
Personalized Re-ranking for Recommendation
Changhua Pei1∗, Yi Zhang1∗, Yongfeng Zhang2∗

Fei Sun1, Xiao Lin1, Hanxiao Sun1, Jian Wu1, Peng Jiang3, Junfeng Ge1, Wenwu Ou1, Dan Pei4
1 Alibaba Group 2 Rutgers University 3 Kwai Inc. 4 Tsinghua University

1 {changhua.pch, zhanyuan.zy, ofey.sf, hc.lx, hansel.shx, joshuawu.wujian, beili.gjf, santong.oww}@alibaba-inc.com
2 yongfeng.zhang@rutgers.edu 3 jiangpeng@kuaishou.com 4peidan@tsinghua.edu.cn

ABSTRACT
Ranking is a core task in recommender systems, which aims at
providing an ordered list of items to users. Typically, a ranking
function is learned from the labeled dataset to optimize the global
performance, which produces a ranking score for each individual
item. However, it may be sub-optimal because the scoring function
applies to each item individually and does not explicitly consider
the mutual influence between items, as well as the differences of
users’ preferences or intents. Therefore, we propose a personal-
ized re-ranking model for recommender systems. The proposed
re-ranking model can be easily deployed as a follow-up modular
after any ranking algorithm, by directly using the existing ranking
feature vectors. It directly optimizes the whole recommendation
list by employing a transformer structure to efficiently encode the
information of all items in the list. Specifically, the Transformer
applies a self-attention mechanism that directly models the global
relationships between any pair of items in the whole list. We con-
firm that the performance can be further improved by introducing
pre-trained embedding to learn personalized encoding functions
for different users. Experimental results on both offline benchmarks
and real-world online e-commerce systems demonstrate the signifi-
cant improvements of the proposed re-ranking model.

CCS CONCEPTS
• Information systems→ Recommender systems;

KEYWORDS
Learning to rank; Re-ranking; Recommendation

ACM Reference format:
Changhua Pei1∗, Yi Zhang1∗, Yongfeng Zhang2 and Fei Sun1, Xiao Lin1,
Hanxiao Sun1, Jian Wu1, Peng Jiang3, Junfeng Ge1, Wenwu Ou1, Dan Pei4.
2019. Personalized Re-ranking for Recommendation . In Proceedings of Thir-
teenth ACM Conference on Recommender Systems, Copenhagen, Denmark,
September 16–20, 2019 (RecSys ’19), 9 pages.
https://doi.org/10.1145/3298689.3347000

∗Changhua Pei and Yi Zhang contribute equally. Yongfeng Zhang is the corresponding
author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys ’19, September 16–20, 2019, Copenhagen, Denmark
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6243-6/19/09. . . $15.00
https://doi.org/10.1145/3298689.3347000

1 INTRODUCTION
Ranking is crucial in recommender systems. The quality of the
ranked list given by a ranking algorithm has a great impact on users’
satisfaction as well as the revenue of the recommender systems.
A large amount of ranking algorithms [4, 5, 7, 15, 19, 27, 32] have
been proposed to optimize the ranking performance. Typically
ranking in recommender system only considers the user-item pair
features, without considering the influences from other items in
the list, especially by those items placed alongside[8, 35]. Though
pairwise and listwise learning to rank methods try to solve the
problem by taking the item-pair or item-list as input, they only
focus on optimizing the loss function to make better use of the
labels, e.g., click-through data. They didn’t explicitly model the
mutual influences between items in the feature space.

Some works[1, 34, 37] tend to model the mutual influences be-
tween items explicitly to refine the initial list given by the previous
ranking algorithm, which is known as re-ranking. The main idea is
to build the scoring function by encoding intra-item patterns into
feature space. The state-of-the-art methods for encoding the feature
vectors are RNN-based, such as GlobalRerank[37] and DLCM[1].
They feed the initial list into RNN-based structure sequentially
and output the encoded vector at each time step. However, RNN-
based approaches have limited ability to model the interactions
between items in the list. The feature information of the previous
encoded item degrades along with the encoding distance. Inspired
by the Transformer architecture[20] used in machine translation,
we propose to use the Transformer to model the mutual influences
between items. The Transformer structure uses self-attention mech-
anism where any two items can interact with each other directly
without degradation over the encoding distance. Meanwhile, the en-
coding procedure of Transformer is more efficient than RNN-based
approach because of parallelization.

Besides the interactions between items, personalized encoding
function of the interactions should also be considered for re-ranking
in recommender system. Re-ranking for recommender system is
user-specific, depending on the user’s preferences and intents. For
a user who is sensitive to price, the interaction between “price”
feature should be more important in the re-ranking model. Typical
global encoding function may be not optimal as it ignores the dif-
ferences between feature distributions for each user. For instance,
when users are focusing on price comparison, similar items with dif-
ferent prices tend to be more aggregated in the list. When the user
has no obvious purchasing intention, items in the recommendation
list tend to be more diverse. Therefore, we introduce a personal-
ization module into the Transformer structure to represent user’s
preference and intent on item interactions. The interaction between

https://doi.org/10.1145/3298689.3347000
https://doi.org/10.1145/3298689.3347000

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Changhua Pei et al.

items in the list and user can be captured simultaneously in our
personalized re-ranking model.

The main contributions of this paper are as follows:

• Problem. We propose a personalized re-ranking problem in
recommender systems, which, to the best of our knowledge,
is the first time to explicitly introduce the personalized in-
formation into re-ranking task in large-scale online system.
The experimental results demonstrate the effectiveness of
introducing users’ representation into list representation for
re-ranking.

• Model. We employ the Transformer equipped with person-
alized embedding to compute representations of initial in-
put ranking list and output the re-ranking score. The self-
attentionmechanism enable us tomodel user-specificmutual
influences between any two items in a more effective and
efficient way compared with RNN-based approaches.

• Data.We release a large scale dataset (E-commerce Re-ranking
dataset) used in this paper. This dataset is built from a real-
world E-commerce recommender system. Records in the
dataset contain a recommendation list for user with click-
through labels and features for ranking.

