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Abstract—The Web today has gone far beyond a tool for sim-
ply posting and retrieving information, but a universal platform
to accomplish various kinds of tasks in daily life.

However, research and application of personalized recom-
mendation are still mostly restricted to intra-site vertical recom-
menders, such as video recommendation in YouTube, or product
recommendation in Amazon. Usually, they treat users’ historical
behaviors as discrete records, extract collaborative relations
therein, and provide intra-site homogeneous recommendations,
without specific consideration of the underlying tasks that inher-
ently drive users’ browsing actions.

In this paper, we propose task-based recommendation to offer
cross-site heterogenous item recommendations on a Web-scale,
which better meet users’ potential demands in a task, e.g., one
may turn to Amazon for the dress worn by an actress after
watching a video on YouTube, or may turn to car rental websites
to rent a car after booking a hotel online. We believe that task-
based recommendation would be one of the key components to the
next generation of universal web-scale recommendation engines.

Technically, we formalize tasks as demand sequences em-
bedded in user browsing sessions, and extract frequent demand
sequences from large scale browser logs recorded by a well known
commercial web browser. Based on these demand sequences,
we predict the upcoming demand of a user given the current
browsing session, and further provide personalized heterogeneous
recommendations that meet the predicted demands. Extensive ex-
periments on cross-site heterogenous recommendation with real-
world browsing data verified the effectiveness of our framework.

Keywords—Task-based recommendation; Task mining; Demand
prediction; Collaborative filtering; Browser log analysis

I. INTRODUCTION

With the ability to recommend items of potential interests
to users, the importance of personalized recommender systems
[1] has been recognized in various online applications, such as
video recommendation in YouTube, product recommendation
in Amazon, and friend recommendation in Facebook. However,
the research and application of personalized recommendation
techniques are still mostly focused on vertical domains, which
typically provide intra-site homogeneous recommendations of
items within the website.

However, with the fast webifying of our physical world,
many of our daily activities that previously can only be
conducted offline, are now easily performed online. These
include shopping, learning, entertaining, socializing and many
business affairs. The Web has been far more than a tool
for gathering information, but an integrated platform where
a large amount of daily tasks can be accomplished, which has
fundamentally changed the way people use the Web.

The accomplishment of many tasks require the collabo-
ration of heterogeneous items across different websites. For
example, a user who makes travel arrangements for an up-
coming holiday may need to buy air tickets from an airline
website, book hotels on a hotel reservation website, and
further turn to car rental websites for local car rentals. This
inherently task-driven consecutive series of actions on multiple
websites has highlighted the importance of developing (cross-
site) heterogenous recommendation techniques, that help users
to discover items of potential needs from a wider scope outside
the current single site.

The research on Personalized Recommender Systems
(PRS) [1] has long been focusing on Collaborative Filtering
(CF)-based [2] and the related techniques, without explicit
mining, modeling, and prediction of the underlying tasks and
diverse needs that inherently dictate users’ browsing behaviors.
Here, we argue that a clear understanding of users’ potential
demands during the browsing process is of fundamental im-
portance, because the expectation of de facto intelligent Web
services could hardly be possible if we ignore the inherently
coherent task flows of human beings and simply model them
as a set of discrete records, especially in personalized recom-
mendation settings.

To bring the research on recommender systems a step
closer towards a key component for the next generation of
intelligent Web, we propose a heterogeneous task-based rec-
ommendation framework. It attempts to predict the upcoming
demands of a user by analyzing the historical browsing records
of users and the nature of current task. The framework serves
as a universal recommendation engine during the browsing
process, by providing recommendations on heterogeneous
items from multiple websites that meet user’s ongoing tasks.

To achieve this goal, one of the key problems is the
real-time prediction of user demands. For example, current
video sharing websites would provide a recommendation list
consisting of other related films within this site for a user who
has just finished watching the film Titanic, as shown by the
top-right part of Figure 1. This vertical recommendation is in
fact assuming that users’ demand is still to watch more films,
which may not be true especially given that he/she has spent
hours finishing the previous one. In this case, the system can
better meet the potential demand of users with heterogeneous
recommendations, such as the product Ocean Heart Necklace
(clue of the film) from Amazon; the sound track of My Heart
Will Go On (theme song of the film) from Pandora; or even
a related online game from Yahoo! Games, as shown in the
bottom-right part of Figure 1.

The task mining and demand prediction at Web-scale has
been extremely difficult for an individual website, because of
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the technical difficulty of collecting users’ cross-site browsing
behaviours from other websites, which leads to the lack of
sufficient data for demand estimation. However, the existence
of modern browsers has now made it easy for Web-scale data
collection and analysis, and the huge amount of browser logs
makes it possible to conduct Web-scale task mining and de-
mand prediction for heterogenous task-based recommendation.

In this work, we treat the users’ browsing sessions recorded
by browsers as demand sequences, where each demand is
represented by a set of websites of the same category that
satisfy a particular user need. For example, Amazon and eBay
are for the same demand of online shopping, while YouTube
is for the demand of online videos. Note that the demand does
not necessarily mean that the user has a targeted intent for
the follow-on browsing actions, rather, it signifies a kind of
potential need that may be of interest to the user.

We conduct frequent demand sequence mining based on a
large collection of browsing session records to extract tasks,
which indicate how users’ demands drift during the browsing
process. This helps us to predict the follow-on demands of
a user given his/her browsing records in the current session.
Once the follow-on demands for a user are predicted in the
current browsing session, we can further provide task-based
recommendations with items that meet with the predicted
potential demands of the user.

The rest of the paper is organized as follows: We review
related works in Section II, and introduce the problem formal-
ization in Section III. We present our framework for task-based
recommendation in Section IV, including task mining, demand
prediction, and the construction of personalized heterogenous
recommendation lists. Experimental results are presented in
Section V, and we conclude this work with some of the future
research directions in Section VI.

