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ABSTRACT
Existing recommender systems in the e-commerce domain primar-

ily focus on generating a set of relevant items as recommendations;

however, few existing systems utilize underlying item attributes as

a key organizing principle in presenting recommendations to users.

Mining important attributes of items from customer perspectives

and presenting them along with item sets as recommendations

can provide users more explainability and help them make better

purchase decision. In this work, we generalize the attribute-aware

item-set recommendation problem, and develop a new approach

to generate sets of items (recommendations) with corresponding

important attributes (explanations) that can best justify why the

items are recommended to users. In particular, we propose a system

that learns important attributes from historical user behavior to

derive item set recommendations, so that an organized view of

recommendations and their attribute-driven explanations can help

users more easily understand how the recommendations relate to

their preferences. Our approach is geared towards real world sce-

narios: we expect a solution to be scalable to billions of items, and be

able to learn item and attribute relevance automatically from user

behavior without human annotations. To this end, we propose a

multi-step learning-based framework called Extract-Expect-Explain

(EX3), which is able to adaptively select recommended items and

important attributes for users. We experiment on a large-scale real-

world benchmark and the results show that our model outperforms

state-of-the-art baselines by an 11.35% increase on NDCG with

adaptive explainability for item set recommendation.
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1 INTRODUCTION
Recommender systems have been widely deployed in modern e-

commerce websites, helping users overcome overwhelming selec-

tion issues in large catalogs and contributing large business impact

[9, 20, 32]. Many existing recommender systems in industry focus

on generating a set of relevant items based on a set of pivot/query

items along with metadata such as item attributes. However, few

of them utilize the underlying item attributes as a way to explain

why the items are recommended to users. Without distinguishing

attributes, recommendations can often be overlooked by users who

are unfamiliar with the items [23], especially when they have to

click into corresponding detail pages to find more in-depth infor-

mation. In this work, we generalize the attribute-aware item-set

recommendation problem [3, 4, 10, 28], which aims to generate

exact-K sets of recommended items along with attribute-driven

explanations to help users quickly locate the items of interest ac-

cording to objective item properties (brand, color, size, etc) and sub-

jective user feedback (ratings). In particular, we propose a method

to learn behavior-oriented attribute importance from historical user

actions, a technique which can be applied to other use cases beyond

explainable recommendations including query rewriting [25] and

review summarization [40].

Throughout the paper, we study the explainable attribute-aware

item-set recommendation problem by learning an item-to-item-set

mapping guided by attribute differences. Formally, given a “pivot”
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item, our goal is to generate K sets of items (recommendations), each
of which is associated with an important attribute (explanation) to
justify why the items are recommended to users. We aim to not only

generate relevant item recommendations, but also provide corre-

sponding explanations based on those important item attributes

whose value changes will affect user purchase decision. Unlike ex-

isting work [3] that focuses primarily on making understandable

substitute recommendations, we attempt to help users broaden their

consideration set by presenting them with differentiated options

by attribute type. Additionally, different from generating explana-

tions based on user–item and item–attribute interactions [3], we

propose to infer important attributes directly from users’ historical

behaviors, providing a framework to understand how users reason

about recommendations when making decisions. To the best of

our knowledge, we are the first to approach the explainable item-

set recommendations via behavior-oriented important attribute

identification in e-commerce domain.

The main idea in solving this problem is to first learn impor-

tant attributes based on users’ historical behaviors, and then gen-

erate corresponding item recommendations. Note that learning

important attributes can benefit many other applications beyond

item-set recommendations alone. Modeling behavior-oriented at-

tribute importance from users’ historical actions rather thanmanual

identification is a critical component to conduct explainable recom-

mendations. It saves time-consuming effort in manual labeling and

provides a more robust way to model user preference. Once impor-

tant attributes are derived, we can utilize them to build user profiles,

e.g., identifying users’ preferred size, color, flavor, etc, which can be

used in generating personalized recommendations. We can also per-

form brief item summarization based on important attributes, and

the proposed method can also be easily extended to involve more

contextual information (e.g., users’ sequential actions) to provide

customized item summarization [40]. We can further leverage the

behavior-driven important attributes to advance query rewriting

techniques in the item search domain, by attending to those terms

that are closely related to items’ important attributes.

To this end, we propose a multi-step framework called Extract-
Expect-Explain (EX3) to approach the explainable item-set recom-

mendation problem. Our EX3 framework takes as input a pivot/query

item and a list of candidate items as well as their catalog features

(e.g., title, item type), and adaptively outputs sets of recommended

items associated with important attributes as explanations. Specifi-

cally, in the first Extract-step, we introduce an attention-based item

embedding learning framework, which is scalable to generating

embeddings for billions of items, and can be leveraged to refine

coarse-grained candidate items for a given pivot item. Then, in the

Expect-step, we propose an Attribute-Differentiating Network to

learn the expected utility score on the tuples of {query item, candi-

date item, attribute} to indicate how the difference on attribute val-

ues between query item and candidate item affects users’ purchase

decision. The goal of this step is to learn attribute importance based

on the impact of value changes towards user purchase behavior. For

instance, if we observe that value changes of “shoe size” affected

more user purchase decisions than color changes, the Expect-step
is more likely to predict higher utility score on {query shoe, can-

didate shoe, size} than {query shoe, candidate shoe, color}. Given

the refined candidate items and the estimated utility scores, we

propose a bipartite b-Matching-based algorithm in the Explain-step

to balance the relevance and behavior-driven attribute importance

to deliver the final results for item-set recommendation. Such a

multi-step framework design provides the flexibility to serve the

explainable attribute-aware item-set recommendation and other

relevant applications.

