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ABSTRACT
Incorporating review information into the recommender system
has been demonstrated to be an effective method for boosting the
recommendation performance. Previous research mainly focus on
designing advanced architectures to better profile the users and
items. However, the review information in realities can be highly
sparse and imbalanced, which poses great challenges for effective
user/item representations and satisfied performance enhancement.
To alleviate this problem, in this paper, we propose to improve
review-based recommendation by counterfactually augmenting the
training samples. We focus on a common setting — feature-aware
recommendation, and the main building block of our idea lies in the
counterfactual question: “what would be the user’s decision if her
feature-level preference had been different?”. When augmenting
the training samples, we actively change the user preference (also
called intervention), and predict the user feedback on the items
based on pre-trained recommender models. Instead of changing the
user preference in a random manner, we design a learning-based
method to discover the samples which are more effective for model
optimization. In order to improve the sample qualities, we propose
two strategies — constrained feature perturbation and frequency-
based sampling — to equip our model. Since the sample generation
model can be not perfect, we theoretically analyze the relation
between the model prediction error and the number of generated
samples. In addition, our framework can explain user pair-wise
preferences, which is complementary to the traditional point-wise
explanations. We conduct extensive experiments to demonstrate
the effectiveness of our model.
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1 INTRODUCTION
Recommender system, as an effective remedy for information over-
loading, has been successfully applied to a number of real-world
applications. The key of a successful recommender system lies
in the accurate understanding of the user preference. To achieve
this goal, recent years have witnessed an emerging trend of incor-
porating user review information into the recommender system.
Comparing with the rating or implicit feedback, user reviews are
much more informative, pooling an extensive wealth of knowledge
about user opinions and sentiments, which helps to understand the
user preference in a more comprehensive manner.

Previous review-based recommender models can be classified
into two categories. On the one hand, many models process the
review information on the document level [4, 5, 16, 17, 21, 21, 23,
23, 24, 30]. All the review contents are squeezed into an embedding
vector to improve the user or item representation. Despite straight-
forward, these methods inevitably introduce too much user/item
irrelevant information into the learning process, which brings diffi-
culties for identifying the real user preference and enhancing the
recommendation performance. On the other hand, many models
utilize the review information by extracting user feature-level pref-
erences (a.k.a. feature-aware recommendation). In specific, each
user review is converted into many “(user, item, feature, sentiment)”
tuples, which indicate the users’ sentiments towards the items’
features in a structured manner [7, 8, 26, 28]. As exampled in Fig-
ure 1(a), in the review of “I like the collar of this shirt, but the sleeve
is not satisfied, since it is too tight for me.”, the features are “collar”
and “sleeve”, and the user expresses positive and negative senti-
ments on them. The final extracted tuples are “(user, item, collar,
positive)” and “(user, item, sleeve, negative)”, respectively. Based
on such user feature-level preference, people have devoted much
effort to designing models based on matrix factorization [28], ten-
sor [8, 26] factorization and deep neural network [7]. These models
have shown great potential for improving the recommendation
performance, but a fundamental problem has been largely ignored,
that is, the review information can be not as ideal as expected. In
real-world scenarios, different people may have various reviewing
habits. Figure 1(b) and 1(c) present some statistics on the real-world
Amazon1 dataset, we can see: only a small amount of people fre-
quently write reviews on their purchased products, while more
inactive users only comment on very few items. In each review,
the users may not write down all her preferences, and only a small
1http://jmcauley.ucsd.edu/data/amazon/
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number of features are mentioned. These review- and feature-level
imbalanced and sparse characters pose great challenges for bet-
ter incorporating the review information into the recommender
systems.

Counterfactual thinking is a recently emerged technique for en-
hancing the model performance and robustness [3, 6, 11, 25]. It
explores the use of alternative actions that are not taken by the
agent, which may allow the model to operate better in data-scarce
scenarios. In this paper, we borrow the idea of counterfactual think-
ing to build review-based recommender models, which enables us
to generate more training samples for alleviating the data insuffi-
ciency problem. In our method, the user-item similarity is predicted
by matching the users’ feature-level preference and the items’ qual-
ities on these features. We generate new samples by intervening
on the users’ feature-level preference, which simulates the counter-
factuals of “what would be the user’s behavior if her feature-level
preferences had been different?”. We focus on the users’ pair-wise
ranking behavior. For generating more effective training samples,
we learn the “minimum” change of the user feature-level preference,
which can “exactly” reverse the preference ranking of the user on
a given item pair. To improve the sample qualities, we design the
strategies of constrained feature perturbation and frequency-based
sampling. Considering that the sample generation model can be not
perfect, we theoretically analyze the relation between the number
of generated samples and the model prediction error. Inspired by
this theory, we propose a simple but effective method to control
the potential noisy information contained in the generated samples.
As a byproduct, our model can provide pair-wise recommenda-
tion explanations, which is able to explain why a user prefers an
item to another one. We conduct extensive experiments based on
real-world datasets to demonstrate our model’s superiorities. In a
summary, the main contributions of this paper can be concluded as
follows:
•We propose to improve review-based recommendation by aug-

menting the training samples based on the idea of counterfactual
thinking.
•We design a learning-based intervention method to discover

critical samples for bettermodel optimization. Our proposedmethod
can also provide recommendation explanations for user pair-wise
preference.
•We theoretically analyze the relation between the number of

generated training samples and the model prediction error, and
design a simple but effective method to enhance the quality of the
generated samples.
• We conduct extensive experiments to evaluate our model’s

effectiveness and also present intuitive examples to illustrate the
recommendation explanations provided by our model.

2 COUNTERFACTUAL FEATURE-AWARE
COLLABORATIVE FILTERING

In this section, we introduce the proposed model — counterfactual
feature-aware collaborative filtering (CF2). Before describing the
model details, we formally define the studied problem at first. And
then, we illustrate our counterfactual data generation idea as well
as the strategies of constrained feature perturbation and frequency-
based sampling. In the next, we discuss our model on the learning

Figure 1: (a) An example of converting the review informa-
tion into structured user feature-level preferences. (b) Sta-
tistics of the Amazon (we select four representative cate-
gories for presentation) dataset, where we plot the relation
between the numbers of reviews andusers.We can see only a
small amount of people comment on large numbers of items.
(c) Average numbers of features mentioned in each review.

algorithm, computational cost and explanation generation method.
At last, we theoretically analyze the relation between the number
of generated samples and the potential model prediction error.