II. RELATED WORK

With the ability to help discover items of potential interests
to users, Personalized Recommender Systems (PRS) [3] have
been widely integrated into many online applications, such as
e-commerce, social networks, and online review services. Early
systems for personalized recommendation rely on content-
based approaches [4], which make recommendations by an-
alyzing item features or user demographics. Recently, the
Collaborative Filtering (CF)-based [2] approaches, especially
those based on various Matrix Factorization (MF) [5] tech-
niques, have gained great popularity due to their free from
human efforts, superior performance in the precision of rating
prediction, and the ability to leverage the wisdom of crowds.

However, the research of personalized recommendation,
including the dominating CF-based methods, have long been
reluctantly or even intentionally ignoring the explicit mining,
modeling, and predicting of user’s demands. Typically, they
treat users’ historical behavior logs as discrete records, and
attempt to estimate latent representations in machine learning
frameworks for rating prediction [2]. However, it has been
shown that the performance on numerical rating prediction
is not necessarily related to the performance of recommen-
dation in practical systems [6]. As a result, the explicit
consideration of users’ potential demands for more informed

Fig. 1. Previous vertical recommender systems provide intra-site homoge-
neous recommendation results, while heterogeneous task-based recommenda-
tion can provide cross-site heterogeneous recommendations that may better
meet users’ demands.

recommendations may be important in the practical application
of recommender systems.

For a relatively long period, and especially in the recent
years, the research community of Information Retrieval (IR)
has been investigating task-based search [7], [8], [9], [10], [11],
which helps users to better reach the targeted information by
mining and modeling users’ task behaviors. Among the many
research efforts for task-based search, one of the key problems
is the task-based mining of user intents [12], [13], [14], [15],
which states the importance to gain a better understanding of
users in IR tasks.

Recently, Wang et al [16] investigated session-aware rec-
ommendation in E-commerce. By taking session-level tempo-
ral effects into account, recommendations with logical causal
relationships can be provided in a session. However, the
sessions investigated are still within intra-site homogeneous
(e-commerce products) purchasing behaviors of users, which
differs from the practical tasks in our definition that users
fulfill on the Web-scale. Zhang et al [17], on the other hand,
propose to investigate cross-site recommendation based on
Bordered Block Diagonal Form (BBDF) structured matrices,
thus to bridge the heterogeneous data from different websites.
However, the scalability limitation makes such approaches
only able to handle a small number of websites, and they
still rely on simple MF-based rating predictions without the
consideration of tasks. Besides, both of the approaches model
user behaviours on products directly, which inherently avoided
the explicit mining of user demands.

To help users discover things of potential interests through-
out the process of browsing the Web, we propose task-based
recommendation that provides heterogeneous recommenda-
tions. Fortunately, the presence of many modern web browsers
today has made it technically easy to collect various user
browsing behaviors from all aspects [18].

Similar to the research on task-based search [12], [13],
[14], task-based recommendation takes the mining and predict-
ing of user demands as a core component, because a correct
understanding of the users has long been considered as of
crucial importance not only to various online applications, but
also to the whole intelligence of the Web [19]. The extraction
of users’ demand sequence patterns requires Frequent Pattern
Mining (FPM) techniques [20], [21], which is a key research
topic in the community of data ming.

The research of FPM investigates algorithms for a wide
scope of data mining problems, including frequent item set
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mining [22], association rule mining [23], frequent sequence
mining [24], [25], [26], and frequent tree or graph mining
[27], [28]. In this work, we formalize user browsing tasks as
demand sequences, and we thus focus on frequent sequence
mining algorithms [24] to extract tasks from browser logs,
based on which to predict the upcoming demands of a user
given his/her browsing records in the current session. Task-
based personalized recommendations are thus provided to meet
with the predicted demands of the users.

III. PROBLEM FORMALIZATION

In this section, we present some of the key concepts and
definitions in this work.

Definition 1: A link l is the URL of a specific page or item
on the Web, which is recorded in the browser logs. A website
w is the second-level domain of URLs, e.g., music.google.com,
developed for a specific user need.

Note that each link l is included in a single website w,
which is the second-level domain of l. For example, let w =
www.ebay.com, then l = www.ebay.com/itm/131380177014
refers to a product item in the website.

Definition 2: A demand d ∈ D = {d1, d2, · · · , dm}
describes a specific type of user need, where D is the set
of all possible demands that we consider. A demand is
identified as a collection of functionally similar websites, i.e.,
di = {wi1, wi2, · · · , wini}.

We distinguish the demands of different websites by their
second-level domains. For example, music.google.com is of
the same demand (music) as music.yahoo.com. However, they
are different from the demand (news) of news.google.com.
We adopt the frequently used web directory from the Open
Directory Project1 (ODP) for website demand classification,
and a demand d corresponds to a category in ODP.

Definition 3: We use l ∈ w to denote that l belongs to
website w. We set the demand implied by a link l to be the
same as w, i.e., if l ∈ w and w ∈ d, then l ∈ d.

Definition 4: A session s is an ordered browsing sequence
recorded by the browser. In this work, we introduce the
following three forms in progressive order to describe a session
recorded by the web browser:

• s = 〈ws1ws2 · · ·wsns〉 is an initial session recorded
by the browser, where wsi = 〈l1sil2si · · · lnsi

si 〉 is a
sequence of links that a user browsed consecutively
in the same website, as it is usually seen that users
tend to browse in the same website for a continuous
period of time.

• s = 〈ds1ds2 · · · dsns
〉 is a demand session deduced

from an initial session, where dsi is the demand
corresponding to wsi, i.e., wsi ∈ dsi.