To guarantee the robustness and scalability in real world envi-

ronment, EX3 is carefully designed to overcome several inherent

challenges. (1) The foremost challenge is how to dynamically recom-
mend items and attributes that provide comprehensive information
contributed to users’ purchase decision. In this work, we propose to

train EX3 with user behavior signals in the distant supervision man-

ner, and leverage attribute value difference and historical purchase

signals to capture user-behavior driven important attributes. We

believe that the important attributes are those whose value changes

will critically affect users’ purchase decision, e.g., size for shoes,

roast type for coffee. (2) In real-world environment, we are always fac-
ing data challenges, especially on the attribute missing/sparsity issues.
To have a robust performance even when attribute coverage is poor,

we develop a robust attention mechanism called Random-masking

Attention Block in Expect-step to bound the softmax output based

on prior attribute coverage information. (3) Scaling EX3 to millions
of different items is also challenging. To ensure EX3 to be general-

ized to multiple item types and large-scale items, we introduce a

highly-scalable item embedding framework in Extract-step, design
an attribute-driven attention mechanism in Expect-step to directly

learn attribute importance from user behavior without human la-

beling, and propose a constrained bipartite b-Matching algorithm

in Explain-step that can be easily parallelized to generate top items

and important attributes for explainable item-set recommendation.

The contributions of this paper are three-fold.

• We highlight the importance of jointly considering impor-

tant attributes and relevant items in achieving the optimal

user experience in explainable recommendations.

• We propose a novel three-step framework, EX3, to approach

the explainable attribute-aware item-set recommendation

problem along with couples of novel components. The whole

framework is carefully designed towards large-scale real-

world scenario.

• Weextensively conduct experiments on the real-world bench-

mark for item-set recommendations. The results show that

EX3 achieves 11.35% better NDCG than state-of-the-art base-

lines, as well as better explainability in terms of important

attribute ranking.

2 PRELIMINARY
In this section, we start with the introduction of relevant concepts

and formulation of the explainable attribute-aware item-set rec-

ommendation problem. Then, we introduce how to approach this

problem via distant supervision.

Problem Formulation. Let P be the universal set of items and

A be the set of all available attributes. We define the attribute

value to be a function v : P × A 7→ Cdv that maps an item

and an attribute to a sequence of characters, where C denotes

a set of predefined characters and dv is the maximum length of

the sequence.
1
An item p ∈ P is said to have value v(p,a) on

1
Note that in practice an attribute value can be of arbitrary data types such as string,

numeric, timestamp. In this work, we regard it to be string (character sequence) for

simplicity since any other types can be converted to a string.
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attribute a ∈ A if v(p,a) , �. Accordingly, the attribute-value

pairs of an item p on multiple attributes are defined as Ap =
{(a1,v1), . . . , (a |Ap | ,v |Ap |) | ai ∈ A,vi = v(p,ai ),vi , �, i =

1, . . . , |Ap |}. In addition, we define an explainable group Ga =

(a, Pa ) to be a tuple of an attribute a ∈ A and a subset of items

Pa ⊂ P and each item in Pa has non-empty value on attribute a.
The item set Pa is assumed for recommendation and the attribute

a is used to generate the explanation. The problem of explainable

attribute-aware item-set recommendation can be formalized as

follows.

Definition 1 (ProblemDefinition). Given the pivot itemq ∈ P

with attribute-value pairsAq , and the number of groups,K , the goal is
to output K ordered explainable groupsGa(1) , . . . ,Ga(K )

such that the
user utility (e.g., purchase) of displaying K such groups is maximized.

Intuitively, the goal of the problem is to recommend K groups of

items with attributes such that the likelihood of these recommended

items being clicked or purchased is maximized after users compare

them with the pivot item and view the displayed attribute-based

justifications. In other words, it is required to generate important

attributes given different pivot and candidate items so that they are

useful to users, e.g., “screen resolution” is relatively more impor-

tant than “height” for a TV item. Note that the explainable item

set recommendation can be considered to be a item-to-item-set

recommendation problem in e-commerce shopping scenario, and

we assume user context information is not available in this work.

The challenges of this problem are threefold.

• How to automatically identify important attributes with-

out supervision and aggregate relevant items into the corre-

sponding groups for recommendation?

• How to make the model robust to the data issues including

missing attributes and noisy and arbitrary values?

• How to effectively reduce the search space of seeking similar

items for item set recommendation and make the model

scalable to large real-world dataset?

Distant Supervision. In order to capture the comparable re-

lationship among various items, we consider three common user

behavior signals to construct datasets to provide distant supervi-

sion [11, 20, 30]: co-purchase (Bcp), co-view (Bcv) and purchase-

after-view (Bpv) between items, where Bcp,Bcv,Bpv ⊆ P × P

denote how items are co-purchased, co-viewed and view-then-

purchased together. From the above definition, one can notice that

Bpv offers an opportunity to simulate users’ shopping behaviors.

When users view an item and then purchase another one in a short

period of time (e.g., within the same session), it is reasonable to

assume that users are making comparison between relevant items.

Through empirical analysis on Amazon Mechanical Turk (MTurk),

we observe that item pairs within Bpv have more than 80% similari-

ties, which verifies our assumption that users are comparing similar

items before purchase. In order to further improve the relevance

from raw behavior signals to build up distant supervision with high

quality, by further combing Bcp and Bcv, we conduct several anno-

tation experiments viaMTurk and observe thatB = Bcv∩Bpv−Bcp,

which contains items pairs in bothBcv andBpv but not inBcp, gives

us the best relevance signals and mimics users’ shopping actions

on Bpv. Throughout the paper, we will use this way to construct

datasets for model learning and offline evaluation on multiple item

categories.

3 PROPOSED METHOD
In this section, we first formulate an optimization-based method for

the explainable attribute-aware item-set recommendation problem

and pose several potential issues of this solution in industrial sce-

nario. Then, we propose a novel learning-based framework called

Extract-Expect-Explain (EX3) as a feasible and scalable alternative.

