product-product relationships and models the
transactions indirectly through its products without the need
of considering the very sparse user-product pairs. As a re-
sult, our MPUM requires far fewer model parameters than
the comparison algorithms.

5.4 Empirical Tests of Economic Intuition
Do the learned utility functions make economic sense? A

convenient aspect of the CES utility functions we work with
is that one can read off the Elasticity of Substitution (ES)
for real-world products learned by our model.

As shown in Figure 3, we find that the product pair with
the lowest ES in the Amazon Baby Registry dataset is a
nipple together with a feeding bottle (Figure 3(a) and 3(c)),
which indeed are very complementary products. The pair
with the highest ES are two different brands of nipple prod-
ucts (Figure 3(a) and 3(b)), which are clearly very close
substitutes. This is very reassuring.

Another finding suggests an economic regularity not fea-
tured in textbooks. We compute the average elasticity of
substitution (AES) for each product by averaging over all
the Amazon Baby Registry products its final learned ES
with every other product. We find that the popularity of a
product in the dataset is strongly negatively correlated with
AES. This means popular products have relatively smaller

(a) A nipple product that 
is complementary with the 
feeding bottle product in
the right side

(c) A feeding bottle product

(b) This nipple product is 
a very close substitute for 
other nipple products

Figure 3: Examples of complementary and substitute prod-
ucts from Amazon Baby Registry dataset.

ES values, which suggests popular items tend to be system-
atically more complementary with other products.

More specifically, Figure 4 shows the logarithm of popu-
larity of a product (y axis) against the AES of the product
(x axis). The correlation between log(popularity) and ES
values is -0.916 for these products. Because we care more
about the product ranking lists for recommendation rather
than the absolute ES values in practice, we further rank
the products according to ES and investigate the relation
between log(popularity) and the rankings (Figure 4, right).
The correlation is -0.931. Further analysis shows that the
products with small AES values in Figure 4 are mostly baby
care necessities (e.g., pacifier, plug, and teether) that are
generally complementary with many products, which makes
them generally popular in most of the transactions.

These findings are encouraging and suggest that our pro-
posed utility maximization approach conforms with economic
intuition. It seems possible to discover product substitute
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Figure 4: Scatterplots of product popularity vs. the average
Elasticity of Substitution (ES) of the corresponding product
as well as the the ranking of ES values.

or complementary relationships from real-world transaction
data automatically, based on fusing machine learning tech-
niques with economic principles.

6. CONCLUSIONS AND FUTURE WORK
Utility is commonly used by economists to characterize

consumer preference over alternatives, and it serves as the
cornerstone for consumer choice theory [12]. Motivated by
existing research in economics, we introduced a general util-
ity based framework for multiple product recommendation.
Starting with the basic concept of Marginal Rate of Sub-
stitution (MRS) defined over product indifference curves,
we derived several candidate utility function forms that can
model both substitutability and complementarity. The model
parameters are estimated based on observed consumer pur-
chase data, and recommendations of multiple products are
thus generated by maximizing the joint utility functions.
Experimental results on both Amazon and Shop.com E-
commerce data sets demonstrated the effectiveness of the
proposed approach for recommendation. Further analysis
also shows the underlying complementary and substitutabil-
ity relations between products.

This is our first attempt toward multi-product utility mod-
eling based on real-world purchasing records, and there is
much room for further improvement. For example, the func-
tional form of MRS could be adjusted to capture other prod-
ucts relationships beyond complementarity and substitutabil-
ity. We can also introduce product and/or user features into
this framework. In this work, we adopted a greedy method
to generate top-K products, because the maximization of
the utility function reduces to an integer linear programming
problem which is NP-hard, and we will further investigate
other heuristic methods that have been applied to 0-1 integer
programming for better model learning accuracies. Besides,
modeling the relationship between products is a fundamen-
tal problem for various recommendation tasks. Although we

primarily focused on the most frequently concerned top-K
recommendation task in this work, our proposed framework
can be easily adapted for other usage scenarios such as pack-
age recommendation or next basket recommendation, which
will be taken for further investigations in the future.
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Appendix
The key step for optimizing objective function Eq.(20) is to
obtain the gradient of Eq.(5) w.r.t. Θ = {~xj , ~pj , βj , γj , α, µ}.
As Eq.(5) is the average of product pair utility U(qj , qk), it is
convenient to calculate the gradient per product pair utility
U(qj , qk) and aggregate to get the gradient of U(Ωit).

We first obtain the derivative of U(qj , qk) w.r.t. the inter-
mediate parameters ajk and bjk,

∂U(qj , qk)

∂ajk
=

1

1− bjk

(
(1− ajk)q

1−bjk
j + ajkq

1−bjk
k

) bjk
1−bjk(

q
1−bjk
k − q1−bjk

j

)
∂U(qj , qk)

∂bjk
= U(qj , qk) ·

[
(ajk − 1)q

1−bjk
j log(qj)− ajkq

1−bjk
k log(qk)

(1− bjk)
(

(1− ajk)q
1−bjk
j + ajkq

1−bjk
k

)
+

log
(

(1− ajk)q
1−bjk
j + ajkq

1−bjk
k

)
(1− bjk)2

]
(24)

where ajk and bjk are functions of the model parameters Θ.
We further obtain the gradient of the intermediate parame-
ters w.r.t. the model parameters,

(∇ajk)~xj = σ(.)′~xk (∇ajk)~xk = σ(.)′~xj

(∇ajk)α = (∇ajk)βk = (∇ajk)βj = σ(.)′
(25)

where σ(.) = 1/
(
1 + exp(−(α+ βj + βk + ~xTj ~xk))

)
and σ(.)′

is the derivative of the Sigmoid function. Similarly, we can
obtain the gradient for bjk,

(∇bjk)~pj = exp(.)~pk (∇bjk)~pk = exp(.)~pj

(∇bjk)µ = (∇bjk)γj = (∇bjk)γk = exp(.)
(26)

where exp(.) = exp(µ + γj + γk + ~pTj ~pk). The gradient of
U(qj , qk) w.r.t. Θ is available by applying the chain rule to
the above results. Finally, we can thus optimize the objec-
tive based on commonly used Stochastic Gradient Descent
(SGD) methods.
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