• Users frequently turn to search engines or navigational
pages to find target sites. However, the search engine
or navigational pages are out of our consideration
for recommendation. We thus remove the search and
navigation demands to get a clear demand session.

1http://www.dmoz.org

In this work, a session is identified from the time the user
enters the browser, including both launching the browser and
switching to the browser from another application, until the
time the user leaves the browser, including both shutting down
the browser and switching to another application.

Definition 5: A task t = 〈dt1, dt2, · · · , dtp〉 is a demand
sequence showing the drifting of users’ demands when brows-
ing, and the length p = |t| is referred to as its order.

Given a database of clear demand sessions S =
{s1, s2, · · · , sn}, where |S| = n, si = 〈di1di2 · · · dini〉; and
a minimum support threshold smin ∈ N, 0 < smin ≤ n; then
the task t is frequent if supS(t) ≥ smin, where supS(t) is
the support of task t in S , i.e., supS(t) = |{si ∈ S|t � si}|.
t � si means that t is a subsequence of si, namely, there exist
integers 1 ≤ j1 < j2 < · · · < jp ≤ ni such that dijk = dtk.

Definition 6: Given the demand set D, the database of
clear demand sessions S , and the minimum support thresh-
old smin, the task mining procedure finds the set of fre-
quent demand sequences (i.e., task set) TS(smin) = {t =
〈dt1dt2 · · · dtp〉|p ≥ 2, dti ∈ D, supS(t) ≥ smin}.

We adopt the clear demand sessions for task mining, and
use the initial sessions to provide personalized recommenda-
tions collaboratively once the upcoming demands of a user
is predicted based on the extracted tasks. The reason that
we avoid conducting CF on the initial sessions directly for
recommendation, is the inherent difficulty for effective CF on
the rather sparse Web-scale data. Besides, the understanding of
users through explicit mining and prediction of users’ demands
is especially important in the scenario of heterogeneous rec-
ommendation. However, we will provide the results of direct
CF methods in the experiments for performance comparison.

For easy reference, the notations used in the definitions of
this work are summarized in Table I.

IV. TASK-BASED RECOMMENDATION

In this section, we present a two-stage framework for task-
based recommendation. The system overview of our frame-
work is shown in Figure 2.

In the first stage, we collect large scale browser logs of
users and construct the initial session records. Based on the
website classification system of ODP, the initial sessions are
then transformed to demand sessions, and the task set (i.e.,
frequent demand sequences) are further extracted from these
demand sessions through task mining.

TABLE I. A SUMMARY OF THE NOTATIONS USED.

l Links that compose the initial browsing sessions
w Website, represented by its second-level domain
d Demand, represented by a set of website domains
D The set of all possible demands, where |D| = m
s Session, i.e., a sequence of links (in an initial session)

or demands (in a demand session)
S The set of session records for task mining, |S| = n
t Task, i.e., a frequent demand sequence, where p = |t|

is the order of task t
supS(t) The support of task t in session records S
smin Minimum support, where smin ∈ N, 0 < smin ≤ n
TS The task set (a set of frequent demand sequences)

extracted from S by task mining
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The second stage examines a user’s current browsing
session. Based on the current browsing session and the task
set constructed in stage one, the system predicts the upcoming
demands of the user, and provides heterogeneous item recom-
mendations that meet with the predicted demands.

In the followings, we introduce the technical details of our
task-based recommendation framework.

A. Collaborative Task Mining

The procedure of task mining presented by Definition 6
generally boils down to a frequent sequence mining problem,
which has been investigated extensively by the Data Mining
research community [20].

One may refer to Table II for an example of the task
mining produce. In this work, we extract not only the closed
sequences2 but all the demand sequences that are frequent in
the database of demand sessions. In other words, we include
those “shot” tasks (tasks with lower orders) in our extracted
task set as long as they are frequent in the demand sessions,
no matter whether they are the subsequences of some “longer”
tasks. This is to guarantee that we can extract those short
but very frequent tasks, as they may exposit clear relations
between demands. However, if we restrict ourselves to the
mostly adopted closed frequent sequence mining algorithms,
these short tasks may be excluded from the final task set by
longer but less frequent (yet still frequent enough to satisfy
the minimum support threshold) tasks.

TABLE II. AN EXAMPLE OF THE TASK MINING PROCEDURE.

Session
records

Session1: Video,E-commerce,Music,News,News
Session2: Game,Video,E-commerce,Sports,Game,Video
Session3: Social,Video,E-commerce,Music,Social,Blogs

Extract-
ed tasks

Task1: Video,E-commerce Order=2,Support=3
Task2: Video,E-commerce,Music Order=3,Support=2

According to Definition 5, each element of the sequences
in our framework is treated as a single demand rather than
a set. As a result, we can easily adopt many of the frequent
sequence mining algorithms. For the fact that there exists a
unique task set TS for the task mining problem given the
demand set D, demand session database S , and the minimum
support threshold smin, what we are concerned is with the
efficiency instead of effectiveness. As a result, we choose the
SPAM algorithm3 [26] for task mining, which is the widely
adopted algorithm for sequence mining in data mining.

Based on the different settings of minimum support thresh-
old smin, the number of tasks extracted may be different. In
our experimentation, we can obtain 1, 273 ∼ 11, 568 tasks with
smin ranging from 10, 000 to 1, 000, respectively. The detailed
statistics and evaluation results of the extracted task set TS
will be reported in the experiments.

B. Task-based Demand Prediction

To provide recommendations for the current task of a user,
we need to predict the upcoming demands first. To achieve

2A frequent sequence is closed if it is not a subsequence of any other
frequent sequences.