An Optimization-based Method. Suppose we have a utility

function u(q,p,a) that estimates how likely users will click (or

purchase) a recommended item p ∈ P after comparing it with the

pivot item q ∈ P on attribute a ∈ A, i.e., u : P × P × A 7→ [0, 1].

We can formulate an optimization problem for explainable item

set recommendation as follows. Given a pivot item q,m candidate

items {p1, . . . ,pm } ⊆ P and n attributes {a1, . . . ,an } ⊆ A, we aim

to find an assignment X ∈ {0, 1}m×n
that maximizes the overall

utilities subject to some constraints:

max

X

∑
i∈[m], j∈[n]

u(q, pi , aj )Xi j

s.t.

m∑
i=1

Xi j ≤ Dgrp, ∀j ∈ [n] (Group capacity constraint)

n∑
j=1

Xi j ≤ D
div
, ∀i ∈ [m] (Item diversity constraint)

(1)

where Xi j = 1 means the item pi is assigned to the explainable

group Gaj with attribute aj , and otherwise Xi j = 0. The group
capacity constraint restricts the max number of items assigned in

each group with an upperbound Dgrp ∈ N, while the item diversity
constraint limits the occurrence of each item in overall recommen-

dations with upperbound D
div

∈ N. The problem defined in Eq. 1

can be deemed as the weighted bipartite b-matching problem [22],

which can be solved by modern LP solvers. Once the n sets of item

assignments are derived from X , we can easily select top-K groups

with any heuristic method based on group-level utility, e.g., the

average of all item-attribute utilities in the group.

However, there are two major issues with this method. First,

the optimization in Eq. 1 cannot be efficiently solved whenm is

very large and let alone take all items in P as input. Second, the

utility u(q,p,a) is not directly available from distant user behavior

signal (e.g. view-then-purchase) because users will not explicitly

express which attributes are important to them to compare the

items. Meanwhile, attribute frequency is also not a good indicator

for u(q,p,a) due to the common data issue of large amount of

missing attribute values.

To this end, we propose a learning based multi-step framework

called Extract-Expect-Explain (EX3). As illustrated in Fig. 1, the

first Extract step aims to reduce the search space of candidate

items by learning item embeddings with distant supervision and

approximating coarse-grained item similarity. Next, the Expect step
aims to estimate the utility function u(q,p,a) by decomposing it

into two parts: fine-grained item relevance and attribute importance.

The last Explain step leverages the outputs from two previous steps

to solve the optimization problem and derive the K explainable

groups for item set recommendations.
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Figure 1: Illustration of the proposed framework Extract-Expect-Explain (EX3).

3.1 Extract-Step
In this step, we aim to learn an item encoder ϕ : P 7→ Rdp that

maps each item in P to dp -dimensional space such that the items

with relationships inB are closer in the latent space. The latent item

vectors generated by ϕ can be subsequently used as pretrained item

embeddings in downstream steps and extracting coarse-grained

similar candidates with respect to pivot items.

Specifically, each item p ∈ P is initialized with either a one-

hot vector or a raw feature vector extracted from metadata such

as item title and category. Then, it is fed to the item encoder ϕ,
which is modeled as a multilayer perceptron (MLP) with non-linear

activation function. In order to capture relatedness among items,

we assume that each item is similar to its related items in B and is

distinguishable from other unrelated items. As illustrated in Fig. 1(a),

let Np = {pi |(p,pi ) ∈ B} be the related items for an item p ∈ P. We

define a metric function f (p,Np ) to measure the distance between

the item and its related items:

f (p, Np ) = λ − ∥ϕ(p) − h(Np ) ∥22, (2)

where λ is the base distance to distinguishp andNp , andh(·) denotes
an aggregation function over item set Np , which encodes Np into

the same dp -dimensional space as ϕ(p). In this work, we define

h(·) to be a weighted sum over item embeddings via dot-product

attention:

h(Np ) =
∑

pi ∈Np

αiϕ(pi ), αi =
exp (ϕ(p)⊺ϕ(pi ))∑

pj ∈Np exp

(
ϕ(p)⊺ϕ(pj )

) (3)

We assign a positive label y+ = 1 for each pair of (p,Np ). For non-

trivial learning to distinguish item relatedness, for each item p, we
also randomly sample |Np | items from Bpv as negative samples

denoted by N−
p with assigned labely− = −1. Therefore, the encoder

ϕ can be trained by minimizing a hinge loss with the following

objective function:

ℓextract =
∑
p∈P

max(0, ϵ − y+f (p, Np )) +max(0, ϵ − y−f (p, N −
p )), (4)

where ϵ is the margin distance.

Once the item encoder ϕ is trained, for each pivot item q ∈ P,

we can retrieve a set of m (|Np | ≪ m ≪ |P|) coarse-grained

related items as its candidate set Cq , i.e., Cq = {pi |rank (f (q, {q}))
= i,pi ∈ P \ {q}, i ∈ [m]}.

3.2 Expect-Step
The goal of this step is to learn the utility function u(q,p,a) to
estimate how likely a candidate item p will be clicked or purchased

by users after being compared with pivot item q on attribute a. For
simplicity of modeling, we assume that the utility function can be

decomposed into two parts:

u(q,p,a) = д( u
rel
(q,p)︸    ︷︷    ︸

Item relevance

, uatt(a |q,p)︸      ︷︷      ︸
Attribute importance

), (5)

where д : [0, 1] × [0, 1] 7→ [0, 1] is a binary operation. The first term

u
rel
(q,p) reveals the fine-grained item relevance, or equivalently,

the likelihood of item p being clicked by users after compared with

pivot q (no matter which attributes are considered). The second

term uatt(a |q,p) indicates the importance of displaying attribute a
to users when they compare items q and p. It is natural to learn

these two functions if well-curated datasets are available. However,

practically, even though the item relevance can be simulated from

distant user behavior signals, e.g., Bpv view-then-purchased, the

groundtruth of important attributes still remain unknown. This

is because users will not explicitly express the usefulness of item

attributes when they do online shopping, which leads to the chal-

lenge of how to infer the attribute importance without supervision.