• Evaluation. We conducted both offline and online experi-
ments which show that our methods significantly outper-
form the state-of-the-art approaches. The online A/B tests
show that our approach achieves higher click-through rate
and more revenue for real-world system.

2 RELATEDWORK
Our work aims to refine the initial ranking list given by the base
ranker. Among these base rankers, learning to rank is one of the
widely usedmethods. The learning to rankmethods can be classified
into three categories according to the loss function they used: point-
wise[12, 21], pairwise[6, 18, 19], and listwise[5, 7, 14, 19, 27, 32, 33].
All these methods learn a global scoring function within which the
weight of a certain feature is globally learned. However, the weights
of the features should be able to be aware of the interactions not
only between items but also between the user and items.

Closest to our work are [1–3, 37], which are all re-ranking meth-
ods. They use the whole initial list as input and model the complex
dependencies between items in different ways. [1] uses unidirec-
tional GRU[10] to encode the information of the whole list into
the representation of each item. [37] uses LSTM[17] and [3] uses
pointer network[29] not only to encode the whole list information,
but also to generate the ranked list by a decoder. For those meth-
ods which use either GRU or LSTM to encode the dependencies
of items, the capacity of the encoder is limited by the encoding
distance. In our paper, we use transformer-like encoder, based on
self-attention mechanism to model the interactions for any of two
items in O(1) distance. Besides, for those methods which use de-
coder to sequentially generate the ordered list, they are not suitable
for online ranking system which requires strict latency criterion.
As the sequential decoder uses the item selected at time t-1 as input
to select the item at time t , it can not be parallelized and needs
n times of inferences, where n is the length of the output list. [2]
proposes a groupwise scoring function which can be parallelized

Table 1: Notation used in this paper.

Notation. Description.
X The matrix of features.
PV The matrix of personalized vectors.
PE The matrix of position embeddings.
E The output matrix of the input layer.
R The set of total users’ requests.
Ir The set of candidate items for each user’s re-

quest r ∈ R.
Sr The initial list of items generated by the ranking

approaches for each user’s request r .
Hu The sequence of items clicked by user u.
θ , θ̂ ,θ

′ The parameter matrices of ranking, re-ranking
and pre-trained model respectively.

yi The label of click on item i .
P(yi |·) The click probability of item i predicted by the

model.

when scoring the items, but its computation cost is high because it
enumerates every possible combinations of items in the list.

3 RE-RANKING MODEL FORMULATION
In this section, we first give some preliminary knowledge about
learning to rank and re-ranking methods for recommendation sys-
tems. Then we formulate the problem we aim to solve in this paper.
The notations used in this paper are in Table 1.

Learning to rank (often labelled as LTR) method is widely used
for ranking in real-work systems to generate an ordered list for
information retrieval[18, 22] and recommendation[14]. The LTR
method learns a global scoring function based on the feature vector
of items. Having this global function, the LTR method outputs an
ordered list by scoring each item in the candidate set. This global
scoring function is usually learned by minimizing the following
loss function L:

L =
∑
r ∈R

ℓ
(
{yi , P(yi |xi ;θ)|i ∈ Ir }

)
(1)

where R is the set of all users’ requests for recommendation. Ir
is the candidate set of items for request r ∈ R. xi represents the
feature space of item i . yi is the label on item i , i.e., click or not.
P(yi |xi ;θ) is the predicted click probability of item i given by the
ranking model with parameters θ . ℓ is the loss computed with yi
and P(yi |xi ;θ).

However, xi is not enough to learn a good scoring function.
We find that ranking for recommender system should consider
the following extra information: (a) mutual influences between
item-pairs[8, 35]; (b) interactions between the users and items. The
mutual influences between item-pairs can be directly learned from
the initial list Sr = [i1, i2, ..., in] given by the existing LTR model
for the request r . Works[1][37][2][3] propose approaches to make
better use of mutual information of item-pairs. However, few works
consider the interactions between the users and items. The extent
of mutual influences of item-pairs varies from user to user. In this
paper, we introduce a personalized matrix PV to learn user-specific
encoding function which is able to model personalized mutual
influences between item-pairs. The loss function of the model can

Personalized Re-ranking for Recommendation RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

be formulated as Equation 2.

L =
∑
r ∈R

ℓ
(
{yi , P(yi |X ,PV ; θ̂)|i ∈ Sr }

)
(2)

where Sr is the initial list given by the previous ranking model. θ̂
is the parameters of our re-ranking model. X is the feature matrix
of all items in the list.

4 PERSONALIZED RE-RANKING MODEL
In this section, we first give an overview of our proposedPersonalized
Re-rankingModel (PRM). Then we introduce each component of
our model in detail.

4.1 Model Architecture
The architecture of PRM model is shown in Figure 1. The model
consists of three parts: the input layer, the encoding layer and the
output layer. It takes the initial list of items generated by previous
ranking method as input and outputs a re-ranked list. The detailed
structure will be introduced separately in the following sections.

4.2 Input Layer
The goal of the input layer is to prepare comprehensive repre-
sentations of all items in the initial list and feed it to the encod-
ing layer. First we have a fixed length of initial sequential list
S = [i1, i2, ..., in] given by the previous ranking method. Same
as the previous ranking method, we have a raw feature matrix
X ∈ Rn×dfeature . Each row inX represents the raw feature vector xi
for each item i ∈ S.

Personalized Vector (PV). Encoding the feature vectors of two
items can model the mutual influences between them, but to which
extent these influences may affect the user is unknown. A user-
specific encoding function need to be learned. Though the rep-
resentation of the whole initial list can partly reflects the user’s
preferences, it is not enough for a powerful personalized encoding
function. As shown in Figure 1 (b), we concat the raw feature ma-
trix X ∈ Rn×dfeature with a personalized matrix PV ∈ Rn×dpv to get
the intermediate embedding matrix E′

∈ Rn×(dfeature+dpv), which is
shown in Equation 3. PV is produced by a pre-trained model which
will be introduced in the following section. The performance gain
of PV will be introduced in the evaluation section.