3http://himalaya-tools.sourceforge.net/Spam/

Fig. 2. Framework overview. In Stage one, demand sessions are constructed
from browser logs, and the task set is extracted through task mining. In Stage
two, the system predicts a user’s upcoming demands based on the current
session and provide heterogeneous recommendations accordingly.

this goal, we estimate the probability of each demand d ∈ D
being the follow-on demand of the current session.

Suppose the task set TS = {t1, t2, · · · , tq}, where q = |TS |
is the total number of tasks. Each task tk = 〈dk1dk2 · · · dkpk

〉,
where demand dki ∈ D = {d1, d2, · · · , dm}, and pk = |tk| is
the order of tk. Still, let supS(tk) be the support of task tk in
the demand session database S , and let tc = 〈dc1dc2 · · · dcpc

〉
be the clear demand form of the current browsing session of
a user. We then attempt to estimate the probability of each
demand in D given the current browsing session tc and the
extracted task set TS , namely:

Pr(dc(pc+1) = d|tc, TS , supS(·)) for d ∈ D (1)

To do so, we first estimate the pair-wise joint probability
Pr〈di, dj〉 based on TS and supS(·) for each demand pair:

Pr〈di, dj〉 =
∑q

k=1 δ〈didj〉�tk · pk · supS(tk)∑
d′
i,d

′
j∈S

(∑q
k=1 δ〈d′

id
′
j〉�tk · pk · supS(tk)

) (2)

where δ〈didj〉�tk is an indicator function, whose value is 1 if
〈didj〉 is a subsequence of tk, and 0 otherwise. Note that we
use angle brackets to denote that the pairs are ordered and thus
we usually have Pr〈di, dj〉 	= Pr〈dj , di〉 when i 	= j.

We consider both the order pk and the support supS(tk) in
a multiplication manner according to the intuition of the task
mining algorithms in Section IV-A, where longer and/or more
frequent tasks are more “reliable”. Besides, tasks with higher
orders have smaller supports compared with its subsequences,
and we consider both the order and support to seek a balance.

Given the pair-wise empirical probabilities, we further
estimate the probability of the upcoming demand for the
current session tc = 〈dc1dc2 · · · dcpc

〉:

Pr(dc(pc+1) = d|tc, TS , supS(·)) =
pc∑
r=1

Pr〈dcr, d〉 (3)

The demands d ∈ D are further ranked in descending order
of probability in Eq.(3), and we select the top demands to
provide recommendations. For clarity, the procedure of task-
based demand prediction is summarized in Algorithm 1.

C. Task-based Recommendation

We consider providing both site-level and link-level rec-
ommendations. The site-level recommendation provides rec-
ommended sites from the predicted demands, while the link-
level recommendation provides specific recommended links
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(i.e., items in a site). The site-level recommendation acts as
a browsing navigator that inspires users’ potential demands,
while the link-level recommendation displays the actual het-
erogenous recommendations. Similar to task-based demand
prediction, we adopt the initial session records to calculate
the probability of each site/link and provide recommendations
according to the ranked list.

1) Site-Level Recommendation: Suppose the initial session
set is Sw = {s1, s2, · · · , sqw}, where a record is sk =
〈wk1wk2 · · ·wkpk

〉. Let the current browsing session be sc =
〈wc1wc2 · · ·wcpc

〉, and let d ∈ D be one of the predicted
demands (e.g., the top-3 demands) in the previous step of task-
based demand prediction. Note that for notational consistency,
we still adopt pk and pc to denote the order (i.e., the number of
sites) of the initial sessions and the current browsing session.
We can thus estimate the probability of each site w ∈ d being
the next site of the current session, namely:

Pr(wc(pc+1) = w|sc,Sw) for w ∈ d (4)

In the scenario of site-level recommendation during user’s
browsing process, we only need to care about those site pairs
between a site from the current browsing session wcr ∈ sc and
a site from the predicted demand w ∈ d. Based on statistics
from the large amount of initial sessions Sw, the pair-wise
probability can be calculated as follows:

Pr〈wcr, w〉 =
supSw

(〈wcrw〉)
|Sw|

(5)

where supSw
(·) is the support of a site sequence in the session

records Sw, and |Sw| is the total number of records in Sw. We
do not take the order pk of an initial session into consideration
here as of Eq.(2). This is because each initial session in Sw

itself is only a single and independent record, where there is
no frequent sequence mining process to leverage the wisdom
of the crowds. As a result, a longer browsing session does not
necessarily mean that it is more reliable in practice.

Similar to Eq.(3), the probability of a site w ∈ d being the
upcoming site is estimated as:

Pr(wc(pc+1) = w|sc,Sw) =

pc∑
r=1

Pr〈wcr, w〉 (6)

We rank the candidate websites w ∈ d in descending
order of probability according to Eq.(6), and select the top-
k websites as the recommended sites.

2) Link-level Recommendation: In this section, we still
make use of the initial sessions Sw = {s1, s2, · · · , sqw} as
above, where a record is sk = 〈wk1wk2 · · ·wkpk

〉. However,
we further consider the detailed link sequences composing
each website in a session, as shown in Definition 4. Here,
each website wki in session sk is actually a sequence of
links that a user browsed consecutively in a website, i.e.,
wki = 〈l1kil2ki · · · lnki

ki 〉.
By replacing each website wki ∈ sk with its actual link

sequence wki = 〈l1kil2ki · · · lnki

ki 〉, we denote a session sk ∈ Sw

using links directly:

sk =
〈
〈l1k1l2k1 · · · lnk1

k1 〉〈l1k2l2k2 · · · lnk2

k2 〉 · · · 〈l1kpk
l2kpk

· · · lnkpk

kpk
〉
〉

(7)

Algorithm 1: DEMANDPREDICT(tc,D, TS , supS(·))
Input: tc := 〈dc1dc2 · · · dcpc

〉 // Current session
D := {d1, d2, · · · , dm} // Candidate demands
TS := {t1, t2, · · · , tq} // Extracted task set
supS(·) // Support of each task in TS