2.1 Problem Definition
Suppose we have a user setU and an item set I. Their interaction
set is defined as T = {(𝑢, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I, 𝑢 has interacted with 𝑖}.
The raw review information is converted into a set of quadruples
W = {(𝑢𝑙 , 𝑖𝑙 , 𝑓𝑙 , 𝑠𝑙 )}𝑁𝑙=1 based on an open sourced toolkit called
“Sentires”2, where each element (𝑢𝑙 , 𝑖𝑙 , 𝑓𝑙 , 𝑠𝑙 ) means user 𝑢𝑙 (∈ U)
mentioned feature 𝑓𝑙 in her review on item 𝑖𝑙 (∈ I) with sentiment
𝑠𝑙 (∈ {−1, +1}). Obviously, if a user review contains more than one
features, then it corresponds to multiple elements inW. We denote
the set of all features as F , then based onW, we follow the previous
work [7, 28] to build a user-feature attentions matrix 𝑨 = [𝑨𝑢 ] ∈
R |U |×|F | and an item-feature qualities matrix𝑩 = [𝑩𝑖 ] ∈ R |I |×|F | ,
where 𝑨𝑢𝑓 and 𝑩𝑖 𝑓 represent the attention of user 𝑢 and quality
of item 𝑖 on feature 𝑓 , respectively. Given {U,I,𝑨,𝑩,T }, our task
is to learn a predictive function 𝑔, such that for each user, it can
accurately rank all the items, and the rankings can be well explained
based on the item features.

2.2 The Model Details
Given the user-feature attention matrix 𝑨 and item-feature quality
matrix 𝑩, we define a target model 𝑔, which predicts the user-item
affinity score via the feature information by:

𝑟𝑢𝑖 = 𝑔(𝑨𝑢 ,𝑩𝑖 ) (1)

where 𝑨𝑢 ∈ R1×|F | and 𝑩𝑖 ∈ R1×|F | are the 𝑢th and 𝑖th row of 𝑨
and 𝑩, respectively, representing the attentions of 𝑢 and qualities
of 𝑖 on all the features. The implementation of 𝑔 will be detailed
later.

2https://github.com/evison/Sentires



Recommender system aims to predict the users’ most favorite
items, which is basically a ranking problem. In this paper, we focus
on the user’s pair-wise preference, which is usually modeled by the
following BPR loss [19]:

𝐿BPR = −
∑

(𝑢,𝑖, 𝑗) ∈𝑶
log [𝜎 (𝑟𝑢𝑖 − 𝑟𝑢 𝑗 )] + 𝜆 | |𝑔| |2 (2)

where 𝜎 (𝑥) = 1
1+𝑒−𝑥 is the sigmoid function. 𝜆 | |𝑔| |2 is the regular-

ization term. 𝑶 denotes the set of all training samples. Each element
(𝑢, 𝑖, 𝑗) means user 𝑢 prefers item 𝑖 to item 𝑗 .

Counterfactual data generation. As mentioned before, the
user review information can be quite insufficient in realities. In
order to more comprehensively optimize the model, a nature idea
is to generate more training samples. Intuitively, the users’ pair-
wise preferences are determined by their feature-level attentions.
As exampled in Figure 2(a), for two candidate mobile phones, if
a user casts more attention on the brand, then iPhone can be her
better choice. While if she cares more on the price, then Xiaomi can
be more attractive for her. Different user-feature attentions may
lead to different rankings for the same item pair, which inspires
us to generate new samples by asking “what would be the user’s
propensity on a given item pair if her feature-level attentions had
been different?”.

Straightforwardly, one can change the user-feature attentions in
a random manner, and predict the item rankings by 𝑔 to construct
new samples. However, this method can be suboptimal, since differ-
ent training samples are not equally important in terms of model
optimization [12]. There is no mechanism in the random method
to ensure superiorities of the generated samples. In order to solve
this problem, we develop a learning-based method to discover more
effective samples.

In a typical classification problem, the decision boundaries re-
fer to the samples separating the feature spaces which can induce
different output labels. The unique character of these samples is
that: the output label can be altered even with a small alteration
on the input features. Previous work [1, 12] have demonstrated
that, these boundary samples are discriminative in revealing the
underlying data patterns, and training based on them may lead
to improved model performance. Our method is inspired by this
principle. Intuitively, in our problem, the boundary sample is the
user preference which exactly discriminates the ranking directions
of a given item pair (as illustrated in Figure 2(b)). We learn such
sample by “minimally” changing the observed user-feature atten-
tions (i.e., 𝑨𝑢 ), such that the preference ranking for a given item
pair can be “exactly” reversed. Formally, we define a perturbation
variable 𝝉 ∈ R |F | with each element representing the attention
change applied to the corresponding item feature. We learn 𝝉 for
each triplet (𝑢, 𝑖, 𝑗) ∈ 𝑶 independently by the following objective3:

min
𝝉
| |𝝉 | |22 + 𝛼 log [𝜎 (𝑟

∗
𝑢𝑖 − 𝑟

∗
𝑢 𝑗 )] (3)

where 𝑟∗
𝑢𝑖

= 𝑔(𝑨𝑢 + 𝝉 ,𝑩𝑖 ) is the estimated score after changing the
user preference. 𝛼 is a tunning parameter balancing different terms.
The parameters of 𝑔 is fixed in the optimization process.

3Since all the following description is focused on one sample, we omit the index of the
user and item pair on 𝝉 for simplicity.

Figure 2: (a) An example on the effects of user feature-level
preference on item ranking. (b) An illustration on the deci-
sion boundary, where we simplize the problem to include
just one feature, and the counterfactual sample we would
like to generate is near the boundary with the original or-
der reversed. The red strap indicates the minimum user at-
tention change 𝜏 in order to reverse the item ranking. The
blue strap illustrates that if the attention change is not large
enough (e.g., 𝜏−), then the item ranking remains unchanged.