In addition, the data issue of missing attributes and noisy values

is quite common since it costs much time and effort to manually

align all the attributes of items. That is to say each item may con-

tain arbitrary number of attributes and their values may contain

arbitrary content and data types.

To overcome the issues, we propose a novel neural model named

Attribute Differentiating Network (ADN) to jointly approximate u
rel

and uatt. Formally, it takes as input a pivot item q and a candidate

item p along with the corresponding n attribute-value pairs Aq ,Ap
(e.g., Aq = {(a1,v(q,a1)), . . . , (an ,v(q,an ))}), and simultaneously

outputs an item relevance score Ŷp ∈ [0, 1] and attribute importance

scores ŷp, j ∈ [0, 1] for attribute aj (j = 1, . . . ,n).
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Figure 2: Network architecture of the proposed Attribute
Differentiating Network (ADN) including (a) a value-
difference module, (b) an attention-based attribute scorer,
and (c) a relevance predictor.

Network Overview. As illustrated in Fig. 2, ADN consists of

three components: a value-difference module to capture the dif-

ference levels of attribute values of two items, an attention-based
attribute scorer to implicitly predict the attribute contribution, and

a relevance predictor that estimates the fine-grained relevance of

two items. Specifically, two input items are first respectively vec-

torized by the encoder ϕ from the Extract step. The derived item

embeddings are then mapped into low-dimensional space via linear

transformation, i.e. xqp =Wp [ϕ(q);ϕ(p)], where [; ] denotes the con-
catenation andWp is the learnable parameters. Then, each attribute-

value tuple (aj ,v(q,aj ),v(p,aj )) is encoded by the value-difference

module into a vector denoted by xvj . All these vectors xv1
, . . . , xvn

together with xqp will be further fed to the attention-based attribute

scorer to produce attribute importance scores ŷp,1, . . . , ŷp,n as well

as an aggregated vector zv about value-difference information on

all attributes. The relevance predictor finally yields Ŷp based on the

joint of xqp and zv .

Value-Difference Module. As shown in Fig. 2(b), we represent

each attribute aj as a one-hot vector and then embed it into da -
dimensional space via linear transformation, i.e., aj =Waaj , with
learnable parametersWa . Since the value v(p,aj ) of item p and at-

tribute aj can be of arbitrary type, inspired by character-level CNN,

we treat it as a sequence of characters and each character is em-

bedded into a dc -dimensional vector via linear transformation with

parametersWc . Suppose the length of character sequence is at most

nc . We can represent the value v(p,aj ) as a matrix vpj ∈ Rnc×dc .
Then, we adopt convolutional layers to encode the character se-

quence as follows:

xvj = maxpool(ReLU(conv(ReLU(conv(vpj ))))) (6)

where conv(·) denotes the 1D convolution layer and maxpool(·)

is the 1D max pooling layer. The output xi j ∈ Rdc is the latent

representation of arbitrary value vi j . To capture value difference
on attribute aj between items q,p, we further encode the attribute
vector aj and the value vectors xqj and xpj via an MLP:

xvj = MLPv ([aj ; xqj ; xi j ]), (7)

where xvj is supposed to encode the value-difference information

between values v(q,aj ) and v(p,aj ) on attribute aj .

Attention-based Attribute Scorer. Since our goal is to detect

important attributes with respect to the pair of items, we further en-

tangle each value-difference vector xvj of attribute aj conditioned
on item vector xqp as follows:

wpj = MLPp ([xqp ; xvj ; xqp ⊙ xvj ; ∥xqp − xvj ∥]), (8)

where anotherMLPp is employed to generate the item-conditioned

value-difference vector wpj .

Natually, we can use attention mechanism to aggregate n item-

conditioned attribute vectors wp1, . . . ,wpn for better representa-

tion and automatic detection of important attributes. However,

directly applying existing attention mechanism here will encounter

several issues. First, the learned attention weights may have bias

on frequent attributes. That is higher weights may not necessarily

indicate attribute importance, but only because they are easily to

acquire and hence occur frequently in datasets. Second, attribute

cardinality varies from items to items due to the issue of missing

attribute values, so model performance is not supposed to only

rely on a single attribute, i.e. distributing large weight on one at-

tribute. To this end, we propose the Random-masking Attention

Block (RAB) to alleviate the issues. Specifically, given item vector

xqp and n item-conditioned value-difference vectorswp1, . . . ,wpn ,

the RAB block is defined as follows.

Q =WQxqp ,Kj =WKwpj ,Vj =WVwpj , j ∈ [n] (9)

ŷp, j =

exp

(
Q⊺Kj
√
dτj

)
· ηj∑

i ∈[n] exp
(
Q⊺Ki√
dτi

)
· ηi

(10)

zv = ln(MLPo (o) + o), o = ln(Q +
∑
j
ŷp, jVj ), (11)

where ηj is a random mask that has value γ with probability f reqj
(frequency of attribute aj ) in training and value 1 otherwise. It is

used to alleviate the influence by imbalanced attribute frequencies.

τj is known as the temperature in softmax and is set as (1 + f reqj )
by default, which is used to shrink the attention on the attribute

assigned with large weight. The RAB block can be regarded as a

variant of the scaled dot-product attention by incorporating ran-

domness of attribute frequencies and item-conditioned information.