Output: L(tc) // Ranked list of the demands in D
1 P ← 0m×m; // Pair-wise probability matrix init as 0’s
2 Sum ← 0;
3 for tk := 〈dk1dk2 · · · dkpk

〉 ∈ TS do
4 Δ ← 0m×m; // Temporal indicator matrix
5 for i ← 1 to pk − 1 do
6 for j ← i+ 1 to pk do
7 if Δ[dki][dkj ] = 0 then
8 P [dki][dkj ] ←

P [dki][dkj ] + pk · supS(tk);
9 Sum ← Sum+ pk · supS(tk);

10 Δ[dki][dkj ] = 1;
11 P ← P/Sum; // Normalize the elements in P by

Sum
12 Pd ← 01×m; // Probability of each demand
13 for d ∈ D do
14 for r ← 1 to pc do
15 Pd[d] ← Pd[d] + P [dcr][d];
16 L(tc) ←Rank demands in D in descending order of

Pd;
17 return L(tc);

and similarly, the current session denoted by links is:

sc =
〈
〈l1c1l2c1 · · · lnc1

c1 〉〈l1c2l2c2 · · · lnc2
c2 〉 · · · 〈l1cpc

l2cpc
· · · lncpc

cpc 〉
〉
(8)

Based on the large amount of initial sessions Sw, we
estimate the pair-wise probability between each link from the
current browsing session ljcr ∈ sc and a candidate link l ∈ d,
where d is the predicted upcoming demand for the current
browsing session, as follows:

Pr〈ljcr, l〉 =
supSw

(〈ljcrl〉)
|Sw|

(9)

and the probability of a candidate link l ∈ d being the
upcoming link is summarized as:

Pr(l1c(pc+1) = l|sc,Sw) =

pc∑
r=1

ncr∑
j=1

Pr〈ljcr , l〉 (10)

We rank the candidate links l ∈ d according to Eq.(10) and
select the top links as the heterogeneous recommendations.

The task-based recommendation framework generally fol-
lows a direct top-k recommendation paradigm, because we
care more about the recommended items rather than the
numerical rating predictions in practical systems. Besides, a
superior rating prediction performance (on RMSE for example)
does not necessarily mean a good performance on practical
top-k recommendation [6]. We will evaluate our task-based
recommendation framework in a wide scope on task mining,
demand prediction, site-level recommendation, and link-level
recommendation in the following section.
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TABLE III. THE DEMANDS CONSIDERED IN THIS WORK, AS WELL AS THE PERCENTAGE OF SESSIONS FROM THE TOTAL SESSION RECORDS THAT

INCLUDE EACH DEMAND. THOSE DEMANDS WITH PERCENTAGE ≥ 5% ARE BOLDED.

No. Demmand %Sessions No. Demmand %Sessions No. Demmand %Sessions No. Demmand %Sessions
1 Life service 4.05% 7 Social culture 0.28% 13 Blogs 16.30% 19 Videos & Movies 9.95%
2 Economics 2.94% 8 Travelling 0.27% 14 Search engine 17.79% 20 Games 6.73%
3 Literature 1.68% 9 Politics 0.17% 15 E-commerce 9.55% 21 Entertainment 2.42%
4 Education 1.40% 10 Healthcare 0.13% 16 Portals 7.70% 22 Social network 20.30%
5 News 0.40% 11 Arts 0.05% 17 Navigation 7.45% 23 Music 3.28%
6 Sports 0.39% 12 Science 0.03% 18 Computers 3.05% 24 Encyclopedia 4.05%

V. EXPERIMENTS

In this section, we conduct extensive experiments of task-
based heterogeneous recommendation, based on the real-world
user browsing logs collected by a well-known commercial
web browser. We present the experimental setup and the basic
statistical analysis of user browsing behaviours first, followed
by the evaluations for each component of the task-based
recommendation framework.

A. Experimental Setup

We collected the user browsing logs from Jul. 2nd to Aug.
31st in the year of 2013, amounting to 61 days of browsing
information for a total of 25,238,600 users.

In accordance with the “long tail” theory, a lot of users in
the original logs are inactive users with only a few records,
which makes it difficult to learn the personalized preferences
for both the task-based and the baseline CF approaches. As
such, we extracted a biased sample from the original logs
in preference of the active users, so as to focus on the key
research problem of personalized task-based recommendation
rather than addressing the cold start issues.

We first selected those users that are active in any con-
secutive period of 7 days (a week). These users are ranked
in descending order according to their total PV-values (i.e.,
the total number of Page Views). This ranking list is then
split into 5 equally sized intervals, and we randomly sample
a certain percentage of users empirically from each interval.
The sampling percentages, number of selected users, and the
number of sessions corresponding to the selected users are
shown in Table IV.

In the followings, we conduct collaborative task mining on
the selected sessions, and perform personalized recommenda-
tion for the selected users.

B. Formalizing Demands based on ODP

Based on the definition of demands in Section III, we
map the websites in the above session records into a specific
demand to construct the demand sessions. Those sites that can
not be mapped into any demand are treated as unknown, which

TABLE IV. STATISTIC OF THE SELECTED USERS AND SESSIONS.

Interval Percentage # Users # Sessions
Top 20% 5/15 62,832 4,838,064
20% ∼ 40% 4/15 50,266 2,714,364
40% ∼ 60% 3/15 37,699 1,357,164
60% ∼ 80% 2/15 25,133 703,724
Last 20% 1/15 12,566 226,188
Total 1 188,496 9,839,504

are out of consideration in this work. The websites are mapped
into 24 demands shown in Table III, where for each demand,
we also present the percentage of sessions that include the
specific demand. Note that the percentages amount to more
than 100%, because a session includes more than one demands.