In this objective, the first term aims to minimize the change of
the user feature-level preferences. The second term tries to reverse
the preference ranking between item 𝑖 and 𝑗 . By jointly optimizing
them, we would like to change the user preference in a minimum
manner, such that the item ranking can be exactly altered.

Once 𝝉 is learned, the new sample is generated by:{
Generate (𝑢∗, 𝑗, 𝑖). if 𝑟∗𝑢𝑖 ≤ 𝑟

∗
𝑢 𝑗

No generation. otherwise
(4)

where the feature attentions of 𝑢∗ is 𝑨𝑢 + 𝝉 . Since we minimize
𝝉 in equation (3), for each generated sample, a small alteration
on the user-feature attentions (e.g., the blue strap in Figure 2(b))
will make the perturbation variable 𝝉 not large enough to reverse
the preference ranking, which implies that the sample is near the
decision boundary.

Constrained feature perturbation. In practice, there can be
lots of item features in the system, but usually, people may only
consider a small part of them in the decision process [28]. To incor-
porate such character into our method, we design both hard and
soft methods to impose additional constraints on the perturbed fea-
tures. In the hard method, we restrict the perturbation to the users’
mostly cared features. In specific, we select K largest elements in
𝑨𝑢 , and denote the set of their indexes by 𝒛𝑢 . The user attentions
are only allowed to change on the features in 𝒛𝑢 , which leads to
the following objective:

min
𝝉
| |𝒌𝑢 ⊙ 𝝉 | |22 + 𝛼 log [𝜎 (𝑟𝑢𝑖 − 𝑟𝑢 𝑗 )] (5)

where ⊙ is the element-wise product (a.k.a. Hadamard product).
𝑟𝑢𝑖 = 𝑔(𝑨𝑢 + 𝒌𝑢 ⊙ 𝝉 ,𝑩𝑖 ). 𝒌𝑢 ∈ R |F | is a mask vector, and 𝒌𝑢

𝑖
= 1 if

𝑖 ∈ 𝒛𝑢 , otherwise 𝒌𝑢𝑖 = 0. This formula is a generalized case of (3),
and will immediately reduce to (3) when 𝐾 = |F |.



Despite straightforward, the optimal 𝐾 may vary on different
samples, and it is too time consuming to tune 𝐾 for each sample
separately. For solving this problem, we introduce 𝐿1-norm to en-
courage the sparse structure of 𝝉 , which automatically selects the
important features in a soft manner. The corresponding objective
is:

min
𝝉
| |𝝉 | |22 + ||𝝉 | |1 + 𝛼 log [𝜎 (𝑟

∗
𝑢𝑖 − 𝑟

∗
𝑢 𝑗 )] (6)

Both of the hard and soft methods have their own advantages and
shortcomings. The hard method costs more effort to determine the
hyper-parameter𝐾 , but it can incorporate intuitive prior knowledge
(e.g., perturbing only on the users’ most cared features) for better
performance. The soft method needs not to tune 𝐾 , but the model
can be too flexible to efficiently converge to the optimal results.

Frequency-based sampling. In order to fairly train different
users, we balance the number of generated samples according to
the users’ reviewing frequency. In specific, suppose there are 𝑛𝑢
reviews for user 𝑢, then we generate new samples for her with the

probability of
1

𝑛𝑢∑|U|
𝑖=1

1
𝑛𝑖

. In this way, more samples will be generated

for the users with less reviews in the original data, which may help
to train these users more sufficiently, while the users with more
reviews are suppressed to have less generated samples. By this
strategy, our model can be equally optimized for different users,
and the learned parameters will not over-represent only a small
amount of users.

Implementation of 𝑔. Actually, the above counterfactual idea
is a framework, and we explore different implementations of 𝑔 to
demonstrate its effectiveness. The general architecture of 𝑔 is a
multi-layer neural network, that is:
𝑟𝑢𝑖 =𝑾𝑇𝜎𝑇 (𝑾𝑇−1𝜎𝑇−1 (...(𝑾1𝜎1 (𝑚(𝑨𝑢 ,𝑩𝑖 ))+𝒃1)+ ...) + 𝒃𝑇−1)+𝑏𝑇

(7)
where, for the 𝑡th layer (𝑡 ∈ [1, 𝑙]), 𝜎𝑡 is a non-linear activation
function, and we specify it as ReLU for all the layers.𝑾𝑡 ∈ R𝑑𝑡×𝑑𝑡−1
and 𝒃𝑡 ∈ R𝑑𝑡 are weighting parameters with 𝑑𝑇 = 1. 𝑚(·) is an
operator merging the user and item feature-level properties, and
we explore it within the following functions:
• Element-wise product:

𝑚(𝑨𝑢 ,𝑩𝑖 ) =𝑾
𝑝

𝑈
𝑨𝑇
𝑢 ⊙𝑾

𝑝

𝐼
𝑩𝑇𝑖 (8)

where𝑾𝑝

𝑈
∈ R𝑑0×|F | and𝑾𝑝

𝐼
∈ R𝑑0×|F | are trainable parameters.

• Element-wise add:

𝑚(𝑨𝑢 ,𝑩𝑖 ) =𝑾𝑎
𝑈𝑨𝑇

𝑢 +𝑾𝑎
𝐼 𝑩

𝑇
𝑖 (9)

where𝑾𝑎
𝑈
∈ R𝑑0×|F | and𝑾𝑎

𝐼
∈ R𝑑0×|F | are trainable parameters.

• Hybrid method:

𝑚(𝑨𝑢 ,𝑩𝑖 ) = [𝑾ℎ1
𝑈 𝑨𝑇

𝑢 ⊙𝑾ℎ1
𝐼 𝑩𝑇𝑖 ,𝑾

ℎ2
𝑈 𝑨𝑇

𝑢 +𝑾ℎ2
𝐼 𝑩𝑇𝑖 ] (10)

where𝑾ℎ1
𝑈
,𝑾ℎ2

𝑈
∈ R𝑑0×|F | and𝑾ℎ1

𝐼
,𝑾ℎ2

𝐼
∈ R𝑑0×|F | are trainable

parameters.
• Attention-based method:

𝑚(𝑨𝑢 ,𝑩𝑖 ) =𝑾𝑎𝑡𝑡 [𝜶𝑢𝑖 ⊙ (𝑨𝑇
𝑢 ⊙ 𝑩𝑇𝑖 )] (11)

where 𝜶𝑢𝑖 = [𝛼𝑢𝑖,𝑗 ] |F |𝑗=1 are the attention weights, and 𝛼𝑢𝑖,𝑗 is com-

puted as exp (𝑤1𝐴𝑢,𝑗+𝑤2𝐵𝑖,𝑗 )∑|F|
𝑘=1 exp (𝑤1𝐴𝑢,𝑘+𝑤2𝐵𝑖,𝑘 )

. 𝑤1 ∈ R, 𝑤2 ∈ R and 𝑾𝑎𝑡𝑡 ∈

R𝑑0×|F | are trainable parameters.