E
′

=

xi1 ; pvi1
xi2 ; pvi2
. . .

xin ; pvin

 (3)

Position Embedding (PE). In order to utilize the sequential
information in the initial list, we inject a position embedding PE ∈

Rn×(dfeature+dpv) into the input embedding. Then the embedding
matrix for encoding layer can be calculated using Equation 4. In
this paper, a learnable PE is used which we found that it slightly
outperforms the fixed position embedding used in [28].

E
′′

=

xi1 ; pvi1
xi2 ; pvi2

· · ·

xin ; pvin

 +

pei1
pei2
· · ·

pein

 (4)

At last we use one simple feed-forward network to convert the
feature matrix E′′

∈ Rn×(dfeature+dpv) to E ∈ Rn×d , where d is latent
dimensionality of each input vector of encoding layer. E can be
formulated as Equation 5.

E = EW E + bE (5)

whereW E ∈ R(dfeature+dpv)×d is the projection matrix and bE is
d-dimensional vector.

4.3 Encoding Layer
The goal of the encoding layer in Figure 1(a) is to integrate the
mutual influences of item-pairs and other extra information, in-
cludes the user preferences and the ranking order of the initial list
S. To achieve this goal, we adopt Transformer-like encoder because
Transformer[28] has been proven to be effective in many NLP tasks,
specially in machine translation for its powerful encoding and de-
coding ability compared to RNN-based approaches[10, 11, 17]. The
self-attention mechanism in Transformer is particularly suitable
in our re-ranking task as it directly models the mutual influences
for any two items regardless the distances between them. Without
distance decay, Transformer can capture more interactions between
items that are far away from each other in the initial list. As shown
in Figure 1(b), our encoding module consists of Nx blocks of Trans-
former encoder. Each block (Figure 1(a)) contains an attention layer
and a Feed-Forward Network (FFN) layer.

Attention Layer. The attention function we used in this paper
is defined as Equation 6:

Attention(Q,K,V) = softmax
(
QKT
√
d

)
V , (6)

where matricesQ,K,V represent queries, keys and values respec-
tively. d is the dimensionality of matrix K to avoid large value of
the inner product. softmax is used to convert the value of inner-
product into the adding weight of the value vector V . In our paper,
we use self-attention whereQ,K andV are projected from the same
matrices.

To model more complex mutual influences, we use the multi-
head attention as shown in Equation 7:

S
′

= MH(E) = Concat(head1, ..., headh)WO

headi = Attention(EWQ ,EW K ,EWV),
(7)

whereWQ ,W K ,WV ∈ Rd×d .WO ∈ Rhd×dmodel is the projection
matrix. h is the number of headers. The influence of different value
of h will be studied in the ablation study in the next section.

Feed-Forward Network. The function of this position-wise
Feed-Forward Network (FFN) is mainly to enhance the model with
non-linearity and interactions between different dimensions of the
input vectors.

Stacking the Encoding Layer. Here we use attention module
followed by the position-wise FFN as a block of Transformer[28]
encoder. By stacking multiple blocks, we can get more complex and
high-order mutual information.

4.4 Output Layer
The function of the output layer is mainly to generate a score for
each item i = i1, . . . , in (labeled as Score(i) in Figure 1 (b)). We use

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Changhua Pei et al.

...

xin

...

xi3

xi2

xi1

pvin

...

pvi3

pvi2

pvi1

+

+

+

+

pein

pei3

pei2

pei1

ein

...

ei3

ei2

ei1

...

FFN

...

FFN

FFN

FFN

...

Score(in)

...

Score(i3)

Score(i2)

Score(i1)

...

Attention Softmax

Nx blocks of Transformer encoder.

Initial
List

Input
Layer

Encoding
Layer

Output
Layer

Re-ranked
List

Dropout

Add & Norm

Multi-Head
Attention

Feed Forward

Dropout

Add & Norm

E

FFN

Attention

Layer1

...

Layern

sigmoid pvi

Hu item i user u

P(yi |Hu ,u;θ
′

)

(a) One block of
Transformer encoder. (b) Architecture of PRM. (c) The pre-trained model to

generate pvi, i = i1, ..., in.
Figure 1: The detailed network structure of our PRM (Personalized Re-ranking Model) and its sub-modules.

one linear layer followed by a softmax layer. The output of softmax
layer is the probability of click for each item, which is labeled
as P(yi |X ,PV ; θ̂). We use P(yi |X ,PV ; θ̂) as Score(i) to re-rank the
items in one-step. The formulation of Score(i) is:

Score(i) = P(yi |X ,PV ; θ̂) = softmax
(
F (Nx)W F + bF

)
, i ∈ Sr

(8)

where F (Nx) is the output of Nx blocks of Transformer encoder.
W F is learnable projection matrix, and bF is the bias term. n is the
number of items in the initial list.

In the training process, we use the click-through data as label
and minimize the loss function shown in Equation 9.

L = −
∑
r ∈R

∑
i ∈Sr

yi log(P(yi |X ,PV ; θ̂) (9)

4.5 Personalized Module
In this section, we introduce the approach to calculate the per-
sonalized matrix PV , which represents interactions between user
and items. The straightforward approach is to learn PV with PRM
model in an end-to-end manner via the re-ranking loss. However,
as explained in Section3, the re-ranking task is to refine the output
of previous ranking approaches. The task-specific representation
learned on re-ranking task lacks users’ generic preferences. There-
fore, we utilize a pre-trained neural network to produce user’s
personalized embeddings PV which are then used as extra features
for PRM model. The pre-trained neural network is learned from
the whole click-through logs of the platform. Figure 1(c) shows
the structure of pre-trained model used in our paper. This sigmoid
layer outputs the click probability (P(yi |Hu ,u;θ

′

)) on item i for
user u given user’s all behavior history (Hu) and the side informa-
tion of the user. The side information of user includes gender, age
and purchasing level, et.al. The loss of the model is calculated by a
point-wise cross entropy function which is shown in Equation 10.