We see that the demands of “Search engine” and “Naviga-
tion” together account for about 25% of the sessions. However,
it is practically inappropriate in real-world systems to simply
recommend a search engine website or a navigational page
to users during browsing process, and we thus exclude these
websites in the clear demand sessions.

After pruning away the search engine and navigational
websites, the clear demand sessions cover 22 demands, cor-
responding to 9, 359, 336 (about 95%) sessions in the browser
logs. In the following sub-sections, we will conduct task
mining, demand prediction and task-based recommendation
based on these selected session records.

We introduce the comparative algorithms and evaluation
metrics for each experimental task separately in the following,
because they require different settings.

C. Collaborative Task Mining

We randomly select 80% from the above 9,359,336 ses-
sions for task mining, which amounts to 7, 487, 468 clear
demand sessions. Given these sessions, the only parameter that
one needs to tune for task mining is the minimum support smin,
namely, the threshold to determine whether a task is treated
as frequent or not. A smaller smin gives quantitatively more
but lower order (thus less reliable) tasks, while a larger smin

value gives quantitatively less but higher order tasks, which
are more reliable for their strong support levels. As a result,
we experiment with different selections of smin, and trade off
between the quality and quantity of the extracted tasks.

We tune the minimum support smin ranging from 1,000
to 10,000 and record the extracted tasks. Table V shows the
number and the average order of the tasks extracted given
different choices of minimum supports.

We see that the number of tasks extracted decreases with
the increasing of minimum support smin, which is not sur-
prising. Interestingly, the average order of the extracted tasks
also decreases with the increasing of smin. On considering the
fact that the relatively low-frequency tasks tend to be filtered
out when we increase the minimum support threshold, this
observation indicates that those high-frequency tasks extracted
tend to be lower orders “short” ones.

Figure 4 shows the trends of the total number of extracted
tasks and their averaged order given different choices of smin.
We also count the number of tasks in each minimum support
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Fig. 3. Heat map of the pair-wise joint probability distribution Pr〈di, dj〉,
where di is represented by row indices, and dj represented by column indices.

interval (the bar charts), i.e., the number of tasks that are
filtered out when we increase smin by steps of 1,000. These
tasks are those whose support in the session records fall into
the corresponding interval. We see that a large amount of tasks
fall into the relatively low-frequency support intervals of 1,000
to 3,000, and the high-frequency tasks occupy a small portion
in the total amount of tasks. Besides, by taking the averaged
order into consideration, we can see that the reliable higher-
order tasks constitute a large proportion of the overall tasks,
which is an advantage of task extraction based on frequent
sequence mining.

However, a dilemma we have to face is that reliable higher-
order tasks usually come with lower supports, while those
highly supported tasks usually exhibit lower orders. As a
result, we have to trade off between the order and support
of tasks, which is also the reason that we consider the product
of order and support together in Eq.(2). We experiment with
different choices of minimum support in the followings for the
evaluation of demand prediction and recommendation.

D. Analysis of Pair-wise Probability

An important step for demand prediction is the computation
of pair-wise joint probabilities Pr〈di, dj〉 as in Eq.(2), which
is an indicator of the pair-wise transition probability between
demands. To obtain a clear knowledge of the dependencies
between different demands, and also the intuition of user
browsing behaviours when surfing online, we conduct detailed
investigation on the pair-wise probability based on the ex-
tracted tasks.

We first calculate the pair-wise joint probability separately
based on each of the ten extracted task sets, which are
obtained under different choices of minimum support smin in
the range of 1, 000 ∼ 10, 000 with steps of 1,000. We then
average the ten probability distributions to gain an aggregated
view. Figure 3 shows the probability distribution Pr〈di, dj〉
with an intuitional heat map, where the outgoing demands
di are represented by rows, and the incoming demands dj
by columns. For better understandings, we also include the
demand of Search (#14) and Navigation (#17) in Figure 3,
although we do not consider them for demand prediction.

One can see that column #14 (corresponding to the demand
of Search) is brighter compared with other demands, which
exhibits a broadly higher probability of transition from other

TABLE V. TOTAL NUMBER OF EXTRACTED TASKS WITH DIFFERENT

CHOICES OF MINIMUM SUPPORT FOR TASK MINING.

smin 1,000 2,000 3,000 4,000 5,000
# of Tasks 11,568 8,583 6,402 3,823 3,365
Average order 5.57 4.94 4.51 3.77 3.63

smin 6,000 7,000 8,000 9,000 10,000
# of Tasks 2,881 2,206 1,764 1,422 1,273
Average order 3.48 3.30 3.19 3.12 3.10

demands to Search. This is because users turn to search engines
frequently to locate the demanded sites.

The anti-diagonal elements also exhibit higher transition
probabilities, which means a high probability of intra-demand
transition during browsing process. This indicates that users
usually have to browse across different websites of the same
demand to accomplish a specific target in a session. For ex-
ample, the brightest anti-diagonal element #15 (E-commerce)
implies that users may browse across different E-commerce
websites to find the appropriate product to buy.

Besides, the many off-diagonal bright elements indicate
frequent cross-demand transitions, e.g., the high transit proba-
bility from #6 (Sports) to #19 (Videos & Movies) implies that
users may turn to sport videos after learning about a match
or a player from the sport websites. By taking advantage of
the wisdom of crowds from the large amount of browser logs,
we are able to predict users’ potential demands and provide
opportune task-based recommendations.

E. Task-based Demand Prediction

We adopt the remaining 20% of sessions (1,871,868) for
demand prediction based on the tasks extracted in the previous
experimental section. For each clear demand session in the
testing set, we adopt all but the last demand to construct a top-
k demand prediction list, and compare the predicted demands
with the last one (treated as the groundtruth) to evaluate the
performance of demand prediction.