2.3 Further Discussion
In the above section, we have introduced our main idea. Here, we
make more discussions on the proposed framework to it more
complete and insightful.

On the complete learning process. We present the complete
training process of our model in Algorithm 1. To begin with, the
targetmodel𝑔 is trained based on the original dataset by equation (2)
(line 1). Then, we generate𝑀 counterfactual samples according to
the user reviewing frequency based on formula (5) or (6) (line 4-
7 ). At last, the target model is further learned by combining the
original and generated data (line 8-10).

On the computational cost. During the optimization process,
𝝉 is updated according to the following rule:

𝝉 = 𝝉 − 𝛽 [
𝛼𝜕 log [𝜎 (𝑟∗

𝑢𝑖
− 𝑟∗

𝑢 𝑗
)]

𝜕𝝉
+ 𝜕𝐶 (𝝉 )

𝜕𝝉
] (12)

where 𝛽 is the learning rate,𝐶 (𝝉 ) is | |𝒌𝑢 ⊙ 𝝉 | |22 for objective (5) and
| |𝝉 | |22 + ||𝝉 | |1 for (6). Since

𝜕𝐶 (𝝉 )
𝜕𝝉 can be computed with constant

cost, we focus our analysis on
𝜕 log [𝜎 (𝑟 ∗𝑢𝑖−𝑟 ∗𝑢𝑗 ) ]

𝜕𝝉 . Suppose we denote
𝑥 = 𝑟∗

𝑢𝑖
− 𝑟∗

𝑢 𝑗
, then we have

𝜕 log [𝜎 (𝑥)]
𝜕𝝉

=
𝜕 log [𝜎 (𝑥)]

𝜕𝑥
· 𝜕𝑥
𝜕𝝉

= [1 − 𝜎 (𝑥)]︸      ︷︷      ︸
𝐴

· 𝜕𝑥

𝜕𝝉︸︷︷︸
𝐵

(13)

The computational cost of part A is in proportion to that of 𝑟𝑢𝑖 .
Suppose the cost of operator𝑚(·) is M, then part A costs O(𝑀 +∑𝑇
𝑡=1 𝑑𝑡−1𝑑𝑡 ). For analyzing part B, we rewrite equation (7) as:

𝑟𝑢𝑖 = 𝑔𝑇 (𝑔𝑇−1 (...𝑔1 (𝑚(𝑨𝑢 ,𝑩𝑖 )) ...))
𝑔𝑡 (𝑠) =𝑾𝑡𝜎𝑡 (𝑠) + 𝒃𝑡 𝑡 ∈ [1,𝑇 ] (14)

Obviously, the computational cost of 𝜕𝑥
𝜕𝝉 is mainly determined by

𝜕𝑟𝑢𝑖
𝜕𝝉 . Suppose we denote 𝐿𝑡 = 𝑔𝑡 (𝑔𝑡−1 (...𝑔1 (𝑚(𝑨𝑢 ,𝑩𝑖 ))...)), then
𝐿𝑡 =𝑾𝑡𝜎𝑡 (𝐿𝑡−1) + 𝒃𝑡 , and we have:
𝜕𝑟𝑢𝑖

𝜕𝝉
=

𝜕𝐿𝑇

𝜕𝐿𝑇−1
· 𝜕𝐿𝑇−1

𝜕𝝉
=𝑾𝑇 ·

𝜕𝐿𝑇−1
𝜕𝝉

=𝑾𝑇 ·𝑾𝑇−1 · ...𝑾1 ·
𝜕𝑚

𝜕𝝉
(15)

where the second equation holds because ReLU is used as the ac-
tivation function. Suppose the cost of 𝜕𝑚

𝜕𝝉 is𝑀 ′, then part B costs
O(𝑀 ′ +∑𝑇

𝑡=1 𝑑𝑡−1𝑑𝑡 ). As a result, the total computational cost of
equation (12) is O(𝑀 ′ +𝑀 +∑𝑇

𝑡=1 𝑑𝑡−1𝑑𝑡 ).
On the explainability. For generating recommendation expla-

nations, we learn 𝝉 for each feature separately, where we set 𝒌𝑢 in
equation (5) as a one-hot vector with 𝑘𝑢𝑠 (𝑠 ∈ [1, |F |]) as 1, then we
have the following objective:

min
𝜏𝑠
| |𝜏𝑠 | |22 + 𝛼 log [𝜎 (𝑟𝑢𝑖 − 𝑟𝑢 𝑗 )] (16)

where 𝜏𝑠 is the 𝑠th element of 𝝉 , representing the attention change
on the 𝑠th feature.

𝑟𝑢𝑖 = 𝑔(𝑨𝑢 + [ 0, 0, ..., 0︸   ︷︷   ︸
(𝑠−1) zeros

, 𝜏𝑠 , 0, 0, ..., 0︸   ︷︷   ︸
( |F |−𝑠) zeros

],𝑩𝑖 )
(17)

Intuitively, if we can alter the item ranking with smaller changes
on the user-feature attentions, then the corresponding features
should be more important, which are selected as the explanation
features. The template for generating explanations can be: “We



Algorithm 1: Learning algorithm of CF2

1 Train the target model 𝑔 with the original dataset O.
2 Initialize the counterfactual sample set 𝑂𝑐 = ∅.
3 for i in [1, M] do

4 Sample a user 𝑢 with the probability of
1

𝑛𝑢∑|U|
𝑖=1

1
𝑛𝑖

.