L =
∑
i ∈D

(yi log(P(yi |Hu ,u;θ
′

))

+ (1 − yi) log(1 − P(yi |Hu ,u;θ
′

)),

(10)

where D is the set of items displayed to user u on the platform. θ ′

is the parameter matrix of pre-trained model. yi is the label (click
or not) on item i . Inspired by the work[13], we employ the hidden
vector before the sigmoid layer as the personalized vector pvi (in
Figure 1(c)) that feeds into our PRM model.

Figure 1(c) shows one possible architecture of the pre-trained
model, other general models such as FM[25], FFM[23], DeepFM[16],
DCN[30], FNN[36] and PNN[24] can also be used as alternatives to
generate PV .

5 EXPERIMENTAL RESUTLS
In this section, we first introduce the datasets and baselines used for
evaluation. Then we compare our methods with baselines on these
datasets to evaluate the effectiveness of our PRMmodel. At the same
time, the ablation study is conducted to help understand which part
of our model contributes most to the overall performance.

5.1 Datasets
We evaluate our approach based on two datasets: Yahoo! Webscope
v2.0 set 11 (abbreviated as Yahoo Letor dataset) and E-commerce
Re-ranking dataset2 To the best of our knowledge, there is no
publically available re-ranking dataset with context information for
recommendation. Therefore, we construct E-commerce Re-ranking
dataset from a popular e-commerce platform. The overview of two
datasets are shown in Table 2.

Yahoo Letor dataset. We process the Yahoo Letor dataset to
be fit for the ranking model of recommendation using the same
method in Seq2Slate[3]. Firstly, we convert the ratings (0 to 4)
to binary labels using a threshold Tb . Secondly, we use a decay
factor η to simulate the impression probabilities of items. All the
documents in Yahoo Letor dataset are rated by the experts under
the assumption that all documents for each query can be viewed by
the users compeletely. However, in the real world recommendation
scenario, items are viewed by the users in a top-down manner.
As the screen of the mobile App can only show limited number
of items, the higher the ranked position of one item, the smaller
1http://webscope.sandbox.yahoo.com
2Our dataset is available at https://github.com/rank2rec/rerank.

https://github.com/rank2rec/rerank

Personalized Re-ranking for Recommendation RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

Table 2: Overview of the datasets.

Yahoo Letor
Dataset

E-commerce
Re-ranking Dataset

#Users - 743,720
#Docs/Items 709,877 7,246,323
#Records 29,921 14,350,968
Relavance/Feedback {0,1,2,3,4} {0,1}

probability of that this item can be viewed by the user. In this
paper, we use 1/pos(i)η as the decay probability, where pos(i) is the
ranking position of item i in the initial list.

E-commerceRe-ranking dataset. The dataset contains a large-
scale records in form of click-through data from a real world recom-
mendation system. Each record in the dataset contains a recommen-
dation list for each user with users’ basic information, click-through
labels and raw features for ranking.

5.2 Baselines
Both learning to rank (LTR) and re-ranking methods can act as our
baselines.

LTR. The LTR methods are used in two tasks. Firstly, the LTR
methods can generate an initial list Sr for the re-ranking model
from a candidate set Ir for each user request r . Secondly, the LTR
methods which use pairwise or listwise loss function can act as
re-ranking methods by taking the initial list Sr as input and con-
ducting the ranking algorithm for another time. The representative
LTR methods used in this paper include:

• SVMRank[19]: This is a representative learning to rankmethod
which use the pairwise loss to model the scoring function.

• LambdaMart[5]: This is a representative learning to rank
method which use the listwise loss to model the scoring
function. LambdaMart is the state-of-the-art LTR among
those LTR methods equipped with the listwise loss function
according to [31]’s evaluation.

• DNN-based LTR: This is the learning to rank method which
is deployed in our online recommender system. It use the
standard Wide&Deep network structure[9] to model the
scoring function via the pointwise loss function.

Re-ranking. As mentioned in the related work section, the
existing re-ranking methods include DLCM[1], Seq2Slate[3] and
GlobalRerank[37]. DLCM[1] and GlobalRerank[37] focus on re-
ranking in information retrieval. Seq2Slate[3] focuses on re-ranking
in both recommendation and information retrieval. In this paper, we
only choose DLCM as baseline method. Seq2Slate and GlobalRerank
are not chosen as baselines because they all use the decoder struc-
ture to generate the re-ranked list. Seq2Slate uses pointer network
to generate re-ranked list sequentially. GlobalRerank uses RNN
equipped with attention mechanism as the decoder. The decoder
structure outputs the item one by one. Whether an item is selected
depends on the items which are chosen before it. As a consequence,
both Seq2Slate and GlobalRerank can not be parallelized in online
inference. The time complexity for Seq2Slate and GlobalRerank
at interference phase is O(n) × RT , where n is the length of the
initial list and RT is the time for a single ranking or re-ranking
request. The latency for re-ranking by Seq2Slate and GlobalRerank

is unacceptable because of the strict latency criterion for online
recommender service.

• DLCM[1]: It is a re-ranking model used in information re-
trieval based on the initial list generated by LTR methods.
The GRU is used to encode the local context information into
a global vector. Combing the global vector and each feature
vector, it learns a more powerful scoring function than the
global ranking function of LTR.

5.3 Evaluation Metrics
For offline evaluation, we use Precision and MAP to compare differ-
ent methods. More specifically, we use Precision@5, Precision@10
for precision and MAP@5, MAP@10 and MAP@30 for MAP. As the
maximum length of initial list in our experiments is 30, MAP@30
represents total MAP and is denoted by MAP in this paper. The
definitions of the metrics are as follows.

Precision@k is defined as the the fraction of clicked items in
the top-k recommended items for all test samples, as shown in
Equation 11.

Precision@k =
1
|R |

∑
r ∈R

∑k
i=1 1(Sr (i))

k
(11)

where R is the set of all user requests in the test dataset. Sr is
the ordered list of items given by the re-ranking model for each
request r ∈ R and Sr (i) is the i-th item. 1 is the indicator function
whether item i is clicked or not.