We adopt the evaluation measures of Success@k and
NDCG@k, where the latter takes the position of the target
demand into consideration. Let N = 1, 871, 868 denote the
total number of sessions for testing, and let n be the number of
sessions where the last demand is successfully recommended

Fig. 4. Left axis: The number of tasks (red solid line) and the number of
tasks in each support interval (blue bars). Right axis: Average order under
different choices of minimum support (blue dashed line).
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Fig. 5. Evaluation results on NDCG under different (k, smin) pairs.

in the top-k demand prediction list, then:

Success@k =
n

N
,NDCG@k =

1

N

N∑

i=1

1

IDCG

k∑

j=1

2δij − 1

log2(j + 1)

(11)

where δij = 1 if the j-th demand in the prediction list for
session i is the target demand, and 0 otherwise.

To the best of our knowledge, this is the first time to inves-
tigate the problem of task-based recommendation, and there is
no direct baseline method in this problem setting. However,
we adopt some of the most commonly used baselines, and
also adapt the most state-of-the-art approaches in the research
of collaborative filtering and context-aware recommendation
to conduct extensive performance comparison. Note that we
exclude the demands of Search and Navigation and predict
the demand of a user within the remaining 22 demands.

Random: We select k demands randomly as a prediction
list, where the sampling weight for each demand is in propor-
tion to its percentage of sessions in Table III.

MostPopular: For each session, we construct the demand
prediction list with the top-k most frequent demands according
to Table III.

MFCF: The Matrix Factorization (MF) based Collabora-
tive Filtering (CF) approach. We construct the user-demand
relation matrix where each element of the matrix is the sigmoid
normalized count that a user browsed a demand. We adopt the
frequently used MF approach in [29] for matrix completion,
and select the top-k demands of a user as the prediction list
for his/her session in the test set.

Tensor: The commonly used tensor factorization approach
for context-aware recommendation [30]. We consider |D| lay-
ers as the context dimension of the tensor T, where |D| = 24
in this experiment. Each context layer T[d] is a |U|×|D| matrix
corresponding to a specific demand, where |U| is the number
of users. The element T[di][u][dj ] is the count that demand
pair 〈didj〉 occurs in the demand sessions of user u. After
tensor completion and normalization, we actually obtain the
pairwise transition probability Pr〈di, dj〉 for each user u. This
is used to substitute our task-based transition probability in
Eq.(2), while the following procedure of demand prediction is
the same.

One can see that the Random and MostPopular methods are
non-personalized and independent from the current browsing

session of a user, while the MFCF and Tensor approaches are
personalized and able to adjust the predictions with respect to
users’ current browsing sessions.

We set the number of latent factors to 20 for MFCF and
Tensor, and adopt the Stochastic Gradient Descent (SGD)
algorithm for model learning. We temporally fix the minimum
support smin = 5, 000 for our task-based approach, and
experiment with the length k of the prediction list. The results
on Success@k and NDCG@k with different choices of k are
shown in Figure 6, and Table VI shows the specific values
under the common choices of k.

TABLE VI. SPECIFIC VALUES OF SUCCESS AND NDCG GIVEN

SELECTED CHOICES OF PREDICTION LENGTH k.

Metric Success@k NDCG@k
k 1 3 5 10 1 3 5 10

Random 0.062 0.357 0.442 0.557 0.062 0.233 0.267 0.305
MostPopular 0.121 0.327 0.488 0.689 0.121 0.238 0.304 0.370
MFCF 0.225 0.375 0.478 0.648 0.225 0.312 0.354 0.409
Tensor 0.266 0.423 0.509 0.738 0.266 0.359 0.397 0.469
Task 0.372 0.483 0.558 0.832 0.372 0.457 0.487 0.575

Generally, the Success and NDCG increase with the num-
ber of demand predictions that we provide, and our Task-based
approach outperforms the comparative methods consistently
under different settings of the length of prediction list. The
reported improvements are significant at the level of 0.05 or
better due to large size of our dataset. Specifically, our task-
based approach is able to predict the upcoming demand cor-
rectly for 37.2% of the sessions with only a single prediction
among the 22 potential demands.

We further tune the the minimum support smin from 1,000
to 10,000 at steps of 1,000 under each prediction length k,
and the evaluation results on NDCG are shown in Figure 5.
We see that the NDCG@k still rises with k given a fixed smin,
but interestingly we find that when we tune smin given a fixed
k, the NDCG rises to a maxima first and then drops.

This observation conforms with our analysis of task mining
in Section V-C. When a smaller threshold smin is used, we
can extract more tasks for the pair-wise probability estimation.
However, this may also introduce less reliable tasks due to
their lower support in session database. On the other hand,
when larger values of smin are adopted, we can extract more
reliable tasks but this also results in insufficient number of
tasks for accurate probability estimation. As a result, we have
to trade off between the quality and quantity of the extracted
tasks in practice. The experimental results suggest an optimal
selection of smin at around 5, 000, and this is the reason we
fix smin = 5, 000 in the previous experiment.

(a) Success@k (b) NDCG@k
Fig. 6. The evaluation results on Success and NDCG v.s. the length of
demand prediction list k.
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We can also see that the effect of smin becomes less
obvious and the marginal curve tends to be more stable under
higher values of k. This is because we can always make a
correct guess given a sufficiently high number of chances.

F. Task-based Recommendation

We still leverage the 20% (1,871,868) sessions, and adopt
the demands predicted for each session in the previous experi-
ment to conduct and evaluate both the site-level and link-level
recommendation. We set smin to the optimal value of 5,000 in
this experiment.