5 Sample a triplet (𝑢, 𝑖, 𝑗) in O.
6 Optimize formula (5) or (6) to get 𝝉 .
7 Compute 𝑟∗

𝑢𝑖
and 𝑟∗

𝑢 𝑗
based on 𝝉 .

8 if 𝑟∗
𝑢𝑖
≤ 𝑟∗

𝑢 𝑗
then

9 𝑂𝑐 ← 𝑂𝑐 ∪ (𝑢∗, 𝑗, 𝑖)
10 end
11 end
12 Train the target model 𝑔 based on O ∪𝑂𝑐 .

recommend you with item 𝑖 instead of item 𝑗 because of your cared
feature 𝑠 .”.

While explainable recommendation has been widely studied be-
fore [5, 15, 18, 26, 28], existing methods mostly explain the items
independently. However, in real-world scenarios, people always
making decisions via comparisons, e.g., “which item is more expen-
sive?”, “which movie is more popular?”. Our model can satisfy such
human nature by explaining the ranking of an item pair, where the
explanation for an item is not static, but influenced by the com-
pared item. If the previous models can be concluded as providing
point-wise explanations, our framework can be seen as a kind of
pair-wise explainable recommender model.

2.4 Theoretical Analysis
Careful readers may find that the sample generation process highly
depends on model 𝑔. If 𝑔 is not accurate, then the augmented data
can be noisy. In this section, we theoretically analyze the relation
between the number of generated samples and the prediction error
of 𝑔, if one wants to achieve sufficiently well performance. We base
our analysis within the PAC learning framework. To begin with,
we assume that equation (4) can recover the true ranking of the
item pairs based on the noisy parameter 𝜂 ∈ (0, 0.5), i.e., suppose
the true triplet is (𝑢, 𝑖, 𝑗), then equation (4) generates the true (i.e.,
(𝑢, 𝑖, 𝑗)) and wrong (i.e., (𝑢, 𝑗, 𝑖)) samples with the probabilities of
1 − 𝜂 and 𝜂, respectively. We have the following theory:

Theorem 1. Suppose ℎ ∈ H is an item ranking predictor4, where
H is the hypothesis class. For any 𝜖, 𝛿 ∈ (0, 1) and 𝜂 ∈ (0, 0.5), if ℎ
is learned based on empirical risk minimization (ERM), and sample

number is larger than
2 log ( 2|H|

𝛿
)

𝜖2 (1−2𝜂)2 , then the error between the estimated
result of ℎ and true value is smaller than 𝜖 with probability larger
than 1 − 𝛿 .

The proof of this theory is similar to [27]. Suppose the prediction
error of a hypothesis in H is 𝑠 , then the total error is 𝜂 + 𝑠 (1 −
2𝜂), considering that the generated data is noisy. If the prediction

4If ℎ can accurately predict the ranking of any item pairs, then it can provide high
reliable recommendation results.

Table 1: Statistics of the datasets.

Dataset #User #Item #Interaction Density
Office Products 4905 2420 53258 0.45%
Digital Music 5541 3568 64706 0.33%
Tools & Home 16638 10217 134476 0.08%
Home & Kitchen 66519 28237 551682 0.03%

Yelp 4777 11774 187615 0.33%

error of ℎ (i.e., 𝑠) is larger than 𝜖 , Then, we have the empirical mis-
matching rate of ℎ is smaller than 𝜂 + 𝜖 (1−2𝜂)

2 . or the empirical mis-
matching rate of the optimal ℎ∗ is larger than 𝜂 + 𝜖 (1−2𝜂)

2 . Similar
to [27], the probability of making both of the above statements hold
is smaller than 𝛿 , which implies that the prediction error of ℎ is
smaller than 𝜖 with the probability larger than 1 − 𝛿 .

This theory provides insights on the relation between the num-
ber of generated samples and the noisy parameter. From the sample

complexity 2 log ( 2|H|
𝛿
)

𝜖2 (1−2𝜂)2 , we can see, as the noisy parameter 𝜂 becom-
ing larger, more samples are needed to achieve sufficiently well
performance.

Controlling the noisy information. Inspired by this theory,
we design a heuristic method to control the noisy information. In
general, we only remain the samples which are more reliable. More
specifically, we improve equation (4) by introducing a threshold
𝜅 ∈ R−, that is:{

Generate (𝑢∗, 𝑗, 𝑖). 𝑟∗𝑢𝑖 − 𝑟
∗
𝑢 𝑗 ≤ 𝜅

No generation. 𝑟∗𝑢𝑖 − 𝑟
∗
𝑢 𝑗 > 𝜅

(18)

In this equation, if we use a smaller 𝜅, the model has more con-
fidence on the generated samples, and the noisy information is
reduced. But at the same time, the number of new samples will
be less, which may impact the model performance. If we select a
larger 𝜅 , more samples will be generated for sufficient training, but
the noise rate can also be increased. Thus, 𝜅 controls the trade-off
between the number and reliability of the generated samples. While
such noise control method is simple, it can achieve promising re-
sults in our experiments, and we left more advanced methods as
the future work.

3 EXPERIMENTS
In this section, we conduct experiments to verify our model’s effec-
tiveness, focusing on the following research questions:

RQ1:What is the overall performance of our model comparing
with the baselines?

RQ2: How different components in our model contribute the
final performance?

RQ3: How different hyper-parameters influence the model per-
formance?

RQ4:Whether the explanations provided from our framework
are reasonable?

In the following, we begin by introducing the experiment setup,
and then present and analyze the results to answer the above ques-
tions.



Table 2: Performance comparison between the baselines and our model. For each metric on different datasets, we use bold
fonts to label the best performance.