The attention weights {ŷp, j }j ∈[n] are used to approximate attribute

importance uatt(aj |q,p). The output zv encodes the aggregated

information contributed by all attributes.

Relevance Predictor. We adopt a linear classifier model to pre-

dict the relevance of two items based on the item vector as well as

encoded attribute-value vector:

Ŷp = σ (Wy [xqp ; zv ]) (12)
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Algorithm 1 Explain-step Inference Algorithm

1: Input: pivot item q, all items P, all attributes A, upperbounds

Dgrp,Ddiv

2: Output: K groups Ga(1) , . . . ,Ga(K )

3: procedure Main()

4: Get candidate set Cq in the Extract-step.

5: for pi ∈ Cq do
6: Make forward pass of ADN to obtain Ŷpi , {ŷpi , j }.

7: Compute ui j = Ŷpi · ŷpi , j , for j = 1, . . . , |A|.

8: Solve optimization in Eq. 1 and obtain X .

9: Initialize |A| priority queues, G1, . . . ,G |A | .

10: for aj ∈ A do
11: for pi ∈ Cp do
12: if Xi j = 1 then Insert (pi ,ui j ) into queue G j or-

dered by ui j in descending order.

13: Compute sj =
∑
(pi ,ui j )∈G j ui j/|G j |.

14: Get top K groups G(1), . . . ,G(K ) s.t. s(1) ≥ · · · ≥ s(K ).

15: return G(1), . . . ,G(K )

We treat the problem as a binary classification with the objective

function defined as follows:

ℓexpect = −
∑

(q,p,Y )

Y log Ŷp − (1 − Y ) log(1 − Ŷp ). (13)

Note that pairwise ranking loss can also easily be extended here

and the choice of a better ranking loss function is beyond the scope

of this paper.

Once the model is trained, we can obtain the relevance score

u
rel
(q,p) ≈ Ŷp that implies whether candidate item p is relevant

to query item q, and the attribute importance score uatt(aj |q,p) ≈
ŷp, j (j = 1, . . . ,n) indicating how important each attribute aj is to
users when they compare items q and p. We adopt a simple binary

operation д(u
rel
(q,p),uatt(aj |q,p)) ≈ Ŷp · ŷp, j to estimate the utility

value u(q,p,aj ).

3.3 Explain-Step
In this step, the goal is to presentK explainable groupsGa(1) , . . . ,Ga(K )

such that the whole utility is maximized. The complete inference

algorithm is described in Alg. 1. Specifically, it first extracts a small

subset of similar candidate items Cq with respect to the pivot item

q. For each pair of q and pi ∈ Cq , it computes the relevance score

of two items as well as the importance scores of attributes. Then,

the LP problem defined in Eq. 1 is solved to obtain the assignments

of candidate items on attribute-based groups. For each group, the

algorithm takes the score from the most significant item as the

heuristic score for group-level ranking. Finally, the top K groups

are generated as the recommendation with attribute-based expla-

nations. Note that we adopt template-based generation approach

to generate the natural language explanation based on attributes,

which is not the focus in this paper.

3.4 Implementation Detail
In the Extract-step, the raw features of each item consist in n-gram

features extracted from items’ titles, key words and categories. The

feature extractor ϕ consists of 3 fully-connected layers of sizes

1024, 1024, 128 with ReLU [24] as nonlinear activation function.

Margin parameters λ = 1.0 and ϵ = 1.0. The model is trained with

Adam optimizer with learning rate 0.001 and batch size 128.

In the Expect-step, the network parameters are as follows.Wp ∈

R256×64,Wa ∈ R |A |×64
. We restrict maximum character sequence

length to nc = 200 and the value of characters ranges from 0 –

255. The character embedding size dc = 64 withWc = R
255×64

.

Each convolution layer contains 64 filters is 64 and kernels of size

3. The multilayer perceptronMLPv consists of two fully-connected

layers of sizes 172, 64 with ReLU as activation. The MLPp has two

fully-connected layers of sizes 256, 64. In attention,Wq ,Wk ,Wv ∈

R64×64 andMLPo contains two fully-connected layers of sizes 64, 64.

Masking value η is set to 0.3 and the attribute frequency freqj is

estimated from the training set. The linear predictor layerWy ∈

R128×1. The Expect model is trained with Adam optimizer with

learning rate of 5 × 10
−4
, weight decay 10

−5
in total 20 epochs. All

deep neural model are implemented in PyTorch and deployed based

on Spark.

In the Explain-step, we set both Dgrp and Datt to be 5 by default.

Candidate set size |Cq | = 30, |A| = 19 and K = 5. The LP problem

is solved by PuLP library
2
.

4 EXPERIMENTS
In this section, we comprehensively evaluate the performance of

the proposed method EX3 in terms of both recommendation and

attribute ranking on a real-world benchmark.

4.1 Experimental Setup
Dataset. We take experiments on a real-world industrial dataset

collected from Amazon.com including 7 subcategories: Battery, Cof-

fee, Incontinence Protector, Laundry Detergent, Shampoo, Toilet

Paper and Vitamin. Following distant supervision manner men-

tioned in Section 2, each subset can be regarded as an individual

benchmark. To enable fast experiments, we randomly sample prod-

ucts from each product category and select their corresponding

attributes to construct the datasets. The statistics of these datasets

are summarized in Table 1. Similar metadata can also be found in

[20, 21]. Due to the large-scale product pool, we generate candidate

products for each query product via the proposed Extract-Step,

which leads to around 30 similar candidate products per query. Our

model and all the baselines are trained and evaluated based on the

extracted candidates. We randomly split the dataset into training

set (80%), validation set (10%) and test set (10%).

Baselines & Metrics. We compare our method with following

baselines.