For site-level recommendation, we reserve the last website
of a testing session (i.e., the current browsing session) for
evaluation, and predict the reserved website based on the
previous sites in this session. For each of the k predicted
demands in the previous experiment, we construct the ranked
list of websites in that demand according to Eq.(6), and adopt
the top site as the site-level prediction for that demand. The k
predicted demands thus offer us a site-level recommendation
list of length k.

Similarly, we reserve the last link of each session, and
rank the links for each of the k predicted demands according
to Eq.(10), and construct the link-level recommendation list by
selecting the top returned link for each demand.

We still compare with the previous baseline methods:

Random: Sample a site/link for each demand randomly by
probability in proportion to the percentage of a site/link.

MostPopular: Select the most popular site/link for each
predicted demand.

MFCF: We construct the user-site and user-link relation
matrices of sigmoid normalized browsing counts, and still
adopt the MF approach in [29]. We select the site/link with
the highest predicted rating for each demand.

Tensor: Similar to the experiment on demand prediction,
we construct the site-level tensor and estimate the pairwise
probability between sites to substitute Eq.(5) for context-aware
site-level recommendation. Due to the extremely large amount
of links in the dataset, it is computationally impossible for link-
level tensor factorization in a common experimental setting.
As a result, we do not report the link-level performance of the
tensor factorization approach.

For easy comparison, we also adopt Success@k and
NDCG@k in Eq.(11) for evaluation. Figure 7 shows the results
for site-level recommendation, and Figure 8 presents the link-
level recommendation results.

(a) Success@k (Site-level) (b) NDCG@k (Site-level)
Fig. 7. Evaluation on Success and NDCG v.s. prediction length k for Site-
level recommendation.

(a) Success@k (Link-level) (b) NDCG@k (Link-level)
Fig. 8. Evaluation on Success and NDCG v.s. prediction length k for Link-
level recommendation.

The experimental results show that our task-based recom-
mendation gives consistently better performance on both Suc-
cess and NDCG for site-level and link-level recommendations
(significant level at 1% or better). The site-level absolute suc-
cess ranges from 4.72% ∼ 11.26% and NDCG from 0.047 ∼
0.075 given k from 1 to 10, correspondingly. For link-level
recommendation, the success ranges from 1.23% ∼ 2.75% and
NDCG from 0.012 ∼ 0.019. This is an exciting performance
for commercial browser-based applications because only a
single percentage point of improvement on prediction could
bring us a huge increment on profits due to the large amount
of users and items.

Besides, it is surprising to find that a simple most popular
approach can be comparable to or even better than MF-based
collaborative filtering and context-aware tensor factorization.
The underlying reason can be the inherent sparsity of site-
or link-level relations between users and the large amount of
items from the Web-scale data, and thus it can be difficult for
CF approaches to estimate accurate user-item relationships.
However, our task-based approach is able to extract more
reliable relations between users and items based on frequent
task mining. This gives us relations of higher confidence,
and can thus be more suitable for the problem of Web-scale
recommendation.

G. Recommendation within the Right Demand

One may see that the previous experiment on task-based
recommendation relies on the performance of demand predic-
tion, because it would be impossible to recommend the accu-
rate site/link given the wrong demand. To eliminate the effect
of wrong demand predictions, and to gain a more informed
understanding of the performance of task-based recommenda-
tion, we further conduct site- and link-level recommendation
given the right follow-on demand of a session.

To achieve this goal, we determine rather than predict
the demand of a testing session using the last site or link
directly, and construct the site- and link-level recommendation
list within this demand, according to Eq.(6) and Eq.(10),
respectively. We select the top-k sites/links from the ranked
list for that demand as the final site-level or link-level rec-
ommendations directly. The evaluation results for task-based
recommendation under this setting are shown in Table VII.

We see that given the right demand, the Success gains an
absolute increment of 3% ∼ 8% on site-level, and 2% ∼ 4%
on link-level recommendation (significant level at 1% or
better), which verifies that the task-based recommendation
component relies on the performance of demand prediction.
As a result, the performance of task-based site-level and link-
level recommendation can well be further improved with the
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TABLE VII. SUCCESS AND NDCG GIVEN THE RIGHT DEMAND.

Metric Success@k NDCG@k
k 1 5 10 1 5 10

Right Site 0.075 0.144 0.193 0.075 0.109 0.124
Demand Link 0.033 0.056 0.064 0.033 0.044 0.047

Predicted Site 0.047 0.082 0.113 0.047 0.064 0.074
Demand Link 0.012 0.021 0.028 0.012 0.016 0.019

continuous development of more accurate and meticulously
designed demand prediction techniques.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose task-based recommendation to
provide heterogenous recommendations during users’ brows-
ing process at Web-scale. To achieve this goal, we leverage
large scale user browsing logs collected by a real-world com-
mercial browser, and investigate on demand-, site-, and link-
levels. We extract tasks based on frequent sequence mining
from browser logs, and further predict the demand of a user
given the current browsing session. Based on the predicted
demands, we are able to provide both site-level and link-
level recommendations. Extensive experimental results not
only verified the effectiveness of our framework, but also gave
us an intuitional understanding of the characteristics of users’
browsing behaviour when surfing online.

We believe that the task-based recommendation has the
potential to shape the future of universal recommendation
engines for the upcoming era of intelligent Web, and there
is much to be done on this emerging topic. Aside from the
problem formalization in this work, it will be exciting to see
other potential formalizations of task-based recommendation
under different application scenarios. Besides the sequential
relations adopted in this work, we can investigate other possi-
ble relationships between demands, based on sets, hierarchical
trees, or even graphs, etc. We can also construct more general
and flexible demands based on clustering or topic modeling
instead of the direct ODP-based approach. Moreover, we can
even predict a series of follow-on demands beyond the next
single one for the current browsing session, and adapt various
machine learning algorithms for further improvements on the
performance of task mining, demand prediction, and task-
based recommendation.
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