Dataset Office Products Digital Tools & Home Home & Kitchen Yelp
Metric (@5) 𝐹1 NDCG HR 𝐹1 NDCG HR 𝐹1 NDCG HR 𝐹1 NDCG HR 𝐹1 NDCG HR

BPR 0.088 0.110 0.420 0.086 0.147 0.429 0.050 0.071 0.263 0.081 0.122 0.409 0.190 0.290 0.755
NCF 0.102 0.127 0.464 0.081 0.115 0.352 0.058 0.080 0.303 0.082 0.128 0.429 0.178 0.236 0.783
MPCN 0.109 0.131 0.477 0.089 0.125 0.371 0.061 0.086 0.323 0.110 0.192 0.566 0.181 0.255 0.791
EFM 0.108 0.135 0.469 0.091 0.149 0.453 0.079 0.134 0.391 0.130 0.229 0.580 0.193 0.289 0.801
A2CF 0.113 0.171 0.550 0.092 0.155 0.461 0.080 0.138 0.413 0.133 0.238 0.590 0.197 0.292 0.805

CF2base-P 0.117 0.176 0.543 0.091 0.158 0.455 0.078 0.137 0.420 0.135 0.224 0.581 0.194 0.284 0.798
CF2rand-P 0.112 0.162 0.523 0.089 0.146 0.448 0.075 0.123 0.401 0.141 0.227 0.589 0.191 0.274 0.793
CF2hard-P 0.127 0.179 0.571 0.099 0.164 0.479 0.084 0.154 0.434 0.138 0.232 0.587 0.207 0.298 0.812
CF2soft-P 0.126 0.184 0.570 0.099 0.154 0.491 0.085 0.135 0.440 0.140 0.228 0.592 0.197 0.281 0.811

CF2base-A 0.114 0.165 0.534 0.088 0.135 0.445 0.080 0.125 0.430 0.140 0.233 0.584 0.204 0.284 0.810
CF2rand-A 0.110 0.160 0.523 0.090 0.143 0.447 0.080 0.135 0.421 0.139 0.232 0.581 0.204 0.283 0.803
CF2hard-A 0.120 0.170 0.547 0.100 0.166 0.482 0.084 0.138 0.431 0.144 0.238 0.601 0.207 0.286 0.812
CF2soft-A 0.123 0.174 0.564 0.094 0.141 0.458 0.083 0.138 0.428 0.143 0.234 0.592 0.208 0.288 0.812

CF2base-H 0.119 0.184 0.557 0.089 0.152 0.443 0.082 0.151 0.432 0.138 0.233 0.575 0.201 0.277 0.804
CF2rand-H 0.114 0.180 0.552 0.088 0.150 0.436 0.080 0.130 0.430 0.137 0.230 0.577 0.202 0.280 0.813
CF2hard-H 0.127 0.193 0.575 0.097 0.161 0.472 0.087 0.159 0.436 0.143 0.239 0.596 0.210 0.289 0.817
CF2soft-H 0.126 0.188 0.571 0.096 0.143 0.467 0.084 0.156 0.433 0.142 0.239 0.594 0.209 0.287 0.816

CF2base-AT 0.118 0.164 0.540 0.098 0.173 0.482 0.085 0.145 0.435 0.139 0.234 0.587 0.209 0.281 0.813
CF2rand-AT 0.113 0.165 0.530 0.100 0.176 0.493 0.087 0.147 0.444 0.138 0.226 0.586 0.205 0.284 0.809
CF2hard-AT 0.124 0.169 0.552 0.106 0.183 0.504 0.093 0.158 0.474 0.148 0.246 0.599 0.216 0.301 0.827
CF2soft-AT 0.121 0.181 0.557 0.104 0.176 0.486 0.089 0.154 0.454 0.143 0.241 0.592 0.213 0.291 0.819

3.1 Experiment Setup
Datasets. We base our experiments on the Amazon and Yelp5
datasets. Amazon is an e-commerce dataset, containing user review
information on the products from 25 categories. We select four
representative categories including Office Products, Digital Music,
Tools & Home and Home & Kitchen. These datasets cover different
characters, verying on the scale and density, e.g., Office Products is a
small and dense dataset, while Tool and Home Improvement is much
larger but sparser. Yelp is a reviewing dataset, which contains user
comments on the Restaurants, Bars, Dentists and etc. The statistics
of these datasets are presented in Table 1.
Baselines. We compare our model with the following representa-
tive baselines and most of these baselines can be used directly in
the Bole project [29]:

BPR [19] is a well known recommender model for capturing
user implicit feedback.

NCF [13] is a famous neural recommender model, which is able
to capture the non-linear relationships between the user preferences
and item properties.

MPCN [24] is a state-of-the-art review-based recommender
model, which processes the review information on the document-
level.
5https://www.yelp.com/dataset/download

EFM [28] is a well known feature-aware recommender model
based on matrix factorization.

A2CF [7] is a state-of-the-art feature-aware recommendermodel,
where the user-item-feature correlations are captured by the atten-
tive neural network.

CF2base is the model implemented by equation (7), and we do not
augment the training data in this method.

CF2rand is a simple data augmentation model, where the user
feature-level preference is randomly changed without learning the
boundary samples.

We denote our framework based on equation (5) and (6) as
CF2hard and CF2soft, respectively. There are four options to imple-
ment𝑚(·), and we call them as “-P” (element-wise product), “-A”
(element-wise add), “-H” (hybrid method) and “-AT” (attention-
based method), respectively.
Implementation details. In the experiments, each user’s last and
second last interactions are used for model testing and validation,
while the others are left for training. The commonly used metrics
including F1, NDCG and Hit Ratio are leveraged for comparing
different models. For each user, we recommend 5 items, which are
compared with the ground truth for computing different metrics. In
our model, the parameters are learned based on stochastic gradient
decent (SGD). The hyper-parameters are determined by grid search.



More specifically, the learning rate, batch size, K and threshold𝜅 are
tuned in the ranges of [0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1.5],
[32, 64, 128, 256, 512], [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] and [0.0,
− 0.1,−0.2,−0.3,−0.4,−0.5], respectively. For the baseline models,
we set the parameters as the values reported in the original papers
or tune them in the same ranges as our model’s.

3.2 Overall Comparison
The overall comparison results are presented in Table 2, we can see:
in most cases, the models without review information (i.e., BPR and
NCF) perform worse than the other baselines, which verifies the
effectiveness of user reviews in boosting the recommendation per-
formance. Among the review-based models, EFM usually exhibits
better performance than MPCN. We speculate that some review
contents can be not related with the user or item properties. Blindly
incorporating all the review information (like MPCN) may bias
the model learning process and lower the final performance. By
capturing the non-linear relationships between different features,
A2CF outperforms EFM in most cases.