• Relevance is themethod that computes item similarity based

on item embeddings learned in Extract step.

• BPR [26] is the Bayesian personalized ranking method for

making recommendations, which is modified to item-to-item

prediction in this work.

• ACCM [27] is a CF-based and CB-based recommendation ap-

proach that leverages attribute to enrich the representation

2
https://pypi.org/project/PuLP/
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Table 1: Dataset statistics across 7 subdomains.

Dataset Overall Battery Coffee I. Protector Laundry Shampoo T. Paper Vitamin

#Items 286K 114K 61K 29K 11K 35K 6K 30K

#Attributes 19 19 19 19 19 19 19 19

Bcv pairs 16.9M 2.9M 3.3M 1.7M 4.1M 1.4M 2.3M 1.2M

Bcp pairs 3.1M 490K 1M 557K 130K 412K 45K 489K

Bpv pairs 709K 203K 205K 88K 31K 98K 12K 80K

of items. We adapt this method to our item-to-item recom-

mendation.

• A2CF [3] is the state-of-the-art attribute-based recommenda-

tion model that outputs substitutes for pivot items.

• EX3 is our approach proposed in Expect step.

For fair comparison, we generate the a candidate set of 30 items

for each pivot from the Extract step. All the baselines are evaluated

based on the candidate set and also leverage the pretrained item

embeddings as input if necessary.

We adopt NDCG@10, Recall@10, Precision@10 as the metrics

to evaluate the top-N recommendation performance.

4.2 Top-N Recommendation Performance
(Expect-Step)

In this experiment, we first evaluate the recommendation perfor-

mance output by the Expect step, which produces the same results

as traditional recommendations. Specifically, given a pivot item,

both our method and all other baselines outputs top 10 recommen-

dations from 30 candidates generated by Extract step. The goal of

this experiment is to verify if our model can output more relevant

items than others.

The results are reported in Table 2. We observe that our model

EX3 consistently outperforms all baselines across all datasets on all

metrics. For instance, our model achieves NDCG of 0.8177, Recall

of 0.9667 and Precision of 0.1953, which are higher than the results

produced by the best baseline A2CF by a large margin. It is interest-

ing to see that our model shows significant improvements on the

item ranking performance, resulting at least 11.35% improvement in

NDCG in Overall dataset and 10.36%–56.06% improvements across

7 subdomains. In addition, we notice that for datasets Coffee and

Incontinence Protector, the recommendation performance of all

models are better than the overall (average) performance. For ex-

ample, our model achieves NDCG of 0.8716 and 0.8660 respectively,

which are higher than Overall NDCG of 0.8177. Other models share

similar trends. This indicates that the cases in these two datasets

are easier to learn to capture user behavior.

4.3 Model Robustness to Missing Attributes
We further show our model is robust to missing attributes in in-

ference data with the proposed masking attention. Specifically, we

randomly drop 10%, 20%, 30%, 40% and 50% attributes in the test set

and evaluate the top-N recommendation performance of our model

with and without the proposed attention mechanism. All other

settings remain the same. As shown in Fig. 3, our model w/ the

technique (red curve) is consistently better than the baseline (blue

curve) under different attribute dropping ratios in both NDCG and
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Figure 3: Results of Top-N recommendation under different
degrees of missing attributes on Overall dataset.

precision. In addition, we notice that the performance decrease of

our model is slower than that of baseline, as the slope of the curve is

smaller. This results imply that the proposed model is robust to the

missing attributes during inference, which is essential in real-world

scenarios.

4.4 Attribute Ranking Performance
(Explain-Step)

Effectiveness of Attribute Ranking. In this experiment, we

evaluate the performance of the proposed Explain-Step in identify-

ing important attributes. We specifically consider following three

baselines.

• Random is a simple grouping algorithm by randomly assign-

ing items into attribute-based groups as long as the corre-

sponding value exists. Then the groups are ordered in the

way same as Alg. 1 (line 13–14).

• Greedy is an iterative algorithm by always picking the pair

of item and attribute with larger utility value

• EX3 is our proposed method of the Explain-Step.

Note that all compared methods differ in the grouping ways but

take the same utility function as input, which is generated by the

Expect-step for fair comparison. To quantify the attribute rank-

ing performance, we randomly sample around 1000 cases and ask

human evaluators to manually score each attribute in a 5-point

scale given a pivot item and a set of candidate items. Then we can

calculate the average and the normalized score of the predicted

important attributes by each model. The results are reported in

Table 3.

We observe that our method EX3 gives the better performance

in important attribute ranking compared with two baselines. One
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Table 2: EX3 wins. Top-10 recommendation performance of our model and baselines on the dataset across 7 subdomains.

Overall Battery Coffee Incontinence Protector

Measures NDCG Recall Prec. NDCG Recall Prec. NDCG Recall Prec. NDCG Recall Prec.

Relevance 0.4489 0.6875 0.1310 0.3252 0.5916 0.1062 0.4656 0.6724 0.1475 0.3887 0.6613 0.1052

BPR 0.6373 0.8409 0.1695 0.5536 0.7609 0.1410 0.7246 0.8816 0.2041 0.5794 0.8353 0.1372

ACCM 0.6969 0.9029 0.1817 0.5849 0.8162 0.1507 0.7532 0.9305 0.2151 0.7333 0.9425 0.1568

A2CF 0.7207 0.9184 0.1854 0.6209 0.8589 0.1580 0.7898 0.9451 0.2194 0.7482 0.9483 0.1577

EX3 0.8177 0.9667 0.1953 0.7304 0.9245 0.1700 0.8716 0.9786 0.2278 0.8660 0.9783 0.1635

Improve 11.35% 5.26% 5.34% 17.64% 7.64% 7.59% 10.36% 3.54% 3.83% 15.74% 3.16% 3.68%

Laundry Detergent Shampoo Toilet Paper Vitamin

Measures NDCG Recall Prec. NDCG Recall Prec. NDCG Recall Prec. NDCG Recall Prec.