MAP@k is short for the mean average precision of all ranked
lists cut off by k in the test dataset. It is defined as follows.

MAP@k =
1
|R |

∑
r ∈R

∑k
i=1 Precision@i ∗ 1(Sr (i))

k
(12)

For online A/B test, we use PV, IPV, CTR and GMV as metrics. PV
and IPV are defined as the total number of items viewed and clicked
by the users. CTR is the clickthrough rate and can be calculated by
IPV/PV. GMV is the total amount of money (revenue) user spent
on the recommended items.

5.4 Experimental Settings
For both baselines and our PRM model, we use the same value for
those critical hyper parameters. The hidden dimensionality dmodel
is set to 1024 for Yahoo Letor dataset and 64 for E-commerce Re-
ranking dataset. The learning rate of Adam optimizer in our PRM
model is the same with [28]. Negative log likelihood loss function
is used as shown in Equation 9. pdropout is set to 0.1. The batch size
is set to 256 for Yahoo Letor dataset and 512 for E-commerce Re-
ranking dataset. These settings are got by fine-tuning the baselines
to achieve better performance. We also try different experimental
settings, the results are consistent with the current settings and
are ommited. The rest of the settings belonging to the customized
parts of our model will be listed at the corresponding parts in the
evaluation section.

5.5 Offline Experiments
In this section, we first conduct offline evaluations on Yahoo Letor
dataset and E-commerce Re-ranking dataset. Then we show the

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Changhua Pei et al.

results of online A/B test. We also conduct the ablation study to
help finding which part of our PRM model contributes most to the
performance.

5.5.1 Offline Evaluation on Yahoo Letor dataset. In this section,
we conduct evaluation on Yahoo Letor dataset to discuss the fol-
lowing questions:

• RQ0: Does our PRM model outperform the state-of-the-art
methods and why?

• RQ1: Does the performance vary according to initial lists
generated by different LTR approaches?

The evaluation results are shown in Table 3. We compare the
baselines and our PRM-BASE model based on two different initial
lists which are generated by LambdaMART and SVMRank respec-
tively. PRM-BASE is the variant of our PRM model without the
personalized module. Note that Yahoo Letor dataset does not con-
tain user-related information, thus we only conduct PRM-BASE
for comparison. SVMRank and LambdaMart are also used for re-
ranking. For SVMRank, we use the implementation in [19]. For
LambdaMart, we use the implementation from RankLib3.

Table 3 shows that our PRM-BASE achieves stable and significant
performance improvements comparing with all baselines. When
based on the initial list generated by SVMRank, PRM-BASE out-
performs DLCM by 1.7% at MAP and 1.4% at Precision@5. The
gap gets larger when comparing with SVMRank which has 5.6%
increase at MAP and 5.7% increase at Precision@5. When based on
the initial list generated by LambdaMART, PRM-BASE outperforms
DLCM by 0.7% at MAP and 2.1% at Precision@5. PRM-BASE also
achieves 2.6% improvements on MAP and 3.1% improvements on
Precision@5 comparing with LambdaMART .

PRM-BASE uses the same training data as DLCM and does not
contain the personalizedmodule. The performance gain over DLCM
mainly comes from the powerful encoding ability of Transformer.
Multi-head attention mechanism performs better at modeling mu-
tual influence between two items, especially when the length of
encoding list gets longer[20]. In our model, the attention mecha-
nism can model the interactions of any item-pairs in O(1) encoding
distance.

As PRM-BASE uses the Transformer-like structure, there are
many sub-modules which may contribute to the performance. We
conduct the ablation study to help us understand which sub-design
helps the most to beat the baselines. The ablation study is conducted
on the initial list generated by SVMRank. Similar results were found
when using the initial list generated by LambdaMART and we
omits the results in this paper as space is limited. Table 4 show the
results of ablation in three parts: The first part (first row) shows the
performance of the baseline DLCM. The second part (second row)
“Default” is the best performance of our PRM-BASE model. The
third part (the remaining rows) shows different ablation variants
of our PRM model which include: remove position embedding
(PE), remove residual connection (RC), remove dropout layer, use
different number of blocks and use different number of heads in
multi-head attention. Note that we set b=4 and h=3 in our “Default”
PRM model.

3https://sourceforge.net/p/lemur/wiki/RankLib/

As shown in Table 4, the performance of our model degrades
greatly after removing position embedding. This confirms the im-
portance of sequential information given by the initial list. After
removing the position embedding, our model learns the scoring
function from the candidate set instead of an ordered list. Note
that even without position embedding, our PRM-BASE still achieve
comparable performance with DLCM, which further confirms that
our PRM-BASE model can encode the initial list more effectively
than DLCM.

The MAP of our model slightly decreases by 0.1% and 0.7% re-
spectively when removing residual connections and dropout layer,
which indicates that our model is less severe to the problems such
as gradients vanishing and overfitting. The performance of our
model first increases with the number of blocks (1->2->4) and de-
creases afterwards (4->6->8), as overfitting happens when we stack
8 encoding blocks together.

We also tried different settings(h = 1, 2, 3, 4) in the multi-head
attention layer. No significant improvements are observed in Ta-
ble 4, which is different from the conclusions derived from NLP
tasks[26]. The experiments in NLP show that when using more
heads in multi-head attention mechanism, it is usually helpful since
more information can be captured for the following reasons. (1)
From Equation 7 we find that the function of each head is playing a
role of mapping the original feature vector into a different subspace.
Thus using more heads, we can model more interactions of items
in different sub-spaces. (2) [26] indicates that using more heads is
helpful in encoding the information of long sequence. This is rea-
sonable because the output vector for a certain item is the weighted
sum of all item vectors in the list. When the sequence becomes
longer, each item in the list contributes less to the output vector.
However, in our re-ranking settings, all the items in the initial list
are highly homogenous. There are minor improvements when map-
ping the original feature vector into more different subspaces. As a
consequence, we suggest to use only one head to save computation
costs because the performance improvements are not obvious.