Encouragingly, our framework can consistently achieve the best
performance on all the evaluation metrics across different datasets.
For the same implementation of𝑚(·), we can always observe im-
proved performances of CF2hard−𝑋 and CF2soft−𝑋 against CF2base−𝑋 ,
where 𝑋 belongs to {“P”, “A”, “H”, “AT”}. This result demonstrates
the effectiveness of our counterfactual data augmentation idea.
However, if we take a closer comparison between CF2rand − 𝑋 and
our model, we can conclude that while data augmentation is po-
tentially useful, randomly changing the user-feature attentions is
not a good strategy. In order to generate more informative data, we
learn to discover the decision boundary samples, which is shown
to be more effective in promoting the target model performance.

CF2hard − 𝑋 and CF2soft − 𝑋 alternatively obtain the best perfor-
mance on different datasets. Notably, the better results of CF2hard−𝑋
is achieved by exploring different K’s, which can be computational
inefficient. In order to make a selection between CF2hard − 𝑋 and
CF2soft − 𝑋 , one should balance the trade-off between the accuracy
and computational cost. For different implementations of𝑚(·), hy-
brid or attention-based methods can achieve better performance in
most cases. We speculate that hybrid method can incorporate dif-
ferent feature aggregation strategies, while attention-based method
can distinguish the importances of different features, thus both of
them can obtain superior performances.

3.3 Ablation Studies
The above section evaluates our framework as a whole. Readers may
also be interested in how different model components contribute
the final performance. There are three important modules in our
framework, that is, constrained feature perturbation, frequency-
based sampling and noisy information control. In this section, we
conduct ablation studies by asking the following questions:
•Whether the strategy of constrained feature perturbation is

effective?
•Whether frequency-based sampling is useful in boosting the

performance?
•Whether the noise control method can benefit the recommen-

dation performance?

To answer these questions, we compare our model with its five
variants: CF2−cst-X does not impose any constraints on the perturbed
features. CF2hard,−samp-X and CF2soft,−samp-X remove the strategy of
frequency-based sampling, and we constraint the features in both
hard and soft manners. In CF2hard,−𝜅 -X and CF2soft,−𝜅 -X, we do not
filter the noisy information, and equation (4) is leveraged to gen-
erate new samples. Similarly, we regularize the features with both
hard and soft methods. In the experiment, the model parameters
are set as their optimal values, and we implement𝑚(·) based on
the hybrid (H) and attention-based (AT) methods (i.e., X is either
H or AT), which have obtained better performance in the above
experiments. We present the results on the Amazon datasets in
Table 3, and the conclusions on Yelp are similar and omitted.

We can see: if we do not impose constraints on the features
(i.e., CF2−cst-X), the performance of our framework is lowered on
all the datasets and metrics. This result agrees with the observa-
tions in the previous work [28], and manifests that involving too
many features may indeed introduce too much flexibility for ac-
curate user modeling. Appropriately constraining the perturbed
features is an effective strategy for generating unambiguous sam-
ples to boost the recommendation performance. Comparing with
CF2hard,−samp-X and CF2soft,−samp-X, our final model can consistently
achieve better performance, which confirms the effectiveness of the
frequency-based sampling strategy. At last, we can observe lowered
performance of CF2hard,−𝜅 -X and CF2soft,−𝜅 -X comparing with CF2-X.
This manifests that the noisy control strategy is important for the
final result. While the designed thresholding method is simple, it
brings quite promising performance gains. For the hybrid method,
the performance can be enhanced by about 10.8%, 13.7%, 7.16% on
𝐹1, NDCG, HR, respectively. For the attention-based method, the
improvements on the same metrics are 18.4%, 20.1% and 12.1%.

3.4 Influence of the Hyper-parameters
In this section, we study the influence of different hyper-parameters.
We present the results on the attention-based method (i.e., “AT”),
and the results on the other implementations of𝑚(·) are similar
and omitted. When tunning one parameter, we fix the other ones
as their optimal values determined in the above experiments.

Influence of 𝐾 . In the hard feature perturbation method, 𝐾 is
an important parameter, determining how many features should
be involved for altering the user preference. We tune 𝐾 in the
range of [10, 100], and the results are presented in the first line of
Figure 3. We can see: the best performance is usually achieved when
𝐾 is moderate. The reason can be that, too little features can be
not enough to capture the users’ potentially complex preferences.
While if we involve too many features, the model may introduce
too much uncertainties, which makes it hard to achieve satisfied
performance.

Influence of 𝜅. As mentioned above, 𝜅 controls the confidence
of the generated data. Smaller 𝜅 means higher confidence. To ob-
serve its influence, we tune it from -0.5 to -0.1, and the results are
presented in the second line of Figure 3. It is interesting to see
that too small 𝜅 (high confidence) does not lead to better perfor-
mance. The reason can be that if we lower 𝜅 , the sample generation
conditions become more rigorous, which reduces the number of



Table 3: Comparison between our model and its variants. We use bold fonts to label the best performance.

Dataset Office Products Digital Tools & Home Home & Kitchen
Metric (@5) 𝐹1 NDCG HR 𝐹1 NDCG HR 𝐹1 NDCG HR 𝐹1 NDCG HR
CF2−cst-H 0.124 0.180 0.562 0.093 0.140 0.461 0.082 0.147 0.431 0.142 0.238 0.593

CF2hard,−samp-H 0.122 0.172 0.566 0.095 0.149 0.468 0.083 0.138 0.438 0.141 0.236 0.587
CF2soft,−samp-H 0.121 0.169 0.555 0.094 0.144 0.463 0.078 0.124 0.428 0.131 0.205 0.576
CF2hard,−𝜅 -H 0.112 0.168 0.535 0.087 0.142 0.425 0.074 0.117 0.399 0.137 0.229 0.577
CF2soft,−𝜅 -H 0.117 0.176 0.562 0.087 0.142 0.425 0.081 0.148 0.424 0.127 0.215 0.542

CF2-H 0.127 0.193 0.575 0.097 0.161 0.472 0.087 0.159 0.436 0.143 0.239 0.596

CF2−cst-AT 0.119 0.167 0.538 0.102 0.175 0.496 0.087 0.141 0.461 0.145 0.245 0.595
CF2hard,−samp-AT 0.117 0.166 0.537 0.101 0.174 0.492 0.089 0.153 0.447 0.143 0.239 0.596
CF2soft,−samp-AT 0.119 0.177 0.543 0.102 0.175 0.496 0.087 0.153 0.451 0.141 0.239 0.589
CF2hard,−𝜅 -AT 0.078 0.109 0.399 0.097 0.170 0.479 0.067 0.112 0.345 0.135 0.227 0.583
CF2soft,−𝜅 -AT 0.119 0.178 0.564 0.101 0.173 0.494 0.079 0.124 0.431 0.142 0.240 0.590

CF2-AT 0.124 0.181 0.557 0.106 0.183 0.504 0.093 0.158 0.474 0.148 0.246 0.599

* In the last line of each block, we present the best performance of our framework for reference.