Relevance 0.3650 0.5958 0.0987 0.4771 0.7689 0.1176 0.2591 0.3893 0.0695 0.4379 0.7116 0.1247

BPR 0.4882 0.7066 0.1246 0.5440 0.8230 0.1276 0.5016 0.6793 0.1246 0.5608 0.8001 0.1450

ACCM 0.5253 0.7399 0.1329 0.6753 0.9276 0.1447 0.4619 0.6337 0.1158 0.6061 0.8375 0.1535

A2CF 0.5368 0.7595 0.1371 0.6737 0.9329 0.1456 0.4966 0.6813 0.1251 0.6307 0.8715 0.1606

EX3 0.7351 0.9158 0.1658 0.7609 0.9703 0.1517 0.7750 0.9135 0.1715 0.7392 0.9405 0.1734

Improve 36.94% 20.58% 20.93% 12.94% 4.01% 4.19% 54.50% 34.08% 37.09% 17.20% 7.92% 7.80%

Table 3: Results of attribute ranking on Overall dataset. Avg.
is average score and Norm. is normalized score.

Random Greedy EX3

D
div
,DgrpAvg. Norm. Avg. Norm. Avg. Norm.

(1, 2) 1.158 2.879 2.050 4.929 2.2725.380
(1, 3) 1.180 2.836 2.051 4.890 2.2775.400
(1, 5) 1.173 2.852 2.048 4.884 2.2715.347
(2, 2) 1.164 2.792 2.068 4.797 2.2735.408
(2, 3) 1.158 2.951 2.035 4.883 2.2795.439
(2, 5) 1.156 2.934 2.046 4.895 2.2775.400
(3, 2) 1.146 2.867 2.031 4.850 2.2795.424
(3, 3) 1.162 2.800 2.070 4.810 2.2735.435
(3, 5) 1.157 2.794 2.065 4.808 2.2735.427

interesting fact is that the Greedy algorithm is actually an approxi-

mation algorithm for the optimization problem Eq. 1, which inter-

prets that its performance is slightly worse than ours.

Adaptive attribute ranking. In addition, we show that for the

same pivot item, our model will rank attributes differently if the

candidates are different. We showcase an example in Table 4 to

demonstrate this characteristics of our model. Given a shampoo

product with ID “B000YG1INI” as pivot item
3
, whose attributes are

listed in the second column, we feed two sets of candidate items to

our model that is able to generate two different attribute rankings

as shown in the upper and lower parts of the table. It is interesting

to see that the model is able to rank attributes based on value

differences and diversity. Take “brand” attribute as example. In the

first case (upper table), “brand” is ranked in the second place and

considered as a relatively important attributes when users compare

different shampoo products. In contrast, in the second case (lower

table), “brand” is ranked lower because all the candidates have the

3
Product detail can be found in https://www.amazon.com/dp/B000YG1INI

same brand “Desert Essence” and it is less informative for users to

enhance their shopping experience.

4.5 Ablation Study
We first show the recommendation performance under different

masking ratios (η) in the proposed attention mechanism. Specifi-

cally, we adopt different values of η to train the model of Expect

step, e.g. η = 0, 0.1, . . . , 0.9, 1.0. Note that η = 0means the attribute

is completely dropped while η = 1 means there is no attribute

dropping. We report the top-N recommendation performance un-

der various η’s in Fig. 4 (a, b). We observe that the masking ratios

influence on ranking performance (NDCG) and the model achieves

the best performance when η = 0.3. For precision, we find that the

performance does not vary a lot, but still show similar trends as

the NDCG, i.e. η = 0.4 leads to the relatively better performance.

Next, we evaluate the influence of different values of tempera-

tures (τ ) in the attention mechanism. Specifically, we experiment

with two ways of imposing temperatures over softmax function.

The first one relies on the predefined attribute frequencies, i.e.

τ = (1 + f reqi )
n
with n = 1, 2. The other one uses the fixed value

of τ = 1, 1.5, 2, 10. All other training settings remain the same. The

results of top N recommendation are reported in Fig. 4 (c, d). We can

see that the default choice of τ = 1 + f reqi leads to the best perfor-
mance in both NDCG and precision. Besides, note that when τ = 1,

it is equivalent to the original softmax function. Our model with

the default τ shows superior performance over such setup, which

indicates the effectiveness of the proposed attention mechanism.

4.6 Online Simulation and Experiments
In this experiment, we evaluate the overall performance of the

group-form explainable item set recommendation. Before serving

the proposed method to real users, we generate a batch of explain-

able item set recommendations in an offline mode and leverage

human annotators to help us evaluate the recommendation quality.

491

https://www.amazon.com/dp/B000YG1INI


Explainable Attribute-aware Recommendations RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

Table 4: Example of adaptive attribute ranking under different candidate items given same pivot item “B000YG1INI”.