5.5.2 Offline Evaluation on E-commerce Re-ranking dataset. We
conduct the offline evaluation on E-commerce Re-ranking dataset
to answer the following question.

• RQ2: What is the performance of our PRM model equipped
with personalized module?

The evaluation results are shown in Table 5. For our PRMmodels,
we not only evaluated the performance of PRM-BASE, but also
evaluated the performance of the variant of model equipped with
the pre-trained personalized vector PV , which is labelled as PRM-
Personalized-Pretrain. As our previous evaluation on Yahoo Letor
dataset already confirms that our model and DLCM achieve better
performance in all metrics and DLCM[1] also has consistent results,
we omit the comparison with SVMRank and LambdaMART on our
E-commerce Re-ranking dataset. The initial list is generated by
a DNN-based LTR method which is deployed in our real world
recommender system.

Table 5 shows consistent results with Table 3 when comparing
PRM-BASE with DLCM. Our PRM-BASE outperforms DLCM by
2.3% at MAP and 4.1% at Precision@5. Recall that on Yahoo Letor
dataset, PRM-BASE achieves 1.7% improvements on MAP and 1.4%

https://sourceforge.net/p/lemur/wiki/RankLib/

Personalized Re-ranking for Recommendation RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

Table 3: Offline evaluation results on Yahoo Letor dataset.

Init. List Reranking Yahoo Letor dataset.
Precision@5(%) Precision@10(%) MAP@5(%) MAP@10(%) MAP(%)

SVMRank

SVMRank 50.42 42.25 73.71 68.28 62.14
LambdaMART 51.35 43.08 74.94 69.54 63.38

DLCM 52.54 43.26 76.52 70.86 64.50
PRM-BASE 53.29 43.66 77.62 72.02 65.60

LambdaMART

SVMRank 50.41 42.34 73.82 68.27 62.13
LambdaMART 52.04 43.00 75.77 70.49 64.04

DLCM 52.54 43.16 77.81 71.88 65.24
PRM-BASE 53.63 43.41 78.62 72.67 65.72

Table 4: Ablation study of PRM-BASE on Yahoo Letor
datasets with the initial list generated by SVMRank. All the
numbers in the table are multiplied by 100.

Yahoo Letor dataset
P@5 P@10 MAP@5 MAP@10 MAP

DLCM 52.54 43.26 76.52 70.86 64.50
Default(b=4,h=3) 53.29 43.66 77.62 72.02 65.60
Remove PE 52.55 43.56 76.11 70.74 64.73
Remove RC 53.24 43.63 77.52 71.92 65.52
Remove Dropout 53.17 43.42 77.41 71.80 65.17
Block(b=1) 53.12 43.59 77.58 71.91 65.49
Block(b=2) 53.19 43.58 77.51 71.86 65.49
Block(b=6) 53.22 43.63 77.64 72.02 65.61
Block(b=8) 52.85 43.32 77.43 71.65 65.14
Multiheads(h=1) 53.17 43.67 77.65 71.96 65.55
Multiheads(h=2) 53.29 43.60 77.68 72.00 65.57
Multiheads(h=4) 53.20 43.61 77.72 72.00 65.58

improvements on Precision@5. The performance gain on our E-
commerce Re-ranking dataset is much larger than on Yahoo Letor
dataset. This is highly related with the properties of Yahoo Letor
dataset. Our statistics of the Yahoo Letor dataset show that the
average click through rate is 30%, which mean that for each query
with 30 recommended documents, about 9 documents are clicked by
the users. However, the average click-through rate in our real world
E-commerce Re-ranking dataset is no more than 5%. It means that
ranking on Yahoo Letor dataset is much easier than on E-commerce
Re-ranking dataset. This is also confirmed by the value of MAP for
the same ranking methods on two datasets: DLCM can achieve 0.64
MAP on Yahoo Letor dataset but can only achieve 0.28 MAP on
E-commerce Re-ranking dataset. Combining Table 5 and Table 3,
we find that the harder the ranking task, the larger improvements
of our PRM model.

Table 5 shows that our PRM-Personalized-Pretrain achieves sig-
nificant performance improvements comparing with PRM-BASE.
PRM-Personalized-Pretrain outperforms PRM-BASE by 4.5% at
MAP and 6.8% at Precision@5. This is mainly imported by the
personalized vector PV , which is learned by a pre-trained model
whose architecture is illustrated in Figure 1 (c). PRM-Personalized-
Pretrain has two advantages: (1) The pre-trained model can fully
utilize longer period of users’ logs to provide more generic and

representative embeddings of users’ preferences. (2) Equipped with
long term and generic user embedding, our PRM model is able to
learn better user-specific encoding function which can more pre-
cisely capture mutual influences of item-pairs for each user. Note
that the architecture of the pre-trained model is not highly coupled
with our PRM model, other general models[16, 23, 24, 30, 36] can
also be used as alternatives to generate PV .

5.6 Online Experiments
We also conduct online A/B test at a real world e-commerce recom-
mender system on online metrics which includes PV, IPV, CTR and
GMV. The meaning of these metrics is explained in the previous
“Evaluation Metrics” section. These metrics evaluate how much
willingness for users to view (PV), click (IPV, CTR) and purchase
(GMV) in a recommender system. For each algorithm, there are
hundreds of thousands of users and millions of requests for online
test.

Table 6 shows the relative improvements of three methods to an
online base ranker (DNN-based LTR). Firstly, the online A/B test
shows that re-ranking helps increase the online metrics no matter
what kinds of re-ranking methods are. Again, we can conclude that
re-ranking helps improving the performance by considering the
mutual influences of items in the initial list. It is noteworthy that
0.77% increase (DLCM v.s. Without re-ranking) on PV is significant
in our online system because it means that about billions of extra
items are viewed by the users after using the re-ranking method.
Secondly, we can conclude that our PRM-BASE model brings an
extra 0.50% absolute increase on viewed items and extra 0.69%
absolute increase on clicked items compared with DLCM. Lastly,
by using the personalized module, our PRM-Personalized-Pretrain
model can further improve the GMV by 6.29% absolute increase
compared with PRM-BASE. Recall that in offline experiments on
E-commerce Re-ranking dataset, PRM-Personalized-Pretrain has
4.5% increase at MAP compared with PRM-BASE. The result shows
that personalized encoding function with pre-trained users’ repre-
sentations can help capture more precise interactions of item-pairs
and bring significant performance gain for re-ranking method.