Figure 3: Influence of 𝐾 and 𝜅 on the recommendation performance.

produced samples. This may lead to insufficient model optimization,
and thus limit the recommendation performance. However, when
𝜅 reaches a relative large value, the performance tends to be stable.
We speculate that while there can be more samples joining into the
optimization process, they can be noisy, which is detrimental for
the final performance.

3.5 Pair-wise Recommendation Explanations
In this section, we evaluate the explainability of our framework
from both qualitative and quantitative perspectives.

3.5.1 Qualitative analysis. In order to provide intuitive understand-
ings on our framework, in this section, we presentmany case studies
to illustrate the generated pair-wise explanations in a qualitative

manner. As mentioned in section 2.3, the features with smaller 𝜏𝑠
are more important for the current item ranking. We select five
most important features for each case, and present the results in
Figure 4(a). We can see: in the first case, the user is satisfied with
the weight of the positive item, but complains on weight of the
negative item. The weight can be an important feature influencing
the user decisions, which is successfully learned from our model.
In the second case, according to the user reviews, the item price
can be an important feature in the user’s mind when comparing
the two items, which is accurately predicted by our model. These
cases show the capability of our model in predicting the decisive
features for the item rankings, which builds the basis for pair-wise
explainable recommendation.



Figure 4: (a) Qualitative analysis. In each case, there is a user
and an item pair, and we also present the real review infor-
mation for reference. The bottom line shows the features
learned from ourmodel. (b) Results of the quantitative anal-
ysis.

3.5.2 Quantitative analysis. In addition to the above qualitative
analysis, we also conduct quantitative studies on the generated
recommendation explanations. More specifically, we compare our
model with A2CF, which, as far as we know, is the only method
for pair-wise explanations. We implement𝑚(·) with the attention-
based method, and the parameters are set as their optimal values.
In the experiment, we randomly select 200 (user, positive item,
negative item) triplets from the testing set of Tools & Home, where
each user has at least 10 interactions in the training set. We ask
the workers to read the reviews of each user in the training set.
Since the user has sufficient interactions (>10), the workers can
more accurately understand her preference. For both of our model
and A2CF, we generate the most important features, and ask the
workers to label: whether our model is better than, on par with or
worse than A2CF. From the results shown in Figure 4(b), we can
see, our model can indeed lead to more reasonable explanations,
which demonstrates the effectiveness of leveraging the “sensitivity”
of each feature to explain the recommendation results.

4 RELATEDWORK
4.1 Feature-aware Recommendation
Feature-aware recommendation has attracted increasing attention
in the past few years. It differentiates itself from the other review-
based recommendation by extracting user feature-level preference
from the raw user reviews. Among existing models, explicit factor
model (EFM) [28] is a most famous algorithm, which captures the
correlations between the users, items and features based on coupled
matrix factorization. In this model, the user preferences and item
qualities are connected based on the feature information. Once the
model learned, one can explain the recommendation results with
the item features. In the past few years, EFM has inspired many fol-
lowing research. MTER [26] and LRPPM [9] extend EFM by tensor
factorization to emphasize the user personalized preference on the
item features. A2CF [7] designs a neural network to capture the
non-linear correlations among the users, items and features, and
leverages attention mechanism to distinguish different feature im-
portances. This method can also explain user pair-wise preferences,
but it does not use the counterfactual idea to learn the minimum
attention changes on the features. Different from these methods,

which mostly focus on designing model architectures, we focus
on a orthogonal direction, i.e., alleviating the training data insuffi-
cient problem, where we counterfactually augment the user review
information to assist more comprehensive model optimization.

4.2 Counterfactual Thinking
Counterfactual thinking belongs to the human introspection be-
haviors, such as “what if I took another road?” and “what if I did
not eat that apple?”. Recently, the concept of counterfactual think-
ing has been introduced into the machine learning community to
augment the training data by exploring the potential samples when
the original conditions are revised [2, 10, 14, 20]. In the field of
neural language processing (NLP), [31] leverages counterfactual
data augmentation to mitigate gender stereotypes in the observed
data. In the field of computer vision (CV), [11] generates additional
trajectory data to enhance the vision-and-language navigation task
in an adversarial manner. [6] incorporates the counterfactual idea
into a multi-agent training process for scene graph generation.
In this paper, we leverage the idea of counterfactual thinking to
build review-based recommender models, which, to the best of our
knowledge, is the first time in this field. In addition, we theoretically
analyze that, if the generated samples are noisy, howmany data one
needs to generate in order to achieve sufficiently well performance
within the PAC learning framework [22].

5 CONCLUSION
In this paper, we propose to enhance review-based recommenda-
tion based on the idea of counterfactual data augmentation. The
key question for generating new samples is: “what would be the
user’s propensity on an item pair if her feature-attentions had been
different?”. Instead of randomly revising the users’ feature-level
preference, we learn to discover the decision boundary samples,
which can be more effective in terms of model optimization. We
also propose a method for providing pair-wise recommendation
explanations, and theoretically analyze our framework when the
generated samples are noisy. Extensive experiments are conducted
to demonstrate our model’s effectiveness.

This paper actually opens the door of incorporating causal infer-
ence into the field of review-based recommendation. There is still
much room left for the following work. For example, one can intro-
duce exogenous variables to model the users’ previous status for
more accurate sample generation. Since our model is a framework,
one can easily extend it to other recommendation settings when
the user and item can be represented by some types of “contents”.
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