Attr./Items B000YG1INI B082FPF9HZ B0153VTN9E B00FU5BY2S

scent peppermint peppermint Tea Tree eucalyptus

brand Desert Essence Natural V.I.P HONEYDEW Trader Joe’s

special ingredient tea-tree-oil – tea-tree-oil tea-tree-oil

hair type all types Dry Dry All types

target gender unisex – unisex unisex

Attr./Items B000YG1INI B01KPUTIM0 B00N648M66 B001B3RFK8

scent peppermint lemon coconut Lemon Tea

hair type All types Color treated dry, frizzy Oily

special ingredient tea-tree-oil – jojoba-oil –

brand Desert Essence Desert Essence Desert Essence Desert Essence

target gender unisex – unisex unisex

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Masking Ratio in Attention (η)

0.800

0.805

0.810

0.815

0.820

N
D

C
G

@
10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Masking Ratio in Attention (η)

0.193

0.194

0.195

0.196

P
re

ci
si

on
@

10

1 1 + f 1.5 2 (1 + f)2 10

Temperature in Attention (τ)

0.800

0.805

0.810

0.815

0.820

N
D

C
G

@
10

1 1 + f 1.5 2 (1 + f)2 10

Temperature in Attention (τ)

0.193

0.194

0.195

0.196

P
re

ci
si

on
@

10

(a) NDCG@10 (b) Precision@10 (c) NDCG@10 (d) Precision@10

Figure 4: Top-N Recommendation performance on the overall dataset under different masking ratios (η) in attention (Fig. (a),
(b)), and under different temperatures (τ ) in attention (Fig. (c), (d)).

For each of 7 product categories, we sample top 50 most popu-

lar pivot products from our recommendation dataset and ask the

annotators to evaluate whether the attribute-based explainable rec-

ommendations can help users make better purchase decision. Note

that the evaluation metric contains two-fold interactive measure-

ment on both product relevance and attribute importance, as the

ranked important attribute list should depend on what products are

recommended to users. Through human evaluation, we obtain over

80% acceptance rate on high-quality item set recommendations

with over 86% accuracy on comparable product recommendation

performance, which is 2x higher than using rawBpv data for recom-

mendation. We also conduct online A/B testing through real user

traffic on a large-scale e-commerce website, and the results show

significant increase of conversion (+0.080%) and revenue (+0.105%)

in online A/B experiments.

5 RELATEDWORK
In this section, we discuss the related work regarding explainable

recommendation and item relationship mining.

Explainable Recommendation. In the era of e-commerce, rec-

ommender systems have been widely used to provide users with

relevant item suggestions. Most of existing methods are based on

collaborative filtering [16], matrix factorization [17] and neural

recommendation model [34]. Recently, to further improve user ex-

perience of recommender systems [18], great research efforts have

been promoted to explainable recommendation problems [6, 7, 35].

One common way to generate explanation for recommendation is

to leverage knowledge graphs [5, 15, 31, 33, 39]. For example, Xian

et al. [32] propose to leverage reinforcement learning on knowledge

graph to provide behavior-based explanation for product recom-

mendations, while Zhao et al. [37] also employs reinforcement

learning but propose a different demonstration-based knowledge

graph reasoning framework for explainable recommendation. Be-

sides knowledge graph, sentiment/opinion based explainable rec-

ommendation is also a popular research topic [2, 8]. Zhang et al. [36]

integrate sentiment analysis into factorization model to improve

explainable recommendation performance. Wang et al. [29] de-

velop a multi-task learning solution for explainable recommenda-

tion, where two learning tasks on user preference modeling for

recommendation and opinionated content modeling for explana-

tion are joint learning via a shared tensor factorization framework.

There are also research work around attribute-based explainable

recommendation. Hou et al. [14] extract visual attributes from prod-

uct images to conduct explainable fashion recommendation. Chen

et al. [3] propose to leverage both user and item attributes to gener-

ate interpretable recommendations. Most of existing work focuses

on explainable user-item recommendation problems but lack of

the discussion on explainable item-to-item-set recommendation

tasks, which is also important for e-commerce platforms. Moreover,

explainable item-to-item-set recommendation problem is a harder

case in explainable recommendation. Unlike explainable user-item

recommendation problem where users and items do not always
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share same properties and thus allow more tolerance on generating

explanations, in explainable item-to-item-set scenario, (1) we need

to explicitly and rigorously provide reasonable attribute-based ex-

planations between items since they always share same properties,

e.g., display size for all TVs, and (2) the item set recommendations

should balance both relevance and diversity on multiple item at-

tributes.

Item Relationship Mining. As our work is around item-to-

item-set recommendation, we will also discuss existing work on

item relationship mining. Identifying relationships among items

is a fundamental component of many real-world recommender

systems [20, 30]. Linden et al. [19] designs an item-to-item col-

laborative filtering to generate similar item recommendation for

Amazon.com. Zhang et al. [38] discuss the impact of substitute

and complement relationship between items on recommendations.

Similar efforts [1, 12] have been put to target at explicitly modeling

relationship between items for recommendations. Representative

examples include Sceptre [20], which proposes a topic modeling

method to infer networks of products, and PMSC [30], which incor-

porates path constraints in item pairwise relational modeling. He

et al. [13] design a framework to use visual features to identify com-

patibility relationship between clothes and jewelry. These methods

seek to distinguish substitutes, complements and compatibilities,

but fail to provide any clear explanation on why these items are

substitutable and comparable.

6 CONCLUSION
In this work, we study the important problem of explainable attribute-

aware item-set recommendation. We propose a multi-step learning-

based framework called Extract-Expect-Explain (EX3) to approach

the problem by first extracting coarse-grained candidate sets of

items with respect to the pivot to reduce the search space of simi-

lar items (Extract-step), followed by a joint prediction of pairwise

item relevance and attribute importance (Expect-step), which are

subsequently fed to a constrained optimization solver to generate

the group-form recommendations with explanations (Explain-step).

The experiments are conducted on a real-world large-scale dataset

and the results demonstrate that our proposed model achieves over

10% higher NDCG than state-of-the-art baselines in the explain-

able recommendation domain. Moreover, our proposed method can

adaptively generate attribute-based explanations for various prod-

ucts, and the resulting explainable item-set recommendations are

also shown to be effective in large-scale online experiments. There

are several promising areas that we consider for future work, such

as leveraging the learnt important attributes for query rewriting

and product categorization.
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