5.7 Visualizing Attention Weights
We visualize the attention weights learned by our model to answer
the following question.

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Changhua Pei et al.

Table 5: Offline evaluation results on E-commerce Re-ranking dataset.

Init. List Re-ranking E-commerce Re-ranking dataset.
Precision@5 Precision@10 MAP@5(%) MAP@10(%) MAP(%)

DNN-based LTR
DLCM 12.21 9.73 29.32 30.28 28.19

PRM-BASE 12.71 9.99 29.80 30.83 28.85
PRM-Personalized-Pretrain 13.58 10.52 31.18 32.12 30.15

Table 6: Performance improvements in online A/B test com-
pared with a DNN-based LTR without re-ranking method.

Reranking PV IPV CTR GMV
DLCM 0.77% 1.75% 0.97% 0.13%
PRM-BASE 1.27% 2.44% 1.16% 0.36%
PRM-Personalized-Pretrain 3.01% 5.69% 2.6% 6.65%

w
o
m

e
n
's

cl
o
th

in
g

w
o
m

e
n
's

sh
o
e
s

m
e
n
's

cl
o
th

in
g

m
e
n
's

sh
o
e
s

co
m

p
u
te

r

m
o
b
ile

p
h
o
n
e

h
o
m

e
a
p
p
lia

n
ce

women's
clothing

women's
shoes

men's
clothing

men's
shoes

computer

mobile
phone

home
appliance

(a) Category.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

(b) Price.

Figure 2: Average attention weights related to items’ at-
tributes.

• RQ3: Can self-attention mechanism learn meaningful in-
formation with respect to different aspects, for example,
positions and characteristics of items?

Attention on Characteristics. We first visualize the average
attention weights between items on two characteristics: category
and price. The results calculated on the test dataset are shown in
Figure 2. Each block in the heatmap represents the average atten-
tion weights between items belonging to seven main categories.
The darker the block, the larger the weight. From Figure 2(a) we can
conclude that the attention mechanism can successfully capture
mutual-influences in different categories. The items with similar
categories tend to have larger attention weights, indicating larger
mutual influences. For example, “men’s shoes” has more influences
on “women’s shoes” than on “computer”. It is also easy to under-
stand that “computer”, “mobile phone” and “home appliance” have
large attention weights with each other because they are all elec-
tronics. Similar cases can be observed in Figure 2(b). In Figure 2(b),
we classify the items into 7 levels according to their prices. The
closer price between items, the larger the mutual influences.

Attention on Positions. The visualization of average attention
weights on different positions in the initial list is shown in Figure 3.
Firstly, Figure 3(a) showed the self-attention mechanism in our
model can capture the mutual influences regardless of the encoding

1 5 10 15 20 25 30

1

5

10

15

20

25

30

(a) With position embedding.

1 5 10 15 20 25 30

1

5

10

15

20

25

30

(b) Without position embedding.

Figure 3: Average attention weights on positions in the ini-
tial list of two PRMmodels: w/o position embedding.

distances as well as the position bias in recommendation list. Items
ranked ahead of the list usually is more likely to be clicked and
thus have more influences on those items at the tail of the list. For
example, we observe that items at the first position have larger
impacts on items at 30th position than those items at 26th position
even though the latter is more closer to it. The effect of position
embeddings is also obvious compared with the Figure 3(b), whose
attention weights between each position are more uniformally
distributed.

6 CONCLUSION AND FUTUREWORK
In this paper, we proposed a personalized re-ranking model (PRM)
to refine the initial list given by state-of-the-art learning to rank
methods. In the re-ranking model, we used Transformer network
to encode both the dependencies among items and the interactions
between the user and items. The personalized vector can bring
further performance improvements to the re-ranking model. Both
the online and offline experiments demonstrated that our PRM
model can greatly improve the ranking performance on both pub-
lic benchmark dataset and our released real-world dataset. Our
released real-world dataset can enable researchers to study the
ranking/re-ranking algorithms for recommendation systems.

Our work explicitly models the complex item-item relationships
in the feature space. We believe that optimization in the label space
can also helps. The pair-wise or list-wise loss function aims to dig
more information in label space. It is interesting to construct more
pair-wise or list-wise ordering relations (e.g. order by stay time) in
click-through data. Another future direction is learning to diversify
by re-ranking. Even though our model does not hurt the ranking
diversities in practice. It is worthy to try to introduce the goal of
diversification into our re-ranking model. We will further explore
this direction in the future work.

Personalized Re-ranking for Recommendation RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

REFERENCES
[1] Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018. Learning a Deep

Listwise Context Model for Ranking Refinement. arXiv preprint arXiv:1804.05936
(2018).

[2] Qingyao Ai, Xuanhui Wang, Nadav Golbandi, Michael Bendersky, and Marc
Najork. 2018. Learning groupwise scoring functions using deep neural networks.
arXiv preprint arXiv:1811.04415 (2018).

[3] Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig Boutilier, Ed Chi, Elad Eban,
Xiyang Luo, Alan Mackey, and Ofer Meshi. 2018. Seq2Slate: Re-ranking and Slate
Optimization with RNNs. arXiv preprint arXiv:1810.02019 (2018).

[4] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd international conference on Machine learning. ACM, 89–96.

[5] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

[6] Christopher J Burges, Robert Ragno, and Quoc V Le. 2007. Learning to rank with
nonsmooth cost functions. In Advances in neural information processing systems.
193–200.

[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. ACM, 129–136.

[8] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In Proceedings of
the 21st annual international ACM SIGIR conference on Research and development
in information retrieval. ACM, 335–336.

[9] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems (DLRS 2016). ACM, New
York, NY, USA, 7–10. https://doi.org/10.1145/2988450.2988454

[10] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259 (2014).

[11] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[12] David Cossock and Tong Zhang. 2008. Statistical analysis of Bayes optimal subset
ranking. IEEE Transactions on Information Theory 54, 11 (2008), 5140–5154.

[13] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. ACM, 191–198.

[14] Yajuan Duan, Long Jiang, Tao Qin, Ming Zhou, and Heung-Yeung Shum. 2010.
An empirical study on learning to rank of tweets. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics. Association for Computational
Linguistics, 295–303.

[15] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[16] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-machine Based Neural Network for CTR Prediction.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI’17). AAAI Press, 1725–1731. http://dl.acm.org/citation.cfm?id=3172077.
3172127

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (Nov. 1997), 1735–1780.

[18] Thorsten Joachims. 2002. Optimizing search engines using clickthrough data.
In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 133–142.

[19] Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data

mining. ACM, 217–226.
[20] Wang-Cheng Kang and Julian McAuley. 2018. Self-Attentive Sequential Recom-

mendation. arXiv preprint arXiv:1808.09781 (2018).
[21] Ping Li, Qiang Wu, and Christopher J Burges. 2008. Mcrank: Learning to rank

using multiple classification and gradient boosting. In Advances in neural infor-
mation processing systems. 897–904.

[22] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval 3, 3 (2009), 225–331.

[23] Weiwen Liu, Ruiming Tang, Jiajin Li, Jinkai Yu, Huifeng Guo, Xiuqiang He, and
Shengyu Zhang. 2018. Field-aware Probabilistic Embedding Neural Network
for CTR Prediction. In Proceedings of the 12th ACM Conference on Recommender
Systems (RecSys ’18). ACM, New York, NY, USA, 412–416. https://doi.org/10.1145/
3240323.3240396

[24] Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng
Guo, Yong Yu, and Xiuqiang He. 2018. Product-Based Neural Networks for User
Response Prediction over Multi-Field Categorical Data. ACM Trans. Inf. Syst. 37,
1, Article 5 (Oct. 2018), 35 pages. https://doi.org/10.1145/3233770

[25] Steffen Rendle. 2010. Factorization Machines. In Proceedings of the 2010 IEEE
International Conference on Data Mining (ICDM ’10). IEEE Computer Society,
Washington, DC, USA, 995–1000. https://doi.org/10.1109/ICDM.2010.127

[26] Gongbo Tang, Mathias Müller, Annette Rios, and Rico Sennrich. 2018. Why
self-attention? a targeted evaluation of neural machine translation architectures.
arXiv preprint arXiv:1808.08946 (2018).

[27] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. 2008. Softrank:
optimizing non-smooth rank metrics. In Proceedings of the 2008 International
Conference on Web Search and Data Mining. ACM, 77–86.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems. 5998–6008.

[29] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In
Advances in Neural Information Processing Systems. 2692–2700.

[30] Ruoxi Wang, Bin Fu, Gang Fu, and MingliangWang. 2017. Deep & Cross Network
for Ad Click Predictions. In Proceedings of the ADKDD’17 (ADKDD’17). ACM,
New York, NY, USA, Article 12, 7 pages. https://doi.org/10.1145/3124749.3124754

[31] Liang Wu, Diane Hu, Liangjie Hong, and Huan Liu. 2018. Turning Clicks into
Purchases: Revenue Optimization for Product Search in E-Commerce. In The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval (SIGIR ’18). ACM, New York, NY, USA, 365–374. https://doi.org/10.1145/
3209978.3209993

[32] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
approach to learning to rank: theory and algorithm. In Proceedings of the 25th
international conference on Machine learning. ACM, 1192–1199.

[33] Jun Xu and Hang Li. 2007. Adarank: a boosting algorithm for information
retrieval. In Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, 391–398.

[34] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang,
Jianhui Chen, Changsung Kang, Hongbo Deng, Chikashi Nobata, Jean-Marc
Langlois, and Yi Chang. 2016. Ranking Relevance in Yahoo Search. In Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’16). ACM, New York, NY, USA, 323–332. https://doi.org/10.
1145/2939672.2939677

[35] ChengXiang Zhai, William W Cohen, and John Lafferty. 2015. Beyond indepen-
dent relevance: methods and evaluation metrics for subtopic retrieval. In ACM
SIGIR Forum, Vol. 49. ACM, 2–9.

[36] Jie Zhou, Ying Cao, Xuguang Wang, Peng Li, and Wei Xu. 2016. Deep recurrent
models with fast-forward connections for neural machine translation. arXiv
preprint arXiv:1606.04199 (2016).

[37] Tao Zhuang, Wenwu Ou, and Zhirong Wang. 2018. Globally Optimized Mutual
Influence Aware Ranking in E-Commerce Search. arXiv preprint arXiv:1805.08524
(2018).

https://doi.org/10.1145/2988450.2988454
http://dl.acm.org/citation.cfm?id=3172077.3172127
http://dl.acm.org/citation.cfm?id=3172077.3172127
https://doi.org/10.1145/3240323.3240396
https://doi.org/10.1145/3240323.3240396
https://doi.org/10.1145/3233770
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1145/3124749.3124754
https://doi.org/10.1145/3209978.3209993
https://doi.org/10.1145/3209978.3209993
https://doi.org/10.1145/2939672.2939677
https://doi.org/10.1145/2939672.2939677

	Abstract
	1 Introduction
	2 Related Work
	3 Re-ranking Model Formulation
	4 Personalized Re-ranking Model
	4.1 Model Architecture
	4.2 Input Layer
	4.3 Encoding Layer
	4.4 Output Layer
	4.5 Personalized Module

	5 Experimental Resutls
	5.1 Datasets
	5.2 Baselines
	5.3 Evaluation Metrics
	5.4 Experimental Settings
	5.5 Offline Experiments
	5.6 Online Experiments
	5.7 Visualizing Attention Weights

	6 Conclusion and Future Work